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Abstract. It is well-known that naive Bayes performs surprisingly well
in classification, but its probability estimation is poor. In many appli-
cations, however, a ranking based on class probabilities is desired. For
example, a ranking of customers in terms of the likelihood that they buy
one’s products is useful in direct marketing. What is the general per-
formance of naive Bayes in ranking? In this paper, we study it by both
empirical experiments and theoretical analysis. Our experiments show
that naive Bayes outperforms C4.4, the most state-of-the-art decision-
tree algorithm for ranking. We study two example problems that have
been used in analyzing the performance of naive Bayes in classification
[3]. Surprisingly, naive Bayes performs perfectly on them in ranking,
even though it does not in classification. Finally, we present and prove a
sufficient condition for the optimality of naive Bayes in ranking.

1 Introduction

Naive Bayes is one of the most effective and efficient classification algorithms.
In classification learning problems, a learner attempts to construct a classifier
from a given set of training examples with class labels. Assume that A1, A2,· · ·,
An are n attributes. An example E is represented by a vector (a1, a2, , · · · , an),
where ai is the value of Ai. Let C represent the class variable, which takes value
+ (the positive class) or − (the negative class). We use c to represent the value
that C takes. A naive Bayesian classifier, or simply naive Bayes, is defined as:

Cnb(E) = arg
c

max p(c)
n∏

i=1

p(ai|c). (1)

Because the values of p(ai|c) can be estimated from the training examples,
naive Bayes is easy to construct. It is also, however, surprisingly effective [10].
Naive Bayes is based on the conditional independence assumption that all at-
tributes are independent given the value of the class variable. It is obvious that
the conditional independence assumption is rarely true in reality. Indeed, naive
Bayes is found to work poorly for regression problems [7], and produces poor
probability estimates [1].

Typically, the performance of a classifier is measured by its predictive accu-
racy (or error rate). Some classifiers, such as naive Bayes and decision trees, also
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produce the estimates of the class probability p(c|E). This information is often
ignored in classification, as long as the class with the highest class probability
estimate is identical to the actual class. In many applications, however, classi-
fication and error rate are not enough. For example, a CS department needs a
ranking of its students in terms of their performance in various aspects in order
to award scholarships. Thus, a ranking is desired.

If a ranking is desired and only a dataset with class labels is given, the area
under the ROC (Receiver Operating Characteristics) curve [18, 15], or simply
AUC can be used to evaluate the quality of rankings generated by a classifier.
AUC is a good “summary” for comparing two classifiers across the entire range
of class distributions and error costs. Bradley [2] shows that AUC is a proper
metric for the quality of classifiers averaged across all possible probability thresh-
olds. It has been shown that, for binary classification, AUC is equivalent to the
probability that a randomly chosen example of class − will have a smaller esti-
mated probability of belonging to class + than a randomly chosen example of
class + [9]. Thus, AUC is actually a measure of the quality of ranking. The AUC
of a ranking is 1 (the maximum AUC value) if no positive example precedes any
negative example.

Some researchers believe that AUC is a better and more discriminating eval-
uation method than accuracy for classifiers that produce class probability esti-
mates [11]. Since AUC is a different, probably better, evaluation method than
accuracy for machine learning algorithms, the next natural question is: What
is the performance of traditional learning algorithms, such as naive Bayes and
decision trees, in terms of AUC?

It has been shown that traditional decision tree algorithms, such as C4.5,
produce poor probability estimates, and thus produce poor probability-based
rankings. Substantial work has been done in improving the ranking quality of
decision tree algorithms (see next section for detail).

It is also well-known that naive Bayes performs surprisingly well in clas-
sification, but has a poor performance in probability estimation. What is its
performance in ranking? In this paper, we argue that naive Bayes also works
well in ranking.

The rest of the paper is organized as follows: Section 2 reviews the related
work in improving traditional learning algorithms to produce accurate rankings.
Section 3 describes an empirical study showing that naive Bayes outperforms
a sophisticated decision tree learning algorithm that has recently been devel-
oped for generating accurate rankings, which provides empirical evidence that
naive Bayes has good performance in ranking, just as in classification. Section
4 explores the theoretical reason for the superb performance of naive Bayes in
ranking. The paper concludes with a summary of our work and discussion.

