
Learning Weighted Naive Bayes with Accurate Ranking

Harry Zhang
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada E3B 5A3
hzhang@unb.ca

Shengli Sheng
Department of Computer Science

University of Western Ontario
London, Ontario, Canada N6A 5B7

ssheng@uwo.ca

Abstract

Naive Bayes is one of most effective classification algo-
rithms. In many applications, however, a ranking of exam-
ples are more desirable than just classification. How to ex-
tend naive Bayes to improve its ranking performance is an
interesting and useful question in practice. Weighted naive
Bayes is an extension of naive Bayes, in which attributes
have different weights. This paper investigates how to learn
a weighted naive Bayes with accurate ranking from data, or
more precisely, how to learn the weights of a weighted naive
Bayes to produce accurate ranking. We explore various
methods: the gain ratio method, the hill climbing method,
and the Markov Chain Monte Carlo method, the hill climb-
ing method combined with the gain ratio method, and the
Markov Chain Monte Carlo method combined with the gain
ratio method. Our experiments show that a weighted naive
Bayes trained to produce accurate ranking outperforms
naive Bayes.

1 Introduction

Naive Bayesian Classifier, or simply naive Bayes, is one
of the most effective and efficient classification algorithms.
In classification, a classifier, which assigns a class label to
an example, is built from a set of training examples with
class labels. Assume that ��, ��,� � �, �� are � attributes.
An example � is represented by a vector ���� ��� � � � � ���,
where �� is the value of ��. Let � represent the class vari-
able that corresponds to the class, and � represent the value
that � takes. In naive Bayes, all attributes are assumed in-
dependent given the value of the class variable (conditional
independence assumption):

����� ��� � � � � ����� �
��

���

��������

An example � is classified to the class with the maximum
posterior probability. More precise, the classification on �

given by naive Bayes, denoted by 	�����, is defined as be-
low:

	����� � ���
�

��� ����
��

���

�������� (1)

Since the conditional independence assumption is rarely
true in reality, it is natural to extend naive Bayes to relax the
conditional independence assumption. There are two major
ways to do it: (1) The structure of naive Bayes is extended to
represent explicitly the dependences among attributes, and
the resulting model is called augmented naive Bayes (ANB)
[3]. (2)Attributes are weighted differently, and the resulting
model is called weighted naive Bayes (WNB). A WNB is
formally defined as below.

	������ � ���
�

��� ����
��

���

�������
�� � (2)

where 	������ denotes the classification give by the
WNB, and 
� is the weight of attribute ��.

In recent years, AUC has been noticed by machine learn-
ing and data mining community, and some researchers
believe [4] that AUC is a more discriminant evaluation
method than error rate for learning algorithms that also pro-
duce class probability estimates. Since naive Bayes perfor-
mances well in terms of accuracy [1], a natural question is:
What is the performance of naive Bayes, in terms of rank-
ing, or AUC? Can we improve its AUC by using some sort
of extended naive Bayes, such as WNBs?

The remainder of this paper is organized as follows:
In Section 2, we present several algorithms for learning a
WNB with high AUC. We implemented these learning al-
gorithms and the related experimental results are presented
in Section 3.



2 Learning Weighted Naive Bayes with High
AUC

As we discussed in Section 1, a WNB is an extension
of naive Bayes in which attributes are assigned different
weights. How to learn the weight vector in a WNB is the
key in learning a WNB. In this section, we investigate vari-
ous methods for learning the weight vector in a WNB.

2.1 Gain Ratio

Gain ratio was originally used to choose an attribute that
classifies best among a set of attributes in the decision tree
algorithm [7]. We argue that an attribute of higher gain
ratio deserves higher weight in a WNB. Thus, we propose
a gain ratio based method that calculate the weight of an
attribute from a dataset as follows:


� �
���������������� ���

���
���������������

� (3)

where � is the number of attributes, and �� is the dataset.
The gain ratio of attribute �� is defined as [7].
The WNB based on gain ratio is denoted by WNB-G.

