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Abstract. The instance-based k-nearest neighbor algorithm (KNN)[1]
is an effective classification model. Its classification is simply based on
a vote within the neighborhood, consisting of k nearest neighbors of the
test instance. Recently, researchers have been interested in deploying a
more sophisticated local model, such as naive Bayes, within the neigh-
borhood. It is expected that there are no strong dependences within the
neighborhood of the test instance, thus alleviating the conditional inde-
pendence assumption of naive Bayes. Generally, the smaller size of the
neighborhood (the value of k), the less chance of encountering strong
dependences. When k is small, however, the training data for the local
naive Bayes is small and its classification would be inaccurate. In the cur-
rently existing models, such as LWNB [3], a relatively large k is chosen.
The consequence is that strong dependences seem unavoidable.

In our opinion, a small k should be preferred in order to avoid strong
dependences. We propose to deal with the problem of lack of local train-
ing data using sampling (cloning). Given a test instance, clones of each
instance in the neighborhood is generated in terms of its similarity to
the test instance and added to the local training data. Then, the local
naive Bayes is trained from the expanded training data. Since a relatively
small k is chosen, the chance of encountering strong dependences within
the neighborhood is small. Thus the classification of the resulting local
naive Bayes would be more accurate. We experimentally compare our
new algorithm with KNN and its improved variants in terms of classifi-
cation accuracy, using the 36 UCI datasets recommended by Weka [8],
and the experimental results show that our algorithm outperforms all
those algorithms significantly and consistently at various k values.

1 Introduction

Classification is a fundamental issue in machine learning. A typical problem
setting for classification is that, given a set of training instances with class labels,
a classifier is trained and used to predict the class of an unseen instance. An
instance is represented by a vector of attributes. In this paper, an instance x
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is described by the attribute vector < a1(x), a2(x), . . . , an(x) >, where ai(x)
denotes the value of the ith attribute Ai of x.

Instance-based learning methods [1] are often used for classification. The
most basic instance-based method is the instance-based k-nearest neighbor al-
gorithm (KNN). In KNN, an instance of n attributes corresponds to a point in
the n-dimensional Euclidean space �n. The standard Euclidean distance is often
used as the distance between two instances x and y, defined as follows.

d(x, y) =

√√√√
n∑

i=1

(ai(x) − ai(y))2. (1)

When all attributes are nominal, this function can be simplified as:

d(x, y) =
n∑

i=1

(1 − δ(ai(x), ai(y))), (2)

where δ is a function that δ(u, v) = 1 if u = v.
KNN classifies an instance x by finding its k nearest neighbors y1, · · ·, yk,

and then assigning the most common class of the k nearest neighbors to x, as
shown below:

c(x) = arg max
c∈C

k∑
i=1

δ(c, c(yi)), (3)

where c(yi) is the class of yi. Essentially, the classification of KNN is based on
a vote within the neighborhood that consists of the k nearest neighbors of the
test instance.

An obvious approach to improving KNN is to weight the contribution of
each of k neighbors according to their distance to the test instance x, by giving
greater weight to closer neighbors. The resulting classifier is called instance-based
k-nearest neighbor with distance weighted (KNNDW), defined as follows.

c(x) = arg max
c∈C

k∑
i=1

δ(c, c(yi))
d(yi, x)2

. (4)

KNN has been widely used for decades due to its simplicity, effectiveness and
robustness. However, the classification of KNN based on voting is quite simple.
It is believed that a more sophisticated local model within the neighborhood,
instead of voting, would improve classification performance.

Naive Bayes is a simple, but effective classification model [5], in which all the
attributes are assumed independent given the class (the conditional indepen-
dence assumption). It has been observed that naive Bayes performs well when
the training data is small [4]. Thus it is suitable to be a local model within
another model, such as a decision tree.

