
Learning Conditional Independence Tree for Ranking

Jiang Su and Harry Zhang
Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, NB, Canada E3B 5A3
hzhang@unb.ca

Abstract

Accurate ranking is desired in many real-world data
mining applications. Traditional learning algorithms, how-
ever, aim only at high classification accuracy. It has been
observed that both traditional decision trees and naive
Bayes produce good classification accuracy but poor prob-
ability estimates. In this paper, we use a new model, con-
ditional independence tree (CITree), which is a combina-
tion of decision tree and naive Bayes and more suitable for
ranking and more learnable in practice. We propose a novel
algorithm for learning CITree for ranking, and the experi-
ments show that the CITree algorithm outperforms the state-
of-the-art decision tree learning algorithm C4.4 and naive
Bayes significantly in yielding accurate rankings. Our work
provides an effective data mining algorithm for applications
in which an accurate ranking is required.

1 Introduction

In data mining, a classifier is built from a set of train-
ing examples with class labels and its performance is mea-
sured by its predictive accuracy (or error rate, 1 � accu-
racy). Some classifiers can also produce the class probabil-
ity estimates ������ that is the probability of an example �
in the class �. This information is largely ignored, since the
error rate considers only the class with the largest proba-
bility estimate. In some data mining applications, however,
classification and error rate are not enough. For example, in
direct marketing, we often need a ranking of customers in
terms of their likelihood of buying.

If we are aiming at an accurate ranking based on the class
probability, the area under the ROC (Receiver Operating
Characteristics) curve [9, 6], or simply AUC, has been re-
cently used as the performance measure. AUC compares the
classifiers’ performance cross the entire range of class dis-
tributions and error costs, and provides a good “summary”
for comparing two classifiers. Hand and Till [1] show that,

for binary classification, AUC is equivalent to the probabil-
ity that a randomly chosen example of class � will have a
smaller estimated probability of belonging to class + than a
randomly chosen example of class +. They present a simple
approach to calculating the AUC of a classifier � below.

�� �
�� � ����� � ����

����
� (1)

where �� and �� are the numbers of negative and positive
examples respectively, and �� �

�
	�, where 	� is the rank

of
�� positive example in the ranking.
From Equation 1, it is clear that AUC is essentially a

measure of the quality of a ranking. For example, the AUC
of a ranking is 1 (the maximum value of AUC) if there is no
positive example preceding a negative example.

If we are aiming at the accurate probability-based rank-
ing, what is the performance of the traditional learning al-
gorithms, such as decision trees and naive Bayes? In a de-
cision tree, the class probability ������ is the fraction of
the examples of class � in the leaf that � falls into. While
decision trees perform quite well in classification, it is also
found that their probability estimates are poor [5, 7]. Build-
ing decision trees with accurate probability estimates, called
probability estimation trees (PETs), has received a great
deal of attention recently [8]. Some researchers ascribe the
poor probability estimates of decision trees to the decision
tree learning algorithms. Thus, many techniques have been
proposed to improve the learning algorithms in producing
accurate probability estimates [8]. Provost and Domingos
propose propose the following techniques to improve the
AUC of C4.5 [8].

1. Smooth probability estimates by Laplace correction.
Assume that there are � examples of the class at a leaf,
� total examples, and � total classes. The frequency-
based estimation calculates the estimated probability
as �

�
. The Laplace estimation calculates the estimated

probability as ���

���
.

2. Turn off pruning. Provost and Domingos [8] show that
pruning a large tree damages the probability estima-

tion. Thus, a simple strategy to improve the probability
estimation is to build a large tree without pruning.

Provost and Domingos call the resulting algorithm C4.4.
They compared C4.4 to C4.5 by empirical experiments, and
found that C4.4 is a significant improvement over C4.5 with
regard to AUC.

Ling and Yan also propose a method to improve the AUC
of a decision tree [3]. They present a novel probability
estimation algorithm, in which the class probability of an
example is an average of the probability estimates from all
leaves of the tree, instead of only using the leaf into which
it falls. In other word, each leaf contributes to the class
probability estimate of an example.

To our observation, however, the representation of deci-
sion trees also plays an important role. In a decision tree,
the class probabilities of all the examples in the same leaf
are equal. However, an accurate ranking needs that differ-
ent examples have different probability. This is an obstacle
in building an accurate PET, because two contradictory fac-
tors are in play at the same time. On one hand, traditional
decision tree algorithms, such as C4.5, prefer a small tree.
Thus, a leaf has more examples and the class probability es-
timates are more reliable. A small tree, however, has a small
number of leaves, thus more examples will have the same
class probability. That prevents the learning algorithm from
building an accurate PET. On the other hand, if the tree is
large, not only may the tree overfitting the training data, but
the number of examples in each leaf is also small, and thus
the probability estimates would not be accurate and reliable.
Such a contradiction does exist in traditional decision trees.