2 Related Work

The ranking addressed in this paper is based on the class probabilities of ex-
amples. If a learning algorithm produces accurate class probability estimates, it
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certainly produces an accurate ranking. But the opposite is not true. For exam-
ple, assume that E+ and E− are a positive and a negative example respectively,
and that the actual class probabilities are p(+|E+) = 0.9 and p(+|E−) = 0.4. An
algorithm that gives class probability estimates: p̂(+|E+) = 0.5 and p̂(+|E−) =
0.45, gives a correct order of E+ and E− in the ranking, although the probability
estimates are poor. In the ranking problem, an algorithm tolerates the error of
probability estimates to some extent, which is similar to that in classification.
Recall that a classification algorithm gives the correct classification on an ex-
ample, as long as the class with the maximum posterior probability estimate is
identical to the actual class.

Naive Bayes is easy to construct and has surprisingly good performance in
classification, even though the conditional independence assumption is rarely
true in real-world applications. On the other hand, naive Bayes is found to
produce poor probability estimates [3]. Some work has been published to improve
its probability estimates. Zadrozny and Elkan [19] propose using a histogram
method to calibrate probability estimation. A more effective and straightforward
way to improve naive Bayes is to extend its structure to represent dependencies
among attributes [8]. Most of the extensions, however, aim at improving the
predictive accuracy, not at better probability estimation or ranking. Lachiche
and Flach present a method that uses AUC to find an optimal threshold for
naive Bayes, and thus improves its classification accuracy [6]. An interesting
question is, what is the performance of naive Bayes in terms of ranking (AUC)?

Decision tree learning algorithms are one of the simplest and most effective
learning algorithms, widely used in many applications. Traditional decision tree
learning algorithms, such as C4.5, are error-based, and also produce probability
estimates. In decision trees, the class probability p(c|E) of an example E is the
fraction of the examples of class c in the leaf that E falls into. How to build
decision trees with accurate probability estimates is an interesting question.

Unfortunately, traditional decision tree algorithms, such as C4.5, have been
observed to produce poor estimates of probabilities [14, 16]. According to Provost
and Domingos [17], the decision tree representation, however, is not (inherently)
doomed to produce poor probability estimates, and a part of the problem is
that modern decision tree algorithms are biased against building the tree with
accurate probability estimates. They propose the two techniques to improve the
AUC of C4.5: smooth probability estimates by Laplace correction and turning
off pruning. The resulting algorithm is called C4.4 [17]. They compared C4.4 to
C4.5 by empirical experiments, and found that C4.4 is a significant improvement
over C4.5 with regard to AUC.

Ling and Yan proposed a method to calibrate the probability estimate gen-
erated by C4.5 [12]. Their method does not just determine the class probability
of an example E by the leaf into which it falls. Instead, each leaf in the tree con-
tributes to the probability estimate. Ferri, Flach and Hernandez-Orallo present
a novel algorithm for learning decision trees, which is based on AUC, rather
than entropy. The resulting decision trees have better AUC without sacrificing
accuracy [5].
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However, to our knowledge, there is no systematical study of the performance
of naive Bayes with respect to ranking, measured by AUC. By a systematical
study, we find that naive Bayes actually performs well in ranking, just as it
does in classification. In this paper, we present empirical experiments and the
theoretical analysis for this observation.

3 Comparison between Naive Bayes and Decision Tree

In this section, we present an empirical comparison between naive Bayes and
C4.4, and give some explanation of the experimental results.

3.1 Experiments

We conduct experiments to compare naive Bayes with C4.4, and AUC is used as
the evaluation criterion. We use 15 datasets from the UCI repository [13], shown
in Table 1. In our experiments, the average AUC has been obtained for both
C4.4 and naive Bayes by using 10-fold stratified cross validation. C4.4 has been
implemented in Weka [20] and compared to existing Weka implementations of
naive Bayes. Since Laplace correction has been used in C4.4 and significantly
improves the AUC [17], we also use it in naive Bayes. The experimental results
are shown in Table 2.

Table 1. Description of the datasets used in the experiments.

