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Abstract

Bayesian network classifiers have been widely
used for classification problems. Given
a fixed Bayesian network structure, pa-
rameters learning can take two different
approaches: generative and discriminative
learning. While generative parameter learn-
ing is more efficient, discriminative param-
eter learning is more effective. In this pa-
per, we propose a simple, efficient, and
effective discriminative parameter learning
method, called Discriminative Frequency Es-
timate (DFE), which learns parameters by
discriminatively computing frequencies from
data. Empirical studies show that the DFE
algorithm integrates the advantages of both
generative and discriminative learning: it
performs as well as the state-of-the-art dis-
criminative parameter learning method ELR
in accuracy, but is significantly more efficient.

1. Introduction

A Bayesian network (BN) (Pearl, 1988) consists of a di-
rected acyclic graph G and a set P of probability distri-
butions, where nodes and arcs in G represent random
variables and direct correlations between variables re-
spectively, and P is the set of local distributions for
each node. A local distribution is typically specified
by a conditional probability table (CPT). Thus, learn-
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ing Bayesian networks from data has two elements:
structure learning and parameter learning.

Bayesian networks are often used for classification
problems, in which a learner attempts to construct a
classifier from a given set of training instances with
class labels. In learning Bayesian network classi-
fiers, parameter learning often uses Frequency Esti-
mate (FE), which determines parameters by comput-
ing the appropriate frequencies from data. The ma-
jor advantage of FE is its efficiency: it only needs to
count each data point (training instance) once. It is
well-known that FE maximizes likelihood and thus is
a typical generative learning method.

In classification, however, the objective is to maxi-
mize generalization accuracy, rather than likelihood.
Thus, discriminative parameter learning that maxi-
mizes generalization accuracy or its alternative objec-
tive function, conditional likelihood, are more desir-
able. Unfortunately, there is no closed form for choos-
ing the optimal parameters, because conditional like-
lihood does not decompose (Friedman et al., 1997).
As a consequence, discriminative parameter learning
for Bayesian networks often resorts to search methods,
such as gradient descent.

Greiner and Zhou (2002) proposed a gradient descent
based parameter learning method, called ELR, to dis-
criminatively learn parameters for Bayesian network
classifiers, and showed that ELR significantly outper-
forms the generative learning method FE. However,
the application of ELR is limited due to its high com-
putational cost. For example, Grossman and Domin-
gos (2004) observed that ELR is computationally in-
feasible in structure learning. In fact, how to find an
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efficient and effective discriminative parameter learn-
ing for Bayesian network classifiers is an open question.

In this paper, we propose a simple, efficient, and effec-
tive discriminative parameter learning method, called
Discriminative Frequency Estimate (DFE). Our mo-
tivation is to turn the generative parameter learning
method FE into a discriminative one by injecting a
discriminative element into it. DFE discriminatively
computes frequencies from data, and then estimates
parameters based on the appropriate frequencies. Our
empirical studies show that DFE inherits the advan-
tages of both generative and discriminative learning.

2. Related Work

Greiner and Zhou (2002) showed that discriminative
parameter learning for Bayesian networks is equiv-
alent to a logistic regression problem under certain
conditions. For many Bayesian network structures,
they indicated that the conditional likelihood function
may have only one global maximum, and thus can be
maximized by local optimization methods. They also
proposed a gradient descent based parameter learning
method, called ELR. To make ELR work effectively,
they modified the basic gradient descent method using
FE to initialize parameters and cross tuning to prevent
overfitting. Empirical studies showed that ELR signif-
icantly outperforms the generative learning approach.

Grossman and Domingos (2004) proposed a discrimi-
native structure learning method for Bayesian network
classifiers, and tried to combine discriminative struc-
ture learning with discriminative parameter learning.
To overcome the efficiency problem of ELR, they re-
duced the fold of cross tuning, and used a small sam-
ple for parameter learning. They observed that the
modified ELR still takes two orders of magnitude of
learning time longer than FE in their experiments, and
the performance of the combination of discriminative
structure and parameter learning does not outperform
the discriminative structure learning alone. Therefore,
they suggested learning a structure by conditional like-
lihood, and setting parameters by the FE method.

To our knowledge, ELR is the state-of-the-art al-
gorithm for discriminative parameter learning for
Bayesian network classifiers. Unfortunately, its com-
putational cost is quite high. In this paper, we propose
a discriminative parameter learning algorithm that is
as effective as ELR but much more efficient.

