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Abstract. It has been observed that traditional decision trees produce
poor probability estimates. In many applications, however, a probability
estimation tree (PET) with accurate probability estimates is desirable.
Some researchers ascribe the poor probability estimates of decision trees
to the decision tree learning algorithms. To our observation, however, the
representation also plays an important role. Indeed, the representation
of decision trees is fully expressive theoretically, but it is often imprac-
tical to learn such a representation with accurate probability estimates
from limited training data. In this paper, we extend decision trees to
represent a joint distribution and conditional independence, called con-
ditional independence trees (CITrees), which is a more suitable model
for PETs. We propose a novel algorithm for learning CITrees, and our
experiments show that the CITree algorithm outperforms C4.5 and naive
Bayes significantly in classification accuracy.

1 Introduction

Classification is a fundamental issue of machine learning, in which a classifier
is induced from a set of labeled training examples represented by a vector of
attribute values and a class label. We denote a vector of attributes by an bold-
face upper-case letter A, A = (A1, A2, · · · , An), and an assignment of value to
each attribute in A by a corresponding bold-face lower-case letter a. We use C
to denote the class variable and c to denote its value. Thus, a training example
E = (a, c), where a = (a1, a2, · · · , an), and ai is the value of attribute Ai. A
classifier is a function that maps an example to a class label.

There are numerous inductive learning algorithms, such as decision trees,
Bayesian networks, and neural networks, that can be categorized into two major
approaches: probability-based approach and decision boundary-based approach.
In a probability-based learning algorithm, a probability distribution p(A, C) is
learned from the training data, and an example E is classified into the class c with
the maximum posterior class probability p(c|E) (or simply class probability), as
shown below.

Cpb(E) = arg
c

max p(c|E). (1)



2 Harry Zhang and Jiang Su

Various probability-based learning algorithms have been developed, which are
different in the way of estimating p(c|E). For example, a naive Bayes classifier
(or simply naive Bayes), shown in Equation 2, is a successful one widely used in
many applications.

Cnb(E) = arg
c

max p(c)
n∏

i=1

p(ai|c). (2)

A naive Bayes is based on the crucial assumption that all the attributes are
independent given the value of the class variable, called conditional independence
assumption and shown in Equation 3. Obviously, this assumption is rarely true
in reality.

p(a|c) =
n∏

i=1

p(ai|c). (3)

In a decision boundary-based algorithm, an explicit decision boundary is
extracted from the training data, and an example E is classified into class c if
E falls into the decision area corresponding to c. Decision tree algorithms are
well-known as decision boundary-based. While decision trees perform quite well
in classification, it is also found that their probability estimates are poor [9].
Building decision trees with accurate probability estimates, called probability
estimation trees (PETs), has received a great deal of attention recently [10].
Some researchers ascribe the poor probability estimates of decision trees to the
decision tree learning algorithms. Thus, many techniques have been proposed to
improve the learning algorithms in producing accurate probability estimates[10].

To our observation, however, the representation also plays an important role.
Indeed, the representation of decision trees is fully expressive theoretically, but
it is often impractical to learn such a representation with accurate probability
estimates from limited training data.

In a decision tree, the class probability p(c|E) is estimated by the fraction of
the examples of class c in the leaf into which E falls. Thus, the class probabilities
of all the examples in the same leaf are equal. This is an obstacle in building an
accurate PET, because two contradictory factors are in play at the same time.
On one hand, traditional decision tree algorithms, such as C4.5, prefer a small
tree. Thus, a leaf has more examples and the class probability estimates are more
reliable. A small tree, however, has a small number of leaves, thus more examples
will have the same class probability. That prevents the learning algorithm from
building an accurate PET. On the other hand, if the tree is large, not only may
the tree overfit the training data, but the number of examples in each leaf is also
small, and thus the probability estimates would not be accurate and reliable.
Such a contradiction does exist in traditional decision trees.

Our motivation is to extend the representation of traditional decision trees
not only to represent accurate probabilities but also to be easily learnable from
limited data in practice. Naturally, if an accurate PET is built, its classification
accuracy should also be high, since an accurate approximation of p(c|E) is found
and can be used for classification. Thus, we use classification accuracy to evaluate
learning algorithms in this paper.
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The rest of the paper is organized as follows. Section 2 introduces the related
work on learning decision trees with accurate probability estimates. Section 3
presents a novel model for PETs and a corresponding algorithm for learning
PETs. In Section 4, we present empirical experiments. The paper concludes
with discussion and some directions for future work.