Dataset sizes num. of attributes missing value

Breast cancer 286 9 Yes
Vote 435 16 Yes
Chess 3196 36 No
Mushroom 8124 22 Yes
Horse Colic 368 28 Yes
Wisconsin-breast-cancer 699 9 Yes
Credit Approval 690 15 Yes
German Credit 1000 24 No
Pima Indians Diabetes 768 8 No
Heart-statlog 270 13 No
Hepatitis Domain 155 19 Yes
Ionosphere 351 34 No
Labor 57 16 No
Sick 3772 30 Yes
Sonar 208 61 No

We conduct a paired two-tailed t-test by using 95% as the confidence level to
see if one algorithm is better than the other. Figures in Table 2 are indicated in
boldface whenever the observed difference of the AUCs between naive Bayes and
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C4.4 is significant. We can see that naive Bayes outperforms C4.4 in 8 datasets,
ties in 3 dataset and loses in 4 datasets, and that the average AUC of naive Bayes
is 90.36%, substantially higher than the average 85.25% of C4.4. Considering
that C4.4 is the state-of-art decision tree algorithm specifically designed for high
AUC, we believe that this presents evidence that naive Bayes has some advantage
over decision trees in producing better rankings.

Table 2. Experimental results on AUC.

Dataset C4.4 Naive Bayes

Breast cancer 59.42 ± 10.94 70.43 ± 15.94
Vote 100.00 ± 0.00 95.26 ± 1.10
Chess End-Game 100.00 ± 0.00 100.00 ± 0.00
Mushroom 98.13 ± 2.19 97.97 ± 2.01
Wisconsin-breast-cancer 98.33 ± 2.29 99.57 ± 1.45
Credit Approval 88.47 ± 4.39 92.43 ± 3.26
German Credit 69.88 ± 5.83 79.63 ± 5.48
Pima Indians Diabetes 73.76 ± 5.74 82.43 ± 5.29
Heart-statlog 82.82 ± 9.84 91.36 ± 4.39
Hepatitis Domain 82.42 ± 11.84 89.23 ± 9.94
Ionosphere 92.34 ± 4.65 94.95 ± 3.94
Horse Colic 86.38 ± 8.82 84.23 ± 6.85
Labor 70.67 ± 28.18 95.73 ± 16.93
Sick 99.84 ± 1.12 96.23 ± 2.18
Sonar 76.24 ± 9.94 85.95 ± 11.01

Average 85.25 90.36

3.2 Comparing Naive Bayes with Decision Trees from
Representational Capacity

The experiment in the preceding section indicates that naive Bayes has some
advantage over the decision tree algorithm C4.4. What are the reasons behind
the experimental results? In this section, we give some intuitive explanation, and
we will analyze the ranking performance of naive Bayes theoretically in Section
4.

In decision trees, the class probability of an example is estimated by the
proportion of the examples of that class in the leaf into which the example
falls. Thus, all examples in the same leaf have the same probability, and will be
ranked randomly. This weakens substantially the capacity of decision trees in
representing accurate rankings. That is because two contradictory factors are in
the play at the same time. On one hand, decision tree algorithms, such as ID3 and
C4.5, tend to build small decision trees. This results in more examples in leaves
with more reliable probability estimates of the leaves. However, smaller trees
imply a smaller number of leaves, thus more examples will have the same class
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probability. This limits the discriminating power of the tree to rank examples.
On the other hand, if the tree is large, not only may the tree overfit the data,
but the number of examples in each leaf becomes small, and thus the probability
estimates would not be accurate. This would also produce bad rankings.

Let us assume that all attributes and the class variable are Boolean, and that
we have n attributes. Then, for a given decision tree T , each leaf represents only
one class probability p(C = +|E) (p(C = −|E) = 1 − p(C = +|E)). Assume
that T has L leaves, then the maximum number of the possible distinct class
probabilities is L. A full decision tree, in which each attribute occurs once on
each path from the root to a leaf, can represent at most 2n distinct class proba-
bilities. Obviously, such full decision trees are rarely meaningful, since decision
tree algorithms tend to construct small trees, and the number of training exam-
ples is normally much less than 2n. Therefore, in reality, L is much less than
2n. In a small decision tree, however, the number of distinct class probabilities
that it can represent, i.e., the number of its leaves, is also small. Thus, it is very
possible for many examples to have the same class probability. This is an obvious
disadvantage for generating an accurate probability-based ranking. That is why
Provost and Domingos [17] recommend turning off pruning for better ranking.