3. Frequency Estimate

We use capital letters X for a discrete random variable.
The lower-case letters x is used for the value taken by
variable X, and xij refers to the variable Xi taking
on its jth value. We use the boldface capital letters
X for a set of variables, and the boldface lower case
letters x for the values of variables in X. The training
data D consists of a set of finite number of training
instances, and an instance e is represented by a vector
(x, c), where c is the class label. In general, we use a
“hat” to indicate parameter estimates.

A Bayesian network encodes a joint probability distri-
bution P (X, C) by a set of local distributions P for
each variable. By forcing the class variable C to be
the parent of each variable Xi, we can compute the
posterior probability P (C|X) as follows.

P (C|X) = αP (C)
n∏

i=1

P (Xi|Ui), (1)

where α is a normalization factor, and Ui denotes the
set of parents of variable Xi. Note that the class vari-
able C is always one parent of Xi. In naive Bayes,
Ui only contains the class variable C. P (C) is called
the prior probability and P (Xi|Ui) is called the local
probability distribution of Xi.

The local distribution P (Xi|Ui) is usually represented
by a conditional probability table (CPT), which enu-
merates all the conditional probabilities for each as-
signment of values to Xi and its parents Ui. Each
conditional probability P (xij |uik) in a CPT is often es-
timated using the corresponding frequencies obtained
from the training data as follows.

P̂ (xij |uik) =
nijk

nik
, (2)

where nijk denotes the number of training instances
in which variable Xi takes on the value xij and its
parents Ui take on the values uik. nik is equal to the
sum of nijk over all j. The prior probability P (C) is
also estimated in the same way.

For the convenience in implementation, an entry θijk

in a CPT is the frequency nijk, instead of P (xij |uik),
which can be easily converted to P (xi|ui). To com-
pute the frequencies from a given training data set,
we go through each training instance, and increase the
corresponding entries θijk in CPTs by 1. By scanning
the training data set once, we can obtain all the re-
quired frequencies and then compute the correspond-
ing conditional probabilities. This parameter learning
method is called Frequency Estimate (FE).

It is well-known that FE is a generative learning ap-
proach, because it maximizes likelihood (Friedman
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et al., 1997). In classification, however, the parameter
setting that maximizes generalization accuracy is de-
sired. Theoretically, if the structure of a Bayesian net-
work is correct, the parameters determined by FE also
maximize generalization accuracy. In practice, how-
ever, this assumption is rarely true. Therefore, the
parameter learning method that directly maximizes
generalization accuracy is more desirable in classifi-
cation.

4. Discriminative Frequency Estimate

We now introduce Discriminative Frequency Estimate
(DFE), a discriminative parameter learning algorithm
for Bayesian network classifiers.

Note that, when counting a training instance in FE,
we simply increase the corresponding frequencies by
1. Consequently, we do not directly take the effect on
classification into account in computing frequencies.
In fact, at any step in this process, we actually have
a classifier on hand: the classifier whose local proba-
bilities are computed by Equation 2 using the current
entries (frequencies) in CPTs.

Thus, when we count an instance, we can apply the
current classifier to it, and then update the corre-
sponding entries based on how well (bad) the current
classifier predicts on the instance. Intuitively, if the
instance can be classified perfectly, there is no need to
change any entries. In general, given an instance e, we
can compute the difference between the true probabil-
ity P (c|e) and the predicted probability P̂ (c|e) gener-
ated by the current parameters, where c is the true
class of e, and then update the corresponding entries
based on the difference. Furthermore, the FE process
can be generalized such that we can count each in-
stance more than once (as many as needed) until an
convergence occurs. This is the basic idea of DFE.

More precisely, the DFE parameter learning algorithm
iterates through the training instances. For each in-
stance e, DFE firstly computes the predicted probabil-
ity P̂ (c|e), and then updates the frequencies in corre-
sponding CPTs using the difference between the true
P (c|e) and the predicted P̂ (c|e). The detail of the al-
gorithm is depicted as follows. Here M is a pre-defined
maximum number of steps. L(e) is the prediction loss
for training instance e based on the current parameters
Θt, defined as follows.