2 Related Work

Since traditional decision tree algorithms, such as C4.5, have been observed to
produce poor probability estimates of probabilities [9], a substantial amount of
work has been done recently on accurate PETs [10]. Provost and Domingos [10]
point out that the reason behind the poor estimates of decision trees is not the
decision tree representation, but the inductive algorithm. They propose a few
techniques to modify the C4.5 learning algorithm.

First, they turn off the pruning and collapsing in C4.5, since they notice that
a larger tree tends to have more accurate probability estimates.

Second, they propose to use Laplace correction to smooth probability esti-
mates. The reason is the fragmentation problem: As the splitting process pro-
ceeds, the data associated with each descendant node becomes small. Eventually,
when the depth of the tree is large, there is very little data with each leaf node
[6]. Thus, the probability estimates based on frequency are not accurate. This
issue is more serious after turning off the pruning and collapsing mechanism.

The resulting algorithm is called C4.4. They also find out that bagging, an
ensemble method, improves the probability estimates of decision trees signifi-
cantly.

Ling and Yan also propose a method to improve the probability estimates
of decision trees [7]. They present a method to generate the class probability of
an example, in which an average of the probability estimates from all leaves of
the tree is used, instead of only using the leaf into which it falls. Thus, each leaf
contributes to the class probability estimate of an example in different degree.

In learning a decision tree, a critical step is to choose the “best” attribute in
each step. The entropy-based splitting criteria, such as information gain and gain
ratio, have been widely used. There are also other splitting criteria proposed. One
is Bayesian approach [3], which searches for a decision tree with the maximum
posterior probability given the training examples.

Although decision trees are well-known as a nonparametric and decision-
boundary based classifier, each leaf of a tree actually represents a conditional
probability distribution. These types of decision trees are called probabilistic de-
cision trees. Jordan [5] analyzes decision trees within a probabilistic framework.
A decision tree actually represents a sequence of probabilistic decisions, each con-
ditional on the attribute values and previous decisions. Thus, Bayesian theory
can be used in analyzing the performance of the tree. A learning algorithm based
on EM (Expectation-Maximization) has been proposed for maximum likelihood
parameter estimation in a hidden Markov decision tree.
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A questionable point of traditional decision trees (including probabilistic
trees) is that only the attributes along the path from the root to a leaf are
used in both classification and probability estimation. Since a small tree is pre-
ferred by traditional decision tree learning algorithms, many attributes may not
be used. This is a more serious issue in learning PETs than classification. Kohavi
proposes to deploy a naive Bayes in each leaf, and the resulting decision tree is
called an NBTree [6]. The algorithm for learning an NBTree is similar to C4.5.
After a tree is grown, a naive Bayes is constructed for each leaf using the data
associated with that leaf. An NBTree classifies an example by sorting it to a leaf
and applying the naive Bayes in that leaf to assign a class label to it. Actually,
deploying a model at leaves to calibrate the probability estimates of a decision
tree has been proposed by Symth, Gray and Fayyad [11]. They also notice that
every example from a particular leaf has the same probability estimate, and thus
suggest to place a kernel-based probability density estimator at each leaf.

Our work is inspired by the works of Kohavi, and Symth, Gray and Fayyad,
but from different point of view. Indeed, if a local model that incorporates the
attributes not occurring on the path is deployed at each leaf, together with the
conditional probability of the attributes occurring on the path, the resulting tree
represents accurate probabilities. If the structure of standard decision trees is
learned and used the same way as in C4.5, however, the leaf models would not
directly and explicitly benefit from the structure, and thus would still play a
role of smoothing. Our motivation is how to learn and use the structure of a tree
to explore conditional independences among attributes, such that a simple leaf
model, like a naive Bayes, gives accurate probability estimates. Then, the result-
ing model is more compact and more easily learnable, while its representation is
still accurate.

3 Understanding Decision Trees from Probabilistic
Perspective

Even though there theoretically exists a decision tree with accurate probability
estimates for any given problem, such a tree tends to be large and learnable only
when sufficient (huge) training data are available. In practice, a small tree is
preferred. Thus, poor probability estimates are yielded. Therefore, the represen-
tation of a decision tree should be extended to represent accurate probabilities
and be learnable from limited training data.