In KNN, it is a natural thought to train a local naive Bayes for a test instance
using only the k nearest neighbors. Recently, researchers have paid considerable
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attention to investigate the approach to combining KNN with naive Bayes [12, 11,
3]. Although the conditional independence assumption of naive Bayes is always
violated on the training data as a whole, it is expected that the dependences
within the neighborhood of the test instance is weaker than that on the whole
data and thus naive Bayes classifies better. Generally, keeping the size of the
neighborhood (the values of k) small will reduce the chance of encountering
strong dependences. When k is small, however, the probability estimation in
naive Bayes that is based on frequency in the training data, is not reliable.
Thus, its classification would be inaccurate.

In this paper, we propose an method based on sampling to deal with this
issue. For each neighbor, a number of clones are generated and added into the
local training data in terms of its similarity to the test instance. Then, a naive
Bayes is trained from the expanded training data. By that means, a small k
value could be chosen and strong attribute dependences could be avoided. Thus
a better classifier is expected. Our experimental results show that our new model
outperforms KNN and its variants significantly.

The rest of the paper is organized as follows. In Section 2, we introduce the
related work on combining KNN with naive Bayes. In Section 3, we present our
model and the experimental results in detail. In Section 4, we make a conclusion
and outline our main directions for future research.

2 Related Work

Naive Bayes is a simple but effective classifier. Although its conditional indepen-
dence assumption is often violated, it performs surprisingly well in classification
[2]. In addition, it performs well when the size of training data is small [4]. This
feature makes it especially fit to be a local model embedded into another model,
such as a decision tree, a KNN. Kohavi [4] proposes a model, NBTree, in which
a local naive Bayes is deployed on each leaf of a traditional decision tree. An
NBTree classifies an instance using the local naive Bayes on the leaf into which
it falls.

KNN has attracted much attention from researchers for decades, due in part
to its age and simplicity [1]. In recently years, researchers have done considerable
work on combining KNN with naive Bayes [12, 11, 3]. The idea for combining
KNN with naive Bayes is quite straightforward. Like all lazy learning methods,
the training data is simply stored, and learning is deferred until classification
time. Whenever a new (test) instance is classified, a local naive Bayes is trained
using the k nearest neighbors of the test instance, with which the test instance
is classified. The classification of the local naive Bayes is based on the following
equation.

c(x) = arg max
c∈C

p(c)
n∏

i=1

p(ai(x)|c), (5)
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where x is the test instance of n attributes. The parameters of the local naive
Bayes are the probabilities p(c) and p(ai(x)|c) in Equation 5 that are estimated
from the local training data (the k nearest neighbors of x) based on frequency.

Frank et al. [3] present an model to combine KNN with naive Bayes, called
locally weighted Naive Bayes(LWNB). In LWNB, each of nearest neighbors is
weighted in terms of its distance to the test instance. Then a local naive Bayes is
built from the weighted training instances. Their experiments show that LWNB
outperforms naive Bayes significantly. Our work is inspired by this work.

Zheng and Webb [12] propose an approach, lazy Bayesian rule (LBR). LBR
does not directly use the k nearest neighbors of the test instance as the training
data for the local naive Bayes. Instead, before classifying a test instance, LBR
generates a rule most appropriate to the test instance. The training instances
that satisfy the antecedent of the rule are chosen as the training data for the
local naive Bayes, and this local naive Bayes only uses those attributes that do
not appear in the antecedent of the rule. In this paper, however, we are interested
in learning the local model directly based on the k nearest neighbors of the test
instance.

Xie et al. [11] propose a model, selective neighborhood naive Bayes (SNNB),
in which multiple naive Bayes are learned by using different k values and a local
naive Bayes is trained for each k value. The most accurate one is used to classify
the test instance. In SNNB, a set of naive Bayes are trained. In this paper, we
focus on training a single local model.

In this paper, we use KNNNB to denote the algorithm that directly uses the
k nearest neighbors of the test instance to train a local naive Bayes.

3 Learning Local Naive Bayes Using Instance Sampling

3.1 Size of Neighborhood and Attribute Dependences

Most of the existing research works on combining KNN with naive Bayes are
motivated by improving naive Bayes through relaxing the conditional indepen-
dence assumption using lazy learning. It is expected that there are no strong
dependences within the k nearest neighbors of the test instance, although the
attribute dependences might be strong in the whole data. Essentially, they are
looking for a sub-space of the instance space in which the conditional indepen-
dence assumption is true or almost true. The size of the neighborhood, or the
value of k, is critical. In general, small neighborhood helps to reduce the chance
of encountering strong dependences [3]. Thus, a small k is preferred.