L(e) = P (c|e)− P̂ (c|e). (3)

In general, P (c|e) are difficult to know in classification
task, because the information we have for c is only the
class label. Thus, we assume that P (c|e) = 1 when

Algorithm 1 Discriminative Frequency Estimate

1. Initialize each CPT entry θijk to 0

2. For t from 1 to M Do

• Randomly draw a training instance e from
the training data set D.

• Compute the posterior probability P̂ (c|e) us-
ing the current parameters Θt and Equation
2.

• Compute the loss L(e) using Equation 3.
• For each corresponding frequency θijk in

CPTs
– Let θt+1

ijk =θt
ijk+L(e).

e is in class c in our implementations. Note this as-
sumption may not be held if data can not be separated
completely, and thus may introduce bias to our prob-
ability estimation.

Note that, in the beginning, each CPT entry θijk is 0,
and thus the predicted P̂ (c|e) is 1

|C| after the proba-
bility normalization. In each step, if the current pa-
rameters Θt cannot accurately predict P (c|e) for an
instance e, the corresponding entries θijk are increased
significantly. If the current parameter Θt can perfectly
predict P (c|e), there will be no change on any entry.

The following summarizes our understanding for DFE:

1. The generative element is Equation 2. If we set
the additive updates L(e) in Equation 3 as a con-
stant, DFE will be a maximum likelihood estima-
tor, which is exactly the same as in the traditional
naive Bayes. Thus, the parameters learned by
DFE are influenced by the likelihood information
P (xij |uik) through Equation 2.

2. The discriminative element is Equation 3. If we
use each entry θijk in CPTs as parameters rather
than generating the parameters using Equation 2,
DFE will be a typical perceptron algorithm in the
sense of error-driven learning. Thus, the param-
eters learned by DFE are also influenced by the
prediction error through Equation 3.

3. DFE is different from a perceptron algorithm be-
cause of Equation 2. As we explained above, if
we set the additive updates L(e) in Equation 3
as a constant, there is no difference between DFE
and a traditional naive Bayes. However, if we set
the additive updates in a standard perceptron al-
gorithm as a constant, the perceptron algorithm
will not learn a traditional naive Bayes.



Discriminative Parameter Learning for Bayesian Networks

In summary, DFE learns parameters by considering
the likelihood information P (xij |uik) and the pre-
diction error P (c|e) − P̂ (c|e), and thus can be con-
sidered as a combination of generative and discrim-
inative learning. Moreover, the likelihood informa-
tion P (xij |uik) seems to be more important than
P (c|e)− P̂ (c|e). For example, a DFE algorithm with-
out Equation 2 performs significantly worse than naive
Bayes, while a DFE algorithm without Equation 3 can
still learn a traditional naive Bayes.

5. An Example

Before presenting our experiments, it could be helpful
to get some intuitive feeling on DFE through a simple
example.
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Figure 1. A data set with duplicate variables

Figure 1 shows a learning problem consisting of 5 in-
stances and 3 variables. The variables A2 and A3 are
the two duplicates of A1, and thus all variables are per-
fectly dependent. For an instance e = {A1 = 0, A2 =
0, A3 = 0}, the true posterior probability ratio is:

p(C = +|A1 = 0, A2 = 0, A3 = 0)
p(C = −|A1 = 0, A2 = 0, A3 = 0)

=
1
2

(4)

However, naive Bayes, which does not consider the de-
pendencies between variables, gives the estimated pos-
terior probability ratio:

p̂(C = +)
p̂(C = −)

(
p̂(A1 = 0|+)
p̂(A1 = 0|−)

)3 =
2
1

(5)

Thus, naive Bayes misclassifies e. Moreover, the es-
timated posterior probability p̂(C = +|A1 = 0, A2 =
0, A3 = 0) from naive Bayes is 0.66, while the true
probability p(C = +|A1 = 0, A2 = 0, A3 = 0) = 0.33.
This mismatch is due to the two duplicates A2 and A3.
Since p(Ai=0|C=+)

p(Ai=0|C=−) = 2, the duplication of A1 results
in overestimating the probability that e belongs to the
positive class.

For DFE, the story is different. Figure 2 shows how the
estimated probability p̂(C = +|A1 = 0, A2 = 0, A3 =

0) in naive Bayes changes with FE and DFE respec-
tively, as the number of instances used increases. Both
algorithms take an instance in the order in Figure 1 at
each step, and update the corresponding frequencies.
With the increased number of instances used, the es-
timated probability p̂(C = +|A1 = 0, A2 = 0, A3 = 0)
from DFE converges to 0.4 approximately, which is
close to the true probability and leads to a correct
classification. However, FE converges to 0.66, even
using the training instances more than once.