That contradiction does not exist in naive Bayes, which calculates the class
probability p(c|E) based on p(ai|c), as showed in Equation 1, where ai is the
value of attribute Ai of example E. Although naive Bayes has only 2n + 1
parameters, the number of possible different class probabilities can be as many
as 2n. Therefore, intuitively speaking, naive Bayes has an advantage over decision
trees in the capacity of representing different class probabilities.

4 Theoretical Analysis on the Performance of Naive
Bayes in Ranking

Although naive Bayes performs well in classification, its learnability is very lim-
ited. In the binary domain, it can learn only linearly separable functions [4].
Moreover, it cannot learn even all the linearly separable functions. For example,
Domingos and Pazzani [3] discover that several specific linear functions are not
learnable by naive Bayes, such as conjunctive concepts and m-of-n concepts. In
other words, naive Bayes is not optimal in learning those concepts. We find out,
however, that naive Bayes is optimal in ranking in both conjunctive concepts
and m-of-n concepts. Here the optimality in ranking is defined as follows.

Definition 1. A classifier is called locally optimal on example E in ranking,

1. if E is a positive example, there is no negative example ranked after E; or
2. if E is a negative example, there is no positive example ranked before E.

Definition 2. A classifier is called globally optimal in ranking, if it is locally
optimal on all the examples in the example space of a given problem.

When a classifier is globally optimal, the AUC of the ranking produced by it is
always 1.
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4.1 Conjunctive concepts

A conjunctive concept is a conjunction of n literals Li, where a literal is a Boolean
attribute or its negation. It has been shown that naive Bayes, as a classifier, is
optimal in learning conjunctive concepts if examples are uniformly distributed
and the training set includes all the 2n possible examples [3]. Let + and −
denote the class of C = 1 (true) and the class of C = 0 (false), respectively. In
the training set, only one example that has L1 = L2 = · · · = Ln = 1 is in class +.
Thus, p(+) = 1

2n , p(−) = 2n−1
2n , p(Li|+) = 1, p(L̄i|+) = 0, p(L̄i|−) = 2n−1

2n−1 , and

p(Li|−) = 2n−1−1
2n−1 . Assume that E is an arbitrary example and m is its number

of the conjunction literals being true. Then, the class probability estimates given
by naive Bayes are

pnb(+|E) = p(+)pm(Li|+)pn−m(L̄i|+)

=
{

1
2n if m = n
0 otherwise, (2)

(3)

and

pnb(−|E) = p(−)pm(Li|−)pn−m(L̄i|−)

=
2n − 1

2n
(
2n−1 − 1
2n − 1

)m(
2n−1

2n − 1
)n−m.

It is easy to show that naive Bayes will give the correct classification for all
examples. Let us consider the ranking produced by naive Bayes. For a positive
example E+, we have m = n. The probability pnb(+|E+) is 1

2n . For any negative
example E−, m < n, and pnb(+|E−) = 0 < 1

2n = pnb(+|E+). That means that
naive Bayes never ranks a positive example before a negative example in the
class probability based ranking. Naive Bayes is therefore optimal for conjunctive
concepts under uniform distribution.

If the assumption that examples are uniformly distributed is removed, naive
Bayes gives the correct classification for all the examples in class −, given a
sufficient training set. However, for a positive example (m = n), the result will
depend on the class distribution. If p(+) < 1

2n , it is possible that naive Bayes
will fail to assign a correct class to a positive example. That means that naive
Bayes is not optimal in classification if the example distribution is not uniform.

However, no matter what the value of p(+) is, pnb(+|E−) = 0 and pnb(+|E+) =
p(+) > 0. Therefore, naive Bayes is still optimal for conjunctive concepts in
ranking, as shown in the theorem below.

Theorem 1. Naive Bayes is globally optimal in ranking on conjunctive con-
cepts.

4.2 m-of-n concepts

An m-of-n concept is a Boolean function that is true if m or more out of n
Boolean attributes are true. Clearly, it is a linearly separable function. Domin-
gos and Pazzani [3] show that for the concept 8-of-25, when the input Boolean
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attributes have just six or seven 1s, naive Bayes gives an incorrect answer of 1
(instead of 0).