2.2 Hill Climbing

This method has been widely used in many areas. In a
WNB, the weight 
� of attribute �� is found by a search
process consisting of a sequence of steps. In each step, the
weight is revised to achieve higher AUC, according to the
rule below:


����� 
���� �� 	 

���� (4)

where 
���� and 
��� � �� are the weights at step � and
step ��� respectively, and

��� is the weight update per-
formed at step �. In our implementation, 

��� is defined
as follows:



��� � ������������������� (5)

where � is the learning rate, ��� is the current value of
AUC, and ������ is defined as:

������ �
�

� 	 �����
�

The initial weight of an attribute is assigned to 1. We
adjust the weight of each attribute separately. For each at-
tribute ��, the weight 
� is repeatedly revised until the in-
crease between the current AUC and the previous AUC is
less than a small value �.

The WNB based on hill climbing is denoted by WNB-
HC.

2.3 Markov Chain Monte Carlo

The weights vector of a WNB can be also learned
through a random walk. First, we initialize the weight vec-
tor as � �� �� � � � � � �. Then we revise the weights by ran-
domly choosing adding or subtracting a constant value 


or unchanging it in each step. More precisely, we randomly
choose one from the three equations below:


����� 
���� �� 	 

�


����� 
���� ���

�


����� 
���� ���

The constant value 

 can be adjusted manually until it
achieves the best performance in AUC in most datasets. In
experiments, we find an appropriate 

 value manually for
each dataset.

Like the hill climbing method, we stop adjusting the
weights when the increase between the current AUC and
the previous AUC is less than a very small value �. How-
ever, we adjust all the weights in a WNB simultaneously,
unlike the hill climbing method, in which we adjust each
weight individually.

We investigate both Monte Carlo and Markov Chain
Monte Carlo in a random walk. In the Monte Carlo method,
we can try to achieve a higher AUC by adjusting the di-
rection randomly in each step. However, in the Markov
Chain Monte Carlo method, we only randomly choose the
direction at the beginning. We then adjust the weights in
the same direction, as long as the current direction causes
the AUC to increase. We readjust the direction only when
it does not achieve a higher AUC. Our experiments show
that the Markov Chain Monte Carlo method outperforms
the Monte Carlo method.

A WNB with Markov Chain Monte Carlo is denoted by
WNB-MCMC.

2.4 Combined Methods

In the hill climbing method and the Markov Chain Monte
Carlo method, the initial weight vector is � �� �� � � � � � �.
Since the weight vector can be calculated directly by the
gain ratio method, we can use it as the initial value, and
apply hill climbing or Markov Chain Monte Carlo to search
for a better weight vector. Thus, we have two corresponding
combined methods: hill climbing with gain ratio, denoted
by WNB-G-HC, and Markov Chain Monte Carlo with gain
ratio, denoted by WNB-G-MCMC.

3 Experiment

The process of learning a WNB consists of two steps:
(1)learning �������; (2)learning the weight vector. The first

2



Table 1. Description of the datasets used in
the experiments.

Dataset # Attributes # Classes # examples
Abalone 8 7 4177
Australia 11 2 690
Breast 9 10 683
Cars 6 2 446
Dermatology 33 6 366
Ecolidis 6 2 332
Hepatitis 3 2 320
Importdis 23 2 205
Iris 4 3 150
Lungcancer 56 2 32
Pima 6 2 392
Segment 18 9 2310
Vehicle 18 3 846
Vote 16 2 232

step is straightforward just as in naive Bayes. In this sec-
tion, we conduct experiments to investigate the methods for
learning the weight vector of a WNB described in Section
2, and each of them corresponds to a variant of WNBs. We
also compare them with naive Bayes and the decision tree
learning algorithm C4.4 [6], the revised version of the de-
cision tree learning algorithm C4.5 [7] for accurate proba-
bility estimation.

All the experiments are based on eight datasets from the
UCI repository [5]. Table 1 shows the properties of the
datasets. In these datasets, all continuous attributes are dis-
cretized using the entropy-based method [2].

Since the Laplace correction used in C4.4 significantly
increases the AUC value, we use it in naive Bayes and the
five variants of WNBs. Instead of simply estimating �������
by the percentage of the number of examples with �� �
�� among the number of examples in class �, the Laplace
correction used in our experiments is:

������� �
���

	 �

�� 	 �
�

where �� is the number of examples in class �, ���
is the

number of examples in class � and with �� � ��, and � is
the number of classes.