From this example, we can see that computing the fre-
quencies in a discriminative way tends to yield more
accurate probability estimation and give more accu-
rate classification consequently. Also, both DFE and
FE tend to converge with the increased training effort.

Figure 2. The y-axis is the predicted probability. The x-
axis is the tth instance fed into the algorithms.

6. Experiments

6.1. Experimental Setup

We conduct our experiments under the framework of
WEKA (Witten & Frank, 2000). All experiments are
performed on a Pentium 4 with 2.8GHZ CPU and 1G
RAM. In our experiments, we use the 33 UCI data
sets, selected by WEKA, which represent a wide range
of domains and data characteristics. The smallest
training data set “labor” has 51 training instances,
and the largest data set “mushroom” has 7311 train-
ing instances. Numeric variables are discretized using
the unsupervised ten-bin discretization implemented
in WEKA. Missing values are replaced with the mean
values from the training data. The multi-class data
sets are transformed into binary ones by taking the
two largest classes. The performance of an algorithm
on each data set is observed via 10 runs of 10-fold
stratified cross validation.
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Table 1. Experimental results on accuracy

Data set NB+DFE NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
Labor 92.73±12.17 96.27± 7.87 95.53± 9.00 86.53±13.95 89.80±10.80 86.93±12.12
Zoo 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Iris 100.00± 0.00 100.00± 0.00 96.20±11.05 100.00± 0.00 100.00± 0.00 100.00± 0.00
Primary-tumor 84.12± 9.17 84.12± 9.48 83.32± 9.99 80.82± 8.77 82.94± 9.07 82.23±10.32
Autos 88.94± 9.81 77.24±12.03 • 90.27± 9.08 88.76± 8.70 83.97±10.75 84.49±11.85
Audiology 100.00± 0.00 99.82± 1.29 97.31± 5.22 99.82± 1.29 99.82± 1.29 100.00± 0.00
Glass 80.45± 9.91 76.37±10.59 81.44±10.04 75.03± 9.12 72.12±11.89 • 71.55±12.32 •
Vowel 95.89± 4.87 83.56± 8.76 • 92.33± 5.71 94.44± 4.63 97.44± 3.22 97.44± 3.41
Soybean 98.58± 3.30 95.52± 4.74 97.29± 4.13 97.38± 3.18 97.49± 3.85 98.05± 3.27
Hepatitis 84.79± 9.11 84.13±10.34 83.49±10.41 81.42± 9.33 83.01± 9.04 83.71± 9.01
Sonar 76.85± 9.30 76.02±10.67 77.36± 9.49 75.23± 9.09 69.16±10.44 68.89±10.49
Lymphography 86.33± 8.95 86.21± 8.12 85.08± 8.84 83.34± 9.56 84.40± 9.10 84.23± 8.49
Heart-statlog 82.89± 5.69 83.70± 5.60 82.96± 5.80 76.44± 7.59 • 83.04± 5.55 82.00± 4.96
Cleveland 83.04± 7.49 83.57± 5.99 82.50± 7.11 79.08± 7.94 • 82.32± 7.46 80.99± 7.43
Breast-cancer 70.36± 8.05 72.87± 7.48 71.34± 8.04 69.73± 7.71 74.26± 5.45 73.49± 5.98
Ionosphere 90.54± 5.32 90.83± 3.99 91.11± 4.82 89.13± 6.14 93.28± 4.53 91.51± 5.29
Horse-colic 82.99± 6.03 78.70± 6.27 • 80.59± 6.71 77.60± 6.30 • 83.70± 5.30 82.01± 6.86
Vehicle 93.74± 3.40 82.82± 6.80 • 92.96± 3.52 93.84± 3.31 95.68± 3.11 96.78± 2.87 ◦
Vote 94.80± 2.86 90.29± 4.07 • 95.72± 2.87 94.39± 3.12 94.84± 3.15 95.44± 3.15
Balance 99.48± 0.94 99.24± 1.17 99.83± 0.52 99.27± 1.17 99.27± 1.22 99.69± 0.76
Wisconsin 96.45± 2.05 97.31± 1.70 96.22± 2.10 95.11± 2.40 96.91± 1.51 96.71± 2.11
Segment 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Credit-rating 85.51± 3.65 84.75± 3.68 85.25± 4.16 82.96± 4.08 • 85.51± 4.27 86.03± 3.80
Diabetes 75.78± 4.67 75.57± 4.76 76.15± 4.36 74.90± 4.75 75.94± 5.14 75.60± 4.68
Anneal 99.72± 0.74 97.67± 1.98 • 99.87± 0.53 99.87± 0.59 98.95± 1.20 99.92± 0.30
Credit-g 75.98± 4.01 75.90± 3.97 75.64± 3.73 74.22± 4.43 72.88± 3.88 • 72.92± 3.53 •
Letter 99.52± 0.49 96.49± 1.42 • 98.95± 0.74 • 98.94± 0.83 • 98.42± 1.01 • 99.46± 0.52
Splice 97.62± 0.98 97.61± 0.98 97.64± 0.89 95.70± 1.41 • 98.05± 0.91 98.01± 0.85
Kr-vs-kp 94.70± 1.37 87.80± 1.89 • 95.68± 1.21 ◦ 95.19± 1.19 92.40± 1.61 • 95.54± 1.37 ◦
Waveform 91.05± 1.52 87.52± 1.46 • 90.71± 1.16 89.19± 1.63 • 89.66± 1.40 • 89.72± 1.43 •
Hypothyroid 95.95± 0.46 95.49± 0.49 • 95.83± 0.49 95.55± 0.66 • 95.72± 0.52 95.88± 0.51
Sick 97.49± 0.67 96.75± 0.97 • 97.47± 0.74 96.79± 0.83 • 97.82± 0.75 97.91± 0.70
Mushroom 99.96± 0.06 95.53± 0.63 • 100.00± 0.00 100.00± 0.00 99.96± 0.06 100.00± 0.00