Frank et al. [3] presents a problem that predicts whether an instance belongs
to a black or white square on a checker board given its x and y coordinates.
In that problem, strong dependences between the two attributes exist. They
show that KNN, KNNDW and LWNB performs well at k ≤ 5, and degrade
as k increases. That example shows that small k value is desirable when at-
tribute dependences are strong. In addition, small neighborhood conforms closer
to the data. In fact, KNN and KNNDW generally degrade in performance as k
increases.



Instance Cloning Local Naive Bayes 5

When k is small, such as 5 or 10, however, the training data is small. The
parameters of naive Bayes cannot be accurately estimated from the training
data. Thus, the classification of a local naive Bayes would be inaccurate. In
NBTree[4], a threshold on the size of the training data on a decision node is set
to avoid this problem. That is, there should be at least 30 training instances at a
decision node. In LWNB, Laplace correction has been used to smooth probability
estimation, and a relatively large k, such as k = 30, 40, 50, is chosen.

We believe that keeping the size of the neighborhood small would help reduc-
ing the chance of having strong dependences and thus improving classification
accuracy. We propose to a novel approach to handling the issue of lack of train-
ing data by expanding the neighborhood. We“clone” each neighbor of the testing
instance and add the clones to the training data. Thus, the parameters in naive
Bayes can be estimated more accurately and reliably, and the classification of
the local naive Bayes is more accurate.

There has been similar work on expanding or reducing training data by sam-
pling to deal with the issue of class unbalance in machine learning [9]. When the
class distribution of training data is highly unbalanced, instances in the majority
class are eliminated (under-sampling), or instances are replicated in the minor-
ity class (over-sampling). Either way alters the class distribution of the training
data. Our sampling is similar in the sense that copies of instances are added
into the training data. The difference is that the sampling in dealing with class
unbalance is typically based on a probability distribution, and our sampling is
based on an explicit distance function and does not alter the class distribution.

3.2 A Learning Algorithm Based on Instance Cloning

At first, let us define a function to measure the similarity between two instances
with nominal attributes. Let x and y are two instances, the similarity, denoted
by s(x, y), between them is defined as:

s(x, y) =
n∑

i=1

δ(ai(x), ai(y)). (6)

s(x, y) is a function that simply counts the number of identical attributes of
x and y.

Given a test instance x, we find its k nearest neighbors and put them into
the local training data. For each neighbor y, we use Equation 6 to compute the
similarity s(x, y). Then, s(x, y) clones of y are added to the local training data.
A local naive Bayes is learned from the expanded training data with which x
is classified. We call our method instance cloning local naive Bayes, or simply
ICLNB. The ICLNB algorithm is depicted below.

Algorithm ICLNB(T, k, x)
Input : a set T of training instances, integer k, and a test instance x.
Output : the class of x

1. Use the distance function in Equation 2 to find x’s k nearest neighbors
y1, · · ·, yk, from T.
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2. Local training set L = {y1, · · · , yk}
3. For each neighbor yi of x

– Compute s(x, yi) using the similarity function in Equation 6.
– Add s(x, yi) clones of yi to L.

4. Create a local naive Bayes NB using L as the training data.
5. Classify x using NB and return the class label of x.

It is interesting to notice the similarity and difference between instance sam-
pling (or cloning) and instance weighting [3]. In instance weighting, each training
instance is assigned a different weight and thus plays a different role in classifi-
cation. In instance sampling, each training instance is “cloned” different times.
More clones generated, more important for that instance in classification. Thus,
both change the importance of an instance. However, instance weighting gener-
ally does not aim at helping to improve probability estimation, while instance
sampling does. “Cloning” expands the training data, and thus leads to more re-
liable probability estimation. Specifically, our instance sampling is simpler than
the instance weighting in [3] in that our similarity function is very simple and
there is no need to normalize the instance weights.