3.1 Probabilistic Decision Trees

Figure 1 shows an example of a probabilistic tree, in which each leaf L represents
a conditional distribution p(C|Ap(L)), where Ap(L) are the attributes that
occur in the path from the root to L. For simplicity, the attributes that occur
in the path is called the path attributes of L, and all other attributes are called
the leaf attributes of L, denoted by Al(L).
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Fig. 1. An example of an probabilistic tree

In practice, p(C|Ap(L)) is often estimated by using the fraction of examples
of class C in L, and the classification of a decision tree is based on p(C|Ap(L)).
Thus, from the probabilistic point of view, a decision tree can be also viewed as
a probability-based classifier, defined as below.

Cdt(E) = arg
c

max p(c|ap(L)), (4)

where L is the leaf into which E falls, ap(L) is the value of the path attributes
of L, and Cdt(E) is the classification given by the decision tree.

Comparing Equation 4 with Equation 1, p(c|ap(L)) is actually used as an
approximation of p(c|E) in a decision tree. Thus, all the examples falling into
the same leaf have the same class probability. Due to the fact that traditional
decision tree learning algorithms prefer a small tree, a leaf tends to have more
examples with the same probability. Therefore, decision trees are prone to be
poor PETs.

3.2 Conditional Independence Trees

In a probabilistic tree, a leaf L represents the conditional probability distri-
bution p(C|Ap(L)). If there is a representation of the conditional probability
distribution over the leaf attributes at each leaf, called the local conditional dis-
tribution and denoted by p(Al(L)|Ap(L), C), then each leaf represents a full
joint distribution over all the attributes, as shown in the equation below.

p(A, C) = αp(C|Ap(L))p(Al(L)|Ap(L), C), (5)

where α is a normalization factor.
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Definition 1. A probabilistic decision tree T is called a joint probabilistic tree, if
each of its leaves represents both the conditional probability distribution p(C|Ap(L))
and p(Al(L)|Ap(L), C).

Definition 2. A joint probability tree T is called a conditional independence
tree, or simply CITree, if the local conditional independence assumption, shown
in Equation 6, is true for each leaf L.

p(Al(L)|Ap(L), C) =
m∏

i=1

p(Ali|C,Ap(L)), (6)

where Al = (Al1, Al2, · · · , Alm) are the leaf attributes of L.
According to Definition 2, the structure of a CITree represents the conditional

independences among attributes, and its leaves represent a joint distribution. A
CITree is different from a probabilistic tree in the following aspects.

1. A CITree represents a joint distribution over all the attributes, but a prob-
abilistic tree represents only the conditional probability distribution of the
path attributes.

2. A CITree explicitly defines conditional dependences among attributes.

Comparing Equation 6 with Equation 3, we notice that the local conditional
independence assumption of CITrees is a relaxation of the (global) conditional
independence assumption of the naive Bayes. Thus, the local conditional in-
dependence assumption is more realistic in applications. In addition, the local
conditional independence represented in a CITree is also different from the condi-
tional independence in a Bayesian network. In a Bayesian network, An attribute
A1 is conditionally independent of attribute A2 given A3 means that for all the
values of A3, A1 is independent of A2. In a CITree, however, the conditional
independence is that A1 is independent of A2, given a specified value of A3. The
granularity in a CITree is finer than that in a Bayesian network.

It is interesting to notice that, after growing a CITree, if a naive Bayes is
deployed on each leaf using only the data associated with it, the naive Bayes,
called leaf naive Bayes, represents the actual joint distribution. A leaf naive
Bayes in leaf L is shown below.

Clnb(E) = arg
c

max pL(c)
m∏

i=1

pL(ali|c), (7)

where pL(c) denotes the probability of examples in L being in c, and pL(ali|c)
is the probability that the examples of class c have Ali = ali in L. It is obvious
that pL(c) = p(c|ap(L)) and pL(ali|c) = p(ali|c,ap(L)). So pL(c)

∏m
i=1 pL(ali|c)

is proportional to p(c|E). Thus, if the structure of the CITree is found, the naive
Bayes is a perfect model for leaves.