Their result is based on two assumptions: (1) The sampling consists of all 225

examples of the 8-of-25 function, or is the uniform distribution; (2) The thresh-
old for classification is 0.5. That is, an example E belongs to class + if and only
if p(+|E) ≥ 0.5. The corresponding probabilities can then be obtained explicitly
[3]:

p(+) =

∑n
i=m

(
n
i

)

2n
,

p(−) =

∑m−1
i=0

(
n
i

)

2n
,

p(Ai = 1|+) =

∑n−1
i=m−1

(
n− 1

i

)

∑n
i=m

(
n
i

) ,

p(Ai = 1|−) =

∑m−2
i=0

(
n− 1

i

)

∑m−1
i=0

(
n
i

) .

Let q denote p(Ai = 1|+). Obviously, q > 0.5. The class probability estimate
produced by naive Bayes, denoted by pnb(+|E), is:

pnb(+|E) = p(+)qi(1− q)(n−i),

where i is the number of attributes of 1.
Now let us consider the ranking performance of naive Bayes in m-of-n con-

cepts. Assume that E+ is a positive example with k1 attributes of 1, and that
E− is a negative example with k2 attributes of 1. Obviously, k1 ≥ m > k2. Then
we have

pnb(+|E+)− pnb(+|E−) = p(+)qk2(1− q)n−k1(qk1−k2 − (1− q)k1−k2). (4)

Since q > 0.5 and k1 > k2, Equation 4 is always positive. Thus, for m-of-n
concepts, the class probability of a positive example is always greater than the
class probability of a negative example in naive Bayes. Therefore, the ranking
generated by naive Bayes is optimal, as shown in the following theorem.

Theorem 2. Naive Bayes is globally optimal in ranking on m-of-n concepts.
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4.3 General Optimality of Naive Bayes

The two example problems in the preceding sections are quite surprising, since it
has been known that, as a classifier, naive Bayes cannot learn all m-of-n concepts
under uniform distribution and cannot learn all conjunctive concepts under some
non-uniform distributions. The rankings generated by naive Bayes, however, are
optimal in both problems. This provides us evidence that naive Bayes performs
well in ranking, in some problems even better than classification.

In our following discussion, we assume that the prior probabilities p(E) of
all examples E are equal. Since p(+|E) = p(+)p(E|+)

p(E) , thus the ranking is also
determined by p(E|+).

Now let us consider the general case. Assume that E+ is a positive example
and E− is a negative example. Thus, p(E+|+) > p(E−|+). Let pnb(Ei|+) denote
the probability estimates generated by naive Bayes, i = +,−. Let x and y denote
the errors of probability estimates on E+ and E− given by naive Bayes. That is:

x = p(E+|+)− pnb(E+|+)
y = p(E−|+)− pnb(E−|+)

Naive Bayes generates the correct order for E+ and E−, if

pnb(E+|+) > pnb(E−|+).

That is
y − x + (p(E+|+)− p(E−|+)) > 0. (5)

Assuming that x and y are uniformly distributed, we plot a figure in which
x any y corresponds to the horizotal and vertical axes respectively, as shown in
Figure 1. The shaded area corresponds to the cases in which Equation 5 is true.
Since p(E+|+) > p(E−|+), naive Bayes is optimal in more than a half of the
possible area. It is easy to calculate the area of the shaded area, denoted by A.

A = −1
2
((p(E+|+)− p(E−|+))− 2)2 + 4 (6)

It is interesting to notice that, the greater difference between p(E+|+) and
p(E−|+), the greater chance that naive Bayes is optimal. For example, when
p(E+|+) − p(E−|+) = 0.5, the probability of naive Bayes being optimal is
0.78125.

Now let us assume that all the dependences among attributes are complete.
An attribute Ai is said to depend on Aj completely, if Ai = Aj . If Ai = Aj and
all other attributes are independent, the true probablity p(E|+) for an example
E = (a1, a2, · · · , an) is

p(E|+) = p(ai|+)
∏

k 6=i,j

p(ak|+).