• worse, and ◦ better, comparing with NB-DFE.

Two Bayesian network classifiers, naive Bayes (NB)
and HGC (Heckerman et al., 1995), are used to com-
pare the performance of different parameter learning
methods. HGC is a hill-climbing structure search al-
gorithm. In our experiments with HGC, we limit the
number of parents of each node to 2.

In general, we use NB+X and HGC+X to indicate
that NB and HGC with a specific parameter learning
method X respectively: X is one of FE, DFE, ELR
and Ada (Freund & Schapire, 1996). Note that, for
HGC+DEF, we use HGC to learn the structure first,
and then apply DFE to learn parameters. We do not
use DFE in the structure learning of HGC. The fol-
lowing summarizes the parameter learning algorithms
used in our experiments.

FE: the generative parameter learning method. Note
the term “one iteration” in this paper indicates that
we count all training instances exactly once.

DFE: the discriminative parameter learning method,
depicted in Section 4. In our implementation, we sim-
ply go through the whole training data four times (it-
erations), instead of randomly choosing instances.

ELR: the gradient descent based discriminative pa-
rameter learning method, proposed in (Greiner &
Zhou, 2002).

Ada: Adaboost M1 is used as an ensemble method
that combines the outputs of base classifiers to produce

a better prediction (Freund & Schapire, 1996). The
number of classifiers is 20.

In our experiments, we use the implementation of ELR
from the authors (Greiner & Zhou, 2002) and the im-
plementation of HGC and Ada in WEKA, and imple-
ment DFE in WEKA.

Table 2. Summary of the experimental results on accuracy.

NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
NB+DFE 12/21/0 1/31/1 9/24/0 5/28/0 3/28/2
NB+FE 0/22/11 9/19/5 0/22/11 1/22/10
NB+ELR 4/29/0 4/27/2 2/28/3
NB+Ada 2/26/5 0/28/5
HGC+FE 0/30/3

6.2. Accuracy and Training Time

Table 1 gives the detailed experimental results on ac-
curacy. To better understand the effect of training
data size on the algorithm performance, we sort the
data sets by their sizes. Table 2 shows the results of
the paired t-test with significance level 0.05, in which
each entry w/t/l means that the learner in the corre-
sponding row wins in w data sets, ties in t data sets,
and loses in l data sets, compared to the learning al-
gorithm in the corresponding column. The following
is the highlight of our observations.