For each dataset, we ran all of the five variants of WNBs,
naive Bayes (NB in short), and C4.4 with the 5-fold cross-
validation 6 times. Our experiments follow the procedure
below:

1. For each dataset, discretize the continuous values of
the attributes by the entropy-based method [2].

Table 2. Experimental results on the variants
of weighted naive Bayes in AUC. In this table,
G, HC, MCMC, G-HC and G-MCMC stand for
WNB-G, WNB-HC, W-MCMC, WNB-G-HC and
WNB-G-MCMC, respectively.

Dataset G HC MCMC G-HC G-MCMC
Abalone 98.1�0.04 98.3�0.04 98.0�0.26 98.3�0.05 98.1�0.24
Australia 77.4�0.32 76.9�0.28 76.6�0.42 77.9�0.24 76.7�0.17
Breast 81.9�1.48 80.6�1.70 80.8�1.64 80.7�1.89 81.4�1.69
Cars 91.0�0.48 91.1�0.53 91.1�0.48 91.1�0.59 91.0�0.52
Dermatology 100.0�0.05 99.9�0.04 99.9�0.05 99.9�0.0 100.0�0.05
Ecolidis 99.5�0.12 99.4�0.08 99.4�0.08 99.4�0.08 99.4�0.09
Hepatitis 62.7�0.77 62.7�0.77 62.4�0.92 62.4�0.92 62.3�0.84
Importdis 99.9�0.08 99.9�0.08 100.0�0.05 100.0�0.04 100.0�0.05
Iris 90.9�1.22 90.9�1.22 90.9�1.22 90.9�1.22 90.9�1.22
Lungcancer 71.9�8.41 84.9�3.09 84.9�3.09 84.7�7.34 76.1�4.27
Pima 77.1�0.29 77.1�0.39 76.8�0.44 77.4�0.21 76.9�0.56
Segment 89.4�1.10 91.0�1.03 90.6�1.21 91.1�0.89 90.4�1.19
Vehicle 95.2�0.40 95.5�0.50 96.1�0.30 95.8�0.40 95.9�0.30
Vote 87.9�0.84 87.2�0.44 86.9�0.53 87.7�0.91 87.7�0.46

Table 3. Experimental results on naive Bayes
and C4.4 in AUC .

Dataset C4.4 NB
Abalone 75.3�3.43 97.9�0.0
Australia 72.3�0.33 75.7�0.30
Breast 59.0�3.17 80.4�1.66
Cars 86.1�0.99 91.1�0.48
Dermatology 99.6�0.13 99.9�0.0
Ecolidis 97.2�0.48 99.2�0.12
Hepatitis 61.6�1.17 62.7�0.7
Importdis 100.0�0.0 99.5�0.18
Iris 86.2�2.80 90.9�1.22
Lungcancer 78.4�2.28 70.9�4.5
Pima 74.2�0.69 76.8�0.32
Segment 80.7�3.11 88.9�1.19
Vehicle 92.4�0.48 92.0�0.51
Vote 82.8�2.04 86.6�0.34

2. Run each variant of WNBs, naive Bayes, and C4.4
with 5-fold cross-validation, and obtain the accuracy
and AUC on the test sets.

3. Repeat step 2 above 6 times and obtain an average ac-
curacy and AUC on the test sets for each variant of
WNBs, naive Bayes, and C4.4.

After the experiments, we analyzed the results with
ANOVA contrasts by using 90% as the confidence level.
We compared the five variants of WNBs with naive Bayes
and C4.4 separately. Further more, we also compared the
five variants of WNBs each other. The experimental results
are shown in Table 2 and 3 (we use two tables due to the
space limitation.) The comparisons among all the methods
are summarized in Table 4.

3



Table 4. Summary of the experimental results
in AUC. An entry 
-�-� means that the algo-
rithm at the corresponding row wins in 


datasets, ties in � datasets, and loses in �

datasets, compared to the algorithm at the
corresponding column.