A CITree [11] (Conditional Independence Tree) is a
novel representation model, which uses a traditional deci-
sion tree to explicitly represent conditional independences
among attributes and a naive Bayes on each leaf to repre-
sent the local distribution. Thus, a CITree represents a joint
distribution among all attributes. CITree is different from
NBTree [2] in that the structure of a CITree represents con-
ditional independence; that is, given the attributes (path at-
tributes) that occur on the path from the root to a leaf, all
the other attributes (leaf attributes) are independent. Since
conditional dependence can be relaxed by the tree structure,
so the probability estimates given by leaf naive Bayes will
be accurate. In the mean while, naive Bayes can assign dif-
ferent probability to each example, which could lead to an
accurate ranking. In other words, its AUC should be high.

2 A Novel Algorithm for Learning CITree

We believe that CITree is a suitable model for building
an accurate PET, and thus yields an accurate ranking. But
in practice, learning the structure of an accurate CITree is
intractable, just as learning an optimal decision tree. How-
ever, a good approximation of a CITree, which gives good

estimates of class probabilities, is satisfiable in many data
mining applications. If the structure of a CITree is suffi-
ciently well, the probability estimates given by its leaf naive
Bayes is also accurate, since the conditional dependences
among attributes are relaxed by the structure of the CITree.

In building a CITree, we are looking for an attribute,
given which all other attributes have the maximum inde-
pendence. Thus, the key is to find such an attribute. The
process of building a CITree could be also a greedy and re-
cursive process, similar to building a decision tree. At each
step, choose the “best” attribute as the root of the (sub)tree,
split the associated data into disjoint subsets corresponding
to the values of the attribute, and then recur this process for
each subset until certain criteria are satisfied.

Notice as well, however, the difference between learn-
ing a CITree and learning a decision tree. The process
of building a decision tree is guided by the purity of the
(sub)dataset, measured by information gain. That is, we are
looking for a sequence of attributes that leads to the max-
imum purity in all leaves of the tree. However, the pro-
cess of building a CITree is guided by relaxing the condi-
tional dependences among attributes. More precisely, we
wish that, by choosing a sequences of attributes, all other
attributes are independent. In practice, we intend to choose
a set of attributes that make the local conditional indepen-
dence among the rest of attributes true as much as possible.
Thus, even though the impurity of a (sub)dataset is high,
it could still be desired, as long as the conditional depen-
dence is minimum. Thus, traditional decision tree learning
algorithms are not directly suitable for learning CITrees.

One problem in learning a CITree is how to find the at-
tribute (if it exists), given which all other attributes have the
maximum conditional independence. We adopt a heuristic
search process, in which we choose an attribute with the
greatest improvement on the performance of the resulting
CITree. Another reason for using this strategy is that, not
all the conditional dependences will influence naive Bayes.
Naive Bayes works well even when strong dependences ex-
ist. Thus a heuristic search guided by the performance of
the CITree is suitable. More precisely, we try each possi-
ble attribute as the root at each step, evaluate the resulting
tree, and choose the attribute that achieves the highest AUC.
To avoid overfitting, the AUC of a leaf naive Bayes is con-
ducted by a 5-fold cross validation.

Similar to C4.5, our learning algorithm has two separate
steps: growing a tree and post-pruning. In growing a tree,
each possible attribute is evaluated at each step, and the at-
tribute that gives the most improvement in AUC is selected.
The algorithm is depicted below.

Algorithm AUC-CITree (�, �,�)

Input : CITree �, a set � of labeled examples, a set of
attributes�

Output : a CITree.

1. For all attributes � in�

� Partition � into ��, � � �, ��, each of which
corresponds to a value of �.

� Create a leaf naive Bayes for each ��.

� Evaluate the resulting CITree in terms of
AUC.

2. Choose the attribute ���� with the highest AUC.

3. For all values of ����

CITree(��, ��,�� ������).
Add �� as a child of �.

4. Return �.

Notice that in the AUC-CITree algorithm described
above, we grow a tree as large as possible until we are out
of data or attributes, and then start a post-pruning process
as following:

Apply pruning based on the AUC of leaf naive Bayes, in
which the children of a node are removed only if the result-
ing pruned tree (making it a leaf node and deploying a naive
Bayes at it) performs no worse than the original tree. No-
tice the AUC for the children of a node is computed using
instances from all the children.