1. The two discriminative parameter learning meth-
ods ELR and DFE have the similar performance
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Table 3. Experimental results on training time

Data set NB+DFE NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
Labor 0.0009±0.00 0.0002±0.00 • 55.0250± 48.89 ◦ 0.0066±0.00 ◦ 0.0367±0.00 ◦ 0.0416±0.00 ◦
Zoo 0.0006±0.00 0.0001±0.00 • 100.1444± 49.28 ◦ 0.0018±0.00 ◦ 0.0077±0.00 ◦ 0.0120±0.00 ◦
Iris 0.0005±0.00 0.0001±0.00 • 317.4304± 150.43 ◦ 0.0019±0.00 ◦ 0.0030±0.00 ◦ 0.0058±0.00 ◦
Primary-tumor 0.0010±0.00 0.0002±0.00 • 99.7059± 12.72 ◦ 0.0097±0.00 ◦ 0.0178±0.00 ◦ 0.0295±0.00 ◦
Autos 0.0017±0.00 0.0002±0.00 • 202.3540± 42.84 ◦ 0.0213±0.02 ◦ 0.2843±0.03 ◦ 0.2956±0.04 ◦
Audiology 0.0019±0.00 0.0003±0.00 • 311.3375± 55.36 ◦ 0.0023±0.00 0.5920±0.05 ◦ 0.6141±0.05 ◦
Glass 0.0008±0.00 0.0002±0.00 • 205.4710± 14.92 ◦ 0.0117±0.00 ◦ 0.0363±0.00 ◦ 0.0464±0.02 ◦
Vowel 0.0013±0.00 0.0003±0.00 • 399.6574± 263.88 ◦ 0.0176±0.00 ◦ 0.0373±0.00 ◦ 0.0510±0.00 ◦
Soybean 0.0018±0.00 0.0004±0.00 • 507.1840± 55.93 ◦ 0.0230±0.01 ◦ 0.0464±0.00 ◦ 0.0705±0.02 ◦
Hepatitis 0.0015±0.00 0.0002±0.00 • 414.9584± 27.77 ◦ 0.0191±0.00 ◦ 0.0369±0.00 ◦ 0.0559±0.02 ◦
Sonar 0.0066±0.00 0.0007±0.00 • 932.8643± 106.34 ◦ 0.0669±0.02 ◦ 4.8039±0.21 ◦ 4.8389±0.20 ◦
Lymphography 0.0037±0.02 0.0003±0.00 387.2173± 19.10 ◦ 0.0164±0.00 ◦ 0.0335±0.00 ◦ 0.0480±0.00 ◦
Heart-statlog 0.0019±0.00 0.0003±0.00 • 579.2737± 74.95 ◦ 0.0252±0.02 ◦ 0.0494±0.02 ◦ 0.0674±0.02 ◦
Cleveland 0.0020±0.00 0.0028±0.02 681.2536± 109.79 ◦ 0.0209±0.01 ◦ 0.0239±0.00 ◦ 0.0451±0.00 ◦
Breast-cancer 0.0015±0.00 0.0002±0.00 • 541.8432± 56.39 ◦ 0.0126±0.00 ◦ 0.0161±0.02 ◦ 0.0288±0.00 ◦
Ionosphere 0.0054±0.00 0.0007±0.00 • 2261.0212± 780.54 ◦ 0.0629±0.02 ◦ 0.3492±0.04 ◦ 0.4219±0.04 ◦
Horse-colic 0.0044±0.00 0.0005±0.00 • 1506.9836± 146.88 ◦ 0.0430±0.01 ◦ 0.0987±0.02 ◦ 0.1457±0.02 ◦
Vehicle 0.0039±0.00 0.0005±0.00 • 2125.4934± 137.27 ◦ 0.0480±0.00 ◦ 0.1531±0.02 ◦ 0.2009±0.03 ◦
Vote 0.0034±0.00 0.0005±0.00 • 1779.7511± 251.58 ◦ 0.0334±0.02 ◦ 0.0229±0.02 ◦ 0.0632±0.02 ◦
Balance 0.0017±0.00 0.0005±0.00 • 2710.6686±1280.37 ◦ 0.0243±0.01 ◦ 0.0038±0.00 ◦ 0.0189±0.00 ◦
Wisconsin 0.0034±0.00 0.0005±0.00 • 1376.4606± 146.91 ◦ 0.0559±0.02 ◦ 0.0243±0.00 ◦ 0.0624±0.02 ◦
Segment 0.0057±0.00 0.0008±0.00 • 3973.2459± 659.38 ◦ 0.0039±0.00 • 0.1233±0.02 ◦ 0.1952±0.03 ◦
Credit-rating 0.0076±0.02 0.0006±0.00 1316.8793± 68.50 ◦ 0.0514±0.02 ◦ 0.0648±0.02 ◦ 0.1252±0.02 ◦
Diabetes 0.0034±0.00 0.0005±0.00 • 1118.3888± 41.75 ◦ 0.0344±0.01 ◦ 0.0299±0.00 ◦ 0.0676±0.02 ◦
Anneal 0.0097±0.00 0.0011±0.00 • 4947.6380±1573.55 ◦ 0.1098±0.03 ◦ 0.1797±0.03 ◦ 0.3056±0.03 ◦
Credit-g 0.0103±0.00 0.0012±0.00 • 2440.2377± 357.70 ◦ 0.0745±0.03 ◦ 0.1473±0.03 ◦ 0.2611±0.03 ◦
Letter 0.0223±0.00 0.0024±0.00 • 262.4565± 142.62 ◦ 0.3817±0.15 ◦ 0.2089±0.06 ◦ 0.5355±0.20 ◦
Splice 0.1322±0.04 0.0143±0.02 • 2398.4974± 835.69 ◦ 1.3441±0.44 ◦ 8.1985±2.28 ◦ 9.8085±2.38 ◦
Kr-vs-kp 0.1533±0.08 0.0232±0.06 • 1648.1174± 856.53 ◦ 1.2348±0.16 ◦ 1.0847±0.17 ◦ 1.9889±0.11 ◦
Waveform 0.1829±0.05 0.0171±0.00 • 2743.9441± 295.50 ◦ 1.5109±0.16 ◦ 2.3946±0.26 ◦ 3.4949±0.28 ◦
Hypothyroid 0.1091±0.04 0.0121±0.01 • 1035.1162± 543.62 ◦ 1.2212±0.63 ◦ 1.1376±0.34 ◦ 3.3269±1.24 ◦
Sick 0.1246±0.08 0.0095±0.00 • 2662.4956± 379.71 ◦ 0.6825±0.27 ◦ 1.6360±0.64 ◦ 3.4699±0.99 ◦
Mushroom 0.2102±0.15 0.0205±0.02 • 11243.5967±3074.40 ◦ 2.6704±0.95 ◦ 2.2242±0.86 ◦ 4.5443±1.32 ◦