Generally, a CITree can be viewed as a combination of a decision tree and
a naive Bayes. It is well-known that decision trees are fully expressive with the
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class of propositional language; that is, any Boolean function is represented by a
decision tree. However, a naive Bayes has limited expressive power; that is, it can
only represent linear Boolean functions [4]. Interestingly, any joint distribution
can be represented by a CITree. According to the product rule,

p(A1, A2, · · · , An, C) = p(C)p(A1|C)P (A2|A1, C) · · ·P (An|A1, · · · , An−1, C).
(8)

It is trivial to build a CITree to represent p(A1, A2, · · · , An, C). Thus, CITrees
are also fully expressive.

The representation of CITrees, however, is more compact than that of deci-
sion trees. To show this, let us consider only full dependences among attributes.
An attribute Ai is said to fully depend on Aj , if Ai = Aj . Notice that if an
attribute is conditionally independent of all other attributes, it does not occur
on any path. If several attributes conditionally depend on one attribute, only
that attribute occurs in the path. In the extreme case that the global condi-
tional independent assumption is true, a CITree has only one node, which is just
a global naive Bayes. Assume that there are n attributes. The maximum height
of a CITree is n

2 , which corresponds to that each attributes depends exactly on
another attribute. The maximum height of a decision tree is n. Our experiments
in Section 4 show that the average size of CITrees is much smaller than that of
decision trees.

3.3 A Novel Algorithm for Learning CITree

From the discussion in the preceding section, a CITree can represent any joint
distribution. Thus, a CITree is a perfect PET, and the classification based on
CITree is accurate. But in practice, learning the structure of a CITree is just
as time-consuming as learning an optimal decision tree. However, a good ap-
proximation of a CITree, which gives good estimates of class probabilities, is
satisfiable in many applications. If the structure of a CITree is determined, a
leaf naive Bayes is a perfect model representing the local conditional distribu-
tions at leaves.

Building a CITree could be also a greedy and recursive process, similar to
building a decision tree. At each step, choose the “best” attribute as the root of
the (sub)tree, split the associated data into disjoint subsets corresponding to the
values of the attribute, and then recur this process for each subset until certain
criteria are satisfied.

Notice as well, however, the difference between learning a CITree and learning
a decision tree. In building a decision tree, we are looking for a sequence of
attributes that leads to the least impurity in all leaves of the tree. The key in
choosing an attribute is whether the resulting partition of the examples is “pure”
or not. It is natural, since the most common class of a leaf is used as the class
of all the examples in that leaf. However, such a selection strategy does not
necessarily lead to the truth of the local conditional independence assumption.
In building a CITree, we intend to choose the attributes that make the local
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conditional independence among the rest of attributes true as much as possible.
That means that, even though the impurity of its leaves is high, it could still be
a good CITree, as long as the leaf attributes are independent. Thus, traditional
decision tree learning algorithms are not directly suitable for learning CITrees.

In learning a CITree, an attribute, given which all other attributes have the
maximum conditional independence, should be selected at each step. Thus, we
should select the attribute with the greatest influence on other attributes. Our
idea is to try each possible attribute as the root, evaluate the resulting tree, and
choose the attribute that achieves the highest classification accuracy.

Similar to C4.5, our learning algorithm has two separate steps: growing a
tree and pruning. In growing a tree, each possible attribute is evaluated at each
step, and the attribute that gives the most improvement in accuracy is selected.
The algorithm is depicted below.

Algorithm CITree (T, S, A)
Input : CITree T, a set S of labeled examples, a set of attributes A
Output : a CITree.

1. Evaluate the current CITree T.
2. For all attributes A in A

– Partition S into S1, · · ·, Sk, each of which corresponds to a value of
A.

– Create a leaf naive Bayes for each Si.
– Evaluate the resulting CITree.

3. Choose the attribute Aopt with the highest accuracy.
4. For all values a of Aopt

CITree(Ta, Sa, A− {Aopt}).
Add Ta as a child of T.

5. Return T.

Note that we train a leaf naive Bayes by using the examples in this leaf, and
the accuracy is the accuracy of classifying those examples using the leaf naive
Bayes.

In the algorithm described above, we grow a tree as large as possible until we
are out of data or attributes, and then start a pruning process with two steps:

1. Conduct the pessimistic error-based post-pruning in C4.5.
2. Apply pruning based on the accuracy of leaf naive Bayes, in which the chil-

dren of a node are removed only if the resulting pruned tree (making it a leaf
node and deploying a naive Bayes at it) performs no worse than the original
tree.