Our AUC-CITree algorithm is different from the NBTree
algorithm [2] in several aspects:

1. Our AUC-CITree algorithm is based on AUC, instead
of accuracy.

2. Our algorithm is less greedy than the NBTree algo-
rithm, in which if the accuracy improvement is less
than 5%, stop growing the tree. We always choose the
best attribute at each step, even no improvement has
been achieved.

3. The AUC-CITree algorithm adopts the post-pruning
strategy, rather than early stop.

3 Experiments

We conduct experiments to compare our algorithm CIT-
ree with C4.4 and naive Bayes. Notice that the implementa-
tion of naive Bayes and C4.4 is from Weka [10], C4.4 is J48
in Weka with Laplace correction and turning off pruning.
All algorithms are evaluated by using 29 datasets from the
UCI repository [4]. Considering that large data sets seem
more important in data mining, we also choose large data
sets to show CITree’s advantage in practical environment.
In our experiment, multi-class AUC has been calculated by
M-measure [1], and the average AUC on each data set is ob-
tained by using 10-fold stratified cross validation 10 times.
Some details in our implementation are summarized below.

1. In Step 1 of the AUC-CITree algorithm, we adopt an
inner 5-fold cross-validation on the training data �
which fall into a leaf to evaluate the AUC for a leaf
naive Bayes, and choose the best one. For example, if
a attribute has 4 attribute value which will result four
leaf naive Bayes, the inner 5-fold cross-validations will
be run in four leafs. Note that, we compute AUC by
putting the instances from all the leaves together rather
than computing the AUC for each leaf separately.

2. In Step 1, when the instances falling into a leaf are less
than 5, all the instances will be assigned the random
probability. This is a strategy to avoid overfitting.

3. Numeric attributes are discretized using ten-bin dis-
cretization implemented in Weka [10]. Missing value
are also replaced by ReplaceMissingValues class in
Weka.

Table 1 shows the average AUC obtained by the three al-
gorithms. The comparison of the three algorithms on these
datasets, in which a paired t-test with a confidence of 95%
has been used, are summarized in Table 2. Our observations
are summarized below.

1. The AUC-CITree algorithm outperforms naive Bayes
significantly in terms of AUC: It wins in 10 datasets,
ties in 19 datasets and loses in 0 dataset. The average
AUC for CITree is 92.66%, higher than the average
AUC 90.91% of naive Bayes.

2. The CITree algorithm also outperforms C4.4 signifi-
cantly in terms of AUC: It wins in 16 datasets, ties in
11 datasets and loses in 2 datasets. The average AUC
for decision trees is 89.02%, lower than CITree’s.

3. The sizes of CITrees (not shown in Table 1) are sig-
nificantly smaller than the sizes of decision trees over
most of these datasets. Here the size of a tree is the
number of nodes. The average tree size for CITrees is
64, and for C4.4 it is 610.

4 Conclusions

In this paper, we study using an extended decision tree
model CITree for ranking, and present and implement a
novel algorithm AUC-CITree which is based on AUC to
build a CITree for ranking by exploring the conditional in-
dependence among attributes, different from traditional de-
cision tree learning algorithms. Our experiments show that
the AUC-CITree algorithm performs better than C4.4 and
naive Bayes significantly in terms of ranking, measured by
AUC. Our work provides an effective data mining algorithm
for applications in which an accurate ranking is required.

Table 1. Experimental results on AUC.