◦ slower, and • faster comparing with NB-DFE The training time unit is second

in terms of accuracy. NB+DFE performs better
than NB+ELR in 1 data set and loses in 1 data
set.

2. For naive Bayes, the discriminative parameter
learning methods significantly improve the per-
formance of the generative parameter learning
method FE. NB+ELR and NB+DFE outperform
NB+FE in 11 and 12 data sets without a loss re-
spectively. In our experiments, NB+Ada loses to
NB in 9 data sets and wins in 5 data sets. This
means that using boosting as a discriminative pa-
rameter learning method is not effective according
to our experiments.

3. NB+DFE outperforms HGC+FE in 5 data sets
without a loss. Note that there is no structure
learning in NB+DFE at all. Thus, we could ex-
pect that discriminative parameter learning can
significantly reduce the effort for structure learn-
ing.

4. DFE improves the general Bayesian network
learning algorithm HGC. HGC+DFE outper-
forms HGC+FE in 3 data sets without a loss.
This improvement is not as significant as in naive
Bayes. However, it is consistent with previous re-
search results: while the structure of a Bayesian
network is closer to the “true” one, discrimina-
tive parameter learning is less helpful (Greiner &
Zhou, 2002; Grossman & Domingos, 2004).

5. HGC+FE outperforms NB+FE in 11 data sets
without a loss. This results show that many data
sets in our experiments contains strong depen-
dencies. The structure learning in HGC relaxes
the independence assumption in naive Bayes, and
thus improves the performance significantly.

We have also observed the training time for each algo-
rithm. Table 3 shows the average training time of each
algorithm from 10 runs of 10-fold stratified cross vali-
dation. From Table 3, we can see that DFE is approx-
imately 250,000 times faster than ELR. Recall that
their performance in classification accuracy is similar.
Certainly, FE is still the most efficient algorithm: 7
times faster than DFE, 70 faster than NB+Ada, and
1,800,000 times faster than ELR approximately.