The probability pnb(E|+) given by naive Bayes is

pnb(E|+) = p(ai|+)2
∏

k 6=i,j

p(ak|+).
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x

y

d

−1

−1

1

1

y=x+d

Fig. 1. A figure shows the optimality of naive Bayes in a general case, in which d =
p(E−|+)−p(E+|+), and the shaded area corresponds the optimal area of naive Bayes.

Given two examples E+ = (a+
1 , a+

2 , · · · , a+
n ) and E− = (a−1 , a−2 , · · · , a−n ) be-

longing to the positive and negative class respectively, we have

p(E+|+) = p(a+
i |+)

∏

k 6=i,j

p(a+
k |+) > p(E−|+) = p(a−i |+)

∏

k 6=i,j

p(a−k |+).

It is easy to show that, if p(a+
i |+) ≥ 0.5, pnb(E+|+) > pnb(E−|+). Notice that

E+ is a positive example, it is a reasonable assumption that p(a+
i |+) ≥ 0.5. We

have a formal definition on the property of such an attribute value.

Definition 3. A value ai of attributes Ai is called indicative to class c, if p(Ai =
ai|c) ≥ p(Ai = āi|c), where āi is another value of Ai other than ai.

For example, for the problem of m-of-n concepts, p(Ai = 1|+) > p(Ai = 0|+)
for any attribute. So Ai = 1 is indicative to class +. If all the attribute values
of an example are indicative, naive Bayes always gives the optimal ranking for
it, illustrated by the theorem below.

Theorem 3. Naive Bayes is optimal on example E = (a1, a2, · · · , an) in rank-
ing, if each attribute value of E is indicative to class +.

Proof. By induction on i, the number of pairs of attributes with complete de-
pendence.

When i = 1, it is true from the preceding discussion. Assume that the claim
is true when i = k. That is, if there are k complete dependences among at-
tributes and p(E+|+) > p(E−|+), then pnb(E+|+) > pnb(E−|+), where E+ =
(a+

1 , a+
2 , · · · , a+

n ) and E− = (a−1 , a−2 , · · · , a−n ) belong to positive and negative class
respectively. Consider that i = k+1. Assume that the new complete dependence
is between An−1 and An. Then p(E+|+) > p(E−|+). Since An−1 = An,

p(E+|+) = p(E+ − {An−1}|+) = p(a+
1 , · · · , a+

n−2, a
+
n |+),

p(E−|+) = p(E− − {An−1}|+) = p(a−1 , · · · , a−n−2, a
−
n |+).
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Since there are only k dependences among A1, · · ·, An−2, An, according to
induction hypothesis,

pnb(a+
1 , · · · , a+

n−2, a
+
n |+) > pnb(a−1 , · · · , a−n−2, a

−
n |+).

Thus, we have
n∏

i=1i6=n−1

p(a+
i |+) >

n∏

i=1i6=n−1

p(a−i |+).

Since all the attribute values of E are indicative, p(a+
n−1|+) > p(a−n−1|+). Then,

we have
n∏

i=1

p(a+
i |+) >

n∏

i=1

p(a−i |+).

Therefore, pnb(E+|+) > pnb(E−|+).

Theorem 3 presents a sufficient condition on the local optimality of naive
Bayes. Notice that even when all the attribute values of an example are indic-
tative, it is possible that naive Bayes gives a wrong classification.

5 Conclusion

In this paper, we argue that naive Bayes performs well in ranking, just as it
does in classification. We compare empirically naive Bayes with the state-of-
the-art decision tree learning algorithm C4.4 in terms of ranking, measured by
AUC, and our experiment shows that naive Bayes has some advantage over
C4.4. We investigate two example problems theoretically: conjunctive literals
and m-of-n concepts, which were used to analyze the classification performance
of naive Bayes in [3]. Surprisingly, naive Bayes works perfectly in both problems
with respect to ranking, although it does not perform perfectly in terms of
classification. For more general cases, we propose a sufficient condition for the
local optimality of naive Bayes in ranking.

Generally, the performance of naive Bayes in ranking is similar to that in
classification, in the sense that both tolerate the estimation error of class prob-
abilities to some extent. It is interesting to know which one tolerates error to a
higher extent. Our conjecture is that, for naive Bayes, it might be ranking.
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