4 Experiments

We conduct experiments to compare our algorithm CITree with C4.5 and naive
Bayes. Our algorithm is implemented within the Weka framework [12]. We use
the implementation of naive Bayes and C4.5(J48) in Weka. We have chosen 33
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datasets from the UCI repository [8], described in Table 1. In our experiment,
the average accuracy on each dataset has been obtained using 3-fold cross vali-
dation 10 times. Numeric attributes are discretized using ten-bin discretization
implemented in Weka[12]. Missing values are also processed using the mechanism
in Weka.

Table 1. Description of the datasets used in the experiments.

dataset Size Number of Attribute missing value Class
Letter 20000 17 N 26
Mushroom 8124 22 Y 2
Waveform 5000 41 N 3
Sick 3772 30 Y 2
Hypothyroid 3772 30 Y 4
Chess End-Game 3196 36 N 2
Splice 3190 62 N 3
Segment 2310 20 N 7
German Credit 1000 24 N 2
Vowel 990 14 N 11
Anneal 898 39 Y 6
Vehicle 846 19 N 4
Pima Indians Diabetes 768 8 N 2
Wisconsin-breast-cancer 699 9 Y 2
Credit Approval 690 15 Y 2
Soybean 683 36 Y 19
Balance-scale 625 5 N 3
Vote 435 16 Y 2
Horse Colic 368 28 Y 2
Ionosphere 351 34 N 2
Primary-tumor 339 18 Y 22
Heart-c 303 14 Y 5
Breast cancer 286 9 Y 2
Heart-statlog 270 13 N 2
Audiology 226 70 Y 24
Glass 214 10 N 7
Sonar 208 61 N 2
Autos 205 26 Y 7
Hepatitis Domain 155 19 Y 2
Iris 150 5 N 3
Lymph 148 19 N 4
Zoo 101 18 N 7
Labor 57 16 N 2

Table 2 shows the average accuracy obtained by the three algorithms. The
comparison of the three algorithms on these datasets, in which a paired t-test
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with a confidence of 95% has been used, are summarized in Table 3. Our obser-
vations are summarized below.

1. The CITree algorithm outperforms the naive Bayes significantly: It wins in 7
datasets, ties in 26 datasets and loses in 0 dataset. The average accuracy for
CITree is 83.26%, higher than the average accuracy 81.83% of naive Bayes.
That fact is understandable, since the conditional independences among at-
tributes have been explored and represented in CITrees. Thus, the class
probability estimates of a CITree are expected to be more accurate than
those of naive Bayes.

2. The CITree algorithm also outperforms C4.5 significantly: It wins in 7 datasets,
ties in 25 datasets and loses in 1 datasets. The average accuracy for decision
trees is 80.69%, lower than CITree’s. The CITree algorithm builds a tree
from a viewpoint different from C4.5’s. Since C4.5’s good performance in
classification is well-known, this comparison provides evidence to support
CITree’s.

3. The sizes of CITrees are significantly smaller than the sizes of decision trees
over all the datasets. Here the size of a tree is the number of nodes. The
average tree size for CITrees is 11, and for C4.5 it is 391. This verifies that a
CITree is much more compact than a decision tree. However, the efficiency
of the CITree algorithm is lower than C4.5. Roughly speaking, the average
training time of the CITree algorithm is 10 time slower than C4.5.

5 Conclusions

In this paper, we propose a model CITree for accurate probability representation,
the structure of which explicitly represents conditional independences among at-
tributes. We show that CITrees are more expressive than naive Bayes and more
compact than decision trees. A CITree can be implemented by using naive Bayes
at leaves. We present a novel algorithm which builds a tree by exploring the con-
ditional independence among attributes, different from traditional decision tree
learning algorithms. Our experiments show that CITrees outperform C4.5 and
naive Bayes significantly in classification accuracy. The results provide evidence
that a CITree yields more accurate probability estimates.

Our goal of this research is to build accurate PETs. Although accuracy to
some degree reflects the quality of probability estimates, it is interesting to know
directly the errors of the probability estimates by using artificial data. In our
future research, we will also investigate other performance measures that more
precisely reflect the errors between the true probability and the estimated prob-
ability, such as the area under the ROC curve [2].
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