6.3. Convergence, Overfitting and Learning
Curves

In our experiments, we have investigated the conver-
gence of the DFE algorithm. We have observed the
relation between the number of iterations and the ac-
curacy of NB+DFE on the 8 largest data sets, shown
in Figure 3. Again, an iteration means counting all
instances once. Each point in the curves corresponds
to the number of iterations that a parameter learn-
ing method performs over the training data and the
average accuracy from 10-fold cross validation.

Figure 3 shows that NB+DFE converges quickly. We
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Figure 3. Relation between accuracies and the number of iterations over training and testing data. Solid lines represent
training accuracy, and dotted lines represent testing accuracy.

can see that NB+DFE approaches its highest accuracy
just after one iteration. As the number of iterations in-
creases after that, there is no significant difference. For
example, in all the 8 data sets, the differences between
NB+DFE with one iteration and with more iterations
are only around 0.005. In our experiments, in fact, we
have tried different iteration numbers (1 to 2048) for
DFE, and the accuracies of NB+DFE and HGC+DFE
do not significantly change.

In the 33 data sets, there is only one data set “Vowel”,
in which NB+DFE needs more than one iteration to
reach the asymptotic accuracy. NB+DFE achieves
90.00% after one iteration, and approaches 95.89% af-
ter 4 iterations. The “Vowel” data set has been ob-
served to contain strong variable dependencies (Su &
Zhang, 2005), and is small (contains only 180 train-
ing instances). However, when the sample size is not
small, such as in “Kr-vs-kp” and “Mushroom”, one it-
eration is still enough for DFE to reach its asymptotic
accuracy, even though there are strong dependencies
in these data sets.

From Figure 3, we can also observe that NB+DFE
does not suffer from overfitting. With the increased
iterations, the accuracies on test data, shown by the
dotted lines, remain the same. That means, once
NB+DFE reaches its asymptotic accuracy, the more
learning effort does not influence the model. Conse-
quently, no stopping criterion is required for DFE. In
contrast, the discriminative learning algorithm ELR
requires a stopping criterion to prevent overfitting.

Greiner and Zhou (2002) showed that the accuracy of
ELR may decrease with an increased training effort.

We have also studied the learning curves of NB+DFE.
Ng and Jordan (2001) showed that discriminative
learning may have disadvantage comparing to genera-
tive learning when sample size is small. Thus, we are
interested in how our discriminative parameter learn-
ing algorithm DFE performs in this scenario.

Figure 4 shows the learning curves for NB+FE,
NB+ELR, and NB+DFE on the same 8 UCI data sets.
Since we are interested in the performance in a small
sample size, we only observe the performance of each
algorithm using up to 50 instances. The accuracy in
the learning curves is the average accuracy, obtained
on the data that is not used for training with a total of
30 runs. The learning curves show how the accuracy
changes as more labeled data are used.

From Figure 4, we can see that NB+FE dominates
NB+DFE and NB+ELR only on data sets “Credit-g”
and “Hypothyroid” in terms of accuracy. On data sets
“Kr-vs-kp” and “Mushroom”, however, both discrim-
inative learning algorithms NB+ELR and NB+DFE
outperform NB+FE. On all other data sets, the results
are mixed. It means that generative learning has actu-
ally no obvious advantage over discriminative learning
even when the size of training data is small. In fact,
our observations agree with the analysis in (Greiner &
Zhou, 2002).
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Figure 4. Relation between accuracies and training data sizes. Solid, dotted, and dashed lines correspond to NB+FE,
NB+DFE, and NB+ELR respectively.

7. Conclusion

In this paper, we propose a novel discriminative pa-
rameter learning method for Bayesian network classi-
fiers. DFE can be viewed as a discriminative version
of frequency estimate. Our experiments show that the
DFE algorithm combines the advantages of generative
and discriminative learning: it is computationally effi-
cient, converges quickly, does not suffer from the over-
fitting problem, and performs competitively with the
state-of-the-art discriminative parameter learning al-
gorithm ELR in accuracy.

This paper mainly studies the empirical side of DFE.
Its theoretical nature remains unknown. Moreover, be-
cause of the efficiency of DFE, we would expect that
DFE could be applied in general structure learning,
leading to more accurate Bayesian network classifiers.
In our future work, we will study DFE from theoret-
ical perspective and embed DFE into the structure
search process of HGC and other structure learning
algorithms.
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