Variant C4.4 NB G HC MCMC G-HC
NB 11-1-2
G 12-0-2 7-7-0

HC 13-1-0 7-7-0 3-9-2
MCMC 12-2-0 6-8-0 3-8-3 1-12-1
G-HC 12-2-0 9-5-0 5-8-1 1-13-0 4-10-0

G-MCMC 11-3-0 8-6-0 1-12-1 0-12-2 1-12-1 1-9-4

From Table 4, we can observe four interesting facts.
Firstly, all variants of WNBs outperform naive Bayes in
terms of AUC. More precisely, all of WNB-G, WNB-HC
and WNB-MCMC outperform naive Bayes in 7 datasets and
does not lose in any dataset; WNB-G-HC outperforms naive
Bayes in 9 datasets and loses in 0 dataset; WNB-G-MCMC
outperforms naive Bayes in 8 datasets and lose in 0 dataset.

The second observation is that the combined methods
WNB-G-HC and G-MCMC outperform slightly the orig-
inal methods WNB-G, WNB-HC and WNB-MCMC. We
can see that WNB-G-HC performs better than WNB-G (5
wins, 8 ties, 1 loss). It is also slightly better than WNB-HC
(1 wins, 13 ties, 0 loss). In addition, compared with naive
Bayes, it outperforms naive Bayes (9 wins, 5 ties, 0 loss) in
more datasets than WNB-HC (7 wins, 7 ties, 0 loss). If just
looking at the values of AUC, WNB-G-HC has higher val-
ues of AUC than WNB-HC in 7 datasets. WNB-G-MCMC
also performs slightly better than WNB-MCMC. Compared
with naive Bayes, it also outperforms naive Bayes (8 wins,
6 ties, 0 loss) in more datasets than WNB-MCMC (6 wins,
8 ties, 0 loss).

Another interesting fact is that both the five variants of
WNBs and naive Bayes outperform C4.4 in terms of AUC.
All WNBs outperform C4.4 on Most of 14 datasets. Be-
sides WNB-G loses to C4.4 in two datasets, other variants
of WNBs don’t lose to C4.4. Naive Bayes outperforms C4.4
on 11 out of 14 datasets, ties with C4.4 in one dataset Ve-
hicle, and loses to C4.4 in two datasets. This observation
indicates that naive Bayes and its extensions may have bet-
ter performance than the decision tree algorithm in accurate
ranking.

Lastly, WNB-G-HC is the best WNB among the five
variants of WNBs, according to the experimental results,
although the differences among them are not that big. This
observation suggests us that WNB-G-HC is the first choice
in practice.

4 Conclusions and Discussions

In this paper, we studied various methods for learning
the weight vector in a WNB for accurate ranking. Our ex-
periments show us a few interesting facts illustrated below.

1. WNBs outperform naive Bayes in terms of accurate
ranking. Hence it should be used if the goal is to
achieve good ranking.

2. Among the WNBs studied in this paper, the hill climb-
ing method with gain ratio is the best one.

3. WNBs and naive Bayes have better performance than
the decision tree learning algorithm C4.4 in ranking.

To our knowledge, this paper has two major contribu-
tions:

1. Although there are some recent works addressing the
issue of learning a WNB in term of accuracy, none of
them directly addresses learning a WNB with accurate
ranking, measured by AUC. This paper studied sys-
tematically various methods for learning a WNB with
high AUC.

2. We proposed using gain ratio to calculate the weight of
an attribute, which can be combined with other search
based methods to achieve better performance. Our ex-
periments show that gain ratio based method (WNB-
G-HC) achieves the best performance among the meth-
ods studied in this paper.

References

[1] P. Domingos and M. Pazzani. Beyond independence: Con-
ditions for the optimality of the simple Bayesian classifier.
Machine Learning, 29:103–130, 1997.

[2] U. Fayyad and K. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. Pro-
ceedings of Thirteenth International Joint Conference on Ar-
tificial Intelligence. Morgan Kaufmann, 1993.

[3] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine Learning, 29:131–163, 1997.

[4] C. X. Ling, J. Huang, and H. Zhang. AUC: a statistically
consistent and more discriminating measure than accuracy.
Proceedings of the International Joint Conference on Artifi-
cial Intelligence IJCAI03. Morgan Kaufmann, 2003.

[5] C. Merz, P. Murphy, and D. Aha. UCI repository of machine
learning databases. 1997.

[6] F. J. Provost and P. Domingos. Tree induction for probability-
based ranking. Machine Learning, 52(3):199–215, 2003.

[7] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

4