Dataset AUC-CITree NB C4.4
Abalone 79.25 � 1.6 78.73 � 1.58 77.86 � 1.8
Adult 90.44 � 0.3 90.1 � 0.33 86.64 � 0.42
Anneal 96.33 � 0.61 95.9 � 1.3 93.8 � 2.9
B.-scale 84.46 � 4.1 84.46 � 4.1 59.4 � 5.53
Wis.-breast 99.18 � 1 99.26 � 0.82 97.83 � 1.54
Car 98.41 � 1.47 92.06 � 2.55 95.83 � 1.74
Horse-colic 85.04 � 7.59 84.04 � 5.38 82.01 � 5.25
Crd-rating 91.7 � 3.85 92.05 � 3.46 87.46 � 3.46
G.-credit 78.25 � 5.27 79.27 � 4.74 68.59 � 4.81
Pima 82.31 � 5.17 82.31 � 5.17 73.27 � 4.84
Hypothy. 87.35 � 7.04 87.37 � 8.52 82.88 � 8.95
Ionosphere 96.33 � 2.7 93.61 � 3.36 91.95 � 4.31
Iris 98.58 � 2.67 98.58 � 2.67 97.42 � 2.1
Kr-vs-kp 99.8 � 0.16 95.17 � 1.29 99.96 � 0.05
Letter 98.57 � 0.14 96.86 � 0.24 95.27 � 0.41
Mushroom 100 � 0 99.79 � 0.04 100 � 0
Nursery 98.68 � 3.27 98.91 � 1.02 96.89 � 6.04
Pendigits 99.77 � 0.07 98.7 � 0.19 98.23 � 0.28
Satellite 66.44 � 27.02 66.61 � 17.63 83.31 � 14.08
Segment 99.06 � 0.34 98.51 � 0.46 98.95 � 0.27
Sick 98.53 � 1.25 95.91 � 2.35 99.07 � 0.42
Soybean 99.55 � 0.64 99.53 � 0.6 91.35 � 2.7
Splice 99.36 � 0.32 99.41 � 0.22 97.81 � 0.55
Tic-tac-toe 90.33 � 1.31 73.91 � 2.18 93.99 � 2.88
Vehicle 87.06 � 2.58 80.81 � 3.51 86.5 � 2.61
Vote 98.64 � 1.15 96.56 � 2.09 97.46 � 2.46
Vowel 99.29 � 0.5 95.81 � 0.84 91.01 � 2.3
Waveform 95.27 � 0.58 95.27 � 0.58 80.44 � 1.18
Yeast 89.2 � 1.53 86.91 � 1.91 76.35 � 5.3
Average 92.66 90.91 89.02

Table 2. Summary of the experimental results.
An entry �-�-� means that the algorithm at the
corresponding row wins in � datasets, ties in
� datasets, and loses in � datasets, compared
to the algorithm at the corresponding column.

NB C4.4
AUC-CITree 10-19-0 16-11-2

NB 14-8-7

CITree can be viewed as a bridge between probabilis-
tic models, such as Bayesian networks, and non-parametric
models, such as decision trees [11]. However, a more
effective CITree learning algorithm is desired. Currently,
our learning algorithm is based on heuristics, similar to the
NBTree algorithm [2]. We believe that if a better learn-
ing algorithm is found, a CITree will benefit much from its
structure, and thus will be a good model for many data min-
ing applications.

References

[1] D. J. Hand and R. J. Till. A simple generalisation of the
area under the ROC curve for multiple class classification
problems. Machine Learning, 45:171–186, 2001.

[2] R. Kohavi. Scaling up the accuracy of naive-bayes classi-
fiers: A decision-tree hybrid. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery and
Data Mining, pages 202–207. AAAI Press, 1996.

[3] C. X. Ling and R. J. Yan. Decision tree with better ranking.
In Proceedings of the 20th International Conference on Ma-
chine Learning, pages 480–487. Morgan Kaufmann, 2003.

[4] C. Merz, P. Murphy, and D. Aha. UCI repository of machine
learning databases. In Dept of ICS, University of California,
Irvine. http://www.ics.uci.edu/ mlearn/MLRepository.html,
1997.

[5] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and
C. Brunk. Reducing misclassification costs. In Proceedings
of the 11th International conference on Machine Learning,
pages 217–225. Morgan Kaufmann, 1994.

[6] F. Provost and T. Fawcett. Analysis and visualization of
classifier performance: comparison under imprecise class
and cost distribution. In Proceedings of the Third Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 43–48. AAAI Press, 1997.

[7] F. Provost, T. Fawcett, and R. Kohavi. The case against accu-
racy estimation for comparing induction algorithms. In Pro-
ceedings of the Fifteenth International Conference on Ma-
chine Learning, pages 445–453. Morgan Kaufmann, 1998.

[8] F. J. Provost and P. Domingos. Tree induction for
probability-based ranking. Machine Learning, 52(3):199–
215, 2003.

[9] J. Swets. Measuring the accuracy of diagnostic systems. Sci-
ence, 240:1285–1293, 1988.

[10] I. H. Witten and E. Frank. Data Mining –Practical Machine
Learning Tools and Techniques with Java Implementation.
Morgan Kaufmann, 2000.

[11] H. Zhang and J. Su. Conditional independence trees. In to
appear in Proceedings of the 15th European Conference on
Machine Learning. Springer, 2004.