3.3 Experimental Methodology and Results

We ran our experiments on the 36 UCI data sets recommended by Weka [10],
which are listed in Table 1. All these data sets come from the UCI repository
[6]. We downloaded these data sets in format of arff from main web of Weka [8].

All the preprocessing stages of data sets were carried out by the Weka system.
They mainly include the following three processes:

1. We used the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. We used the filter of Discretize in Weka to discretize numeric attributes.
Thus, all the attributes are treated as nominal.

3. It is well-known that, if the number of values of an attribute is almost equal
to the number of instances in a data set, this attribute does not contribute
any information to classification. So we use the filter of Remove in Weka
to delete these attributes. In the 36 data sets, there only exists three this
type of attributes, namely Hospital Number in data set horse-colic.ORIG,
Instance Name in data set Splice and Animal in data set zoo.

In our experiments, we use the Laplace estimation to avoid the zero-frequency
problem. Assume that there are p instances of class c, N total instances, and C
total classes in the training data. The frequency-based estimation calculates the
estimated probability p(c) = p

N . The Laplace estimation calculates the estimated
probability p(c) = p+1

N+C . In the Laplace estimation, p(ai(x)|c) = 1+Nic

Ni+Nc
, where

Nic is the number of instances in class c and with Ai = ai(x), Nc is the number
of instances in class c, and Ni is the number of values for attribute Ai.
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Table 1. Description of the data sets used in the experiments.

dataset Size Number of Attribute classes missing value Numeric

anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
audiology 226 70 24 Y N
autos 205 26 7 Y Y
balance 625 5 3 N Y
breast 286 10 2 Y N
breast-w 699 10 2 Y N
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
Glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-s 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypoth. 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph. 148 19 4 N Y
mushroom 8124 23 2 Y N
p.-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
splice 3190 62 3 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform 5000 41 3 N Y
zoo 101 18 7 N Y
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We conducted experiments to compare our algorithm ICLNB with KNN,
KNNDW, KNNNB and LWNB in terms of classification accuracy. We imple-
mented ICLNB, KNNDW, and KNNNB within the Weka framework [10], and
used the implementation of KNN and LWNB (LWL with a base classifier being
Naive Bayes) in Weka. In all experiments, the accuracy of each algorithm was
based on the percentage of correct classifications on the test sets of each data
set. The accuracy of each algorithm was measured via the ten-fold cross vali-
dation for all data sets. Runs with the various algorithms were carried out on
the same training sets and evaluated on the same test sets. In particular, the
cross-validation folds were the same for all the experiments on each data set.
Finally, we conducted two-tailed t-test with significantly different probability of
0.95 to compare our algorithm with other algorithms. That is, we speak of two
results for a data set as being “significantly different” only if the difference is
statistically significant at the 0.05 level according to the corrected two-tailed
t-test [7].

Table 2 and 3 show the accuracy and standard deviations of each algorithm
on each data set, and the average accuracy and deviation over all the data sets
are summarized at the bottom of the table. Table 4 and 5 shows the results of
two-tailed t-test between each pair of algorithms, and each entry w/t/l means
that the algorithm at the corresponding row wins in w data sets, ties in t data
sets, and loses in l data sets, compared to the algorithm at the corresponding
column.

The detailed results displayed in Table 2 and 3 show that our algorithm out-
performs all the other algorithms significantly. Now, we summarize the highlights
as follows:

1. ICLNB outperforms the traditional k-nearest algorithms KNN and KNNDW
significantly. From our experiments, KNNDW is significantly better than
KNN. Compared to KNNDW, ICLNB wins in 6 data sets, ties in 30 data
sets and loses in 0 data set, when k = 5; and ICLNB wins in 5 data sets,
ties in 31 data sets and loses in 0 data set, when k = 10.

2. ICLNB outperforms the existing algorithms of combining KNN with naive
Bayes: KNNNB and LWNB significantly. Compared to KNNNB, ICLNB
wins in 6 data sets, ties in 30 data sets and loses in 0 data set, when k = 5;
and ICLNB wins in 7 data sets, ties in 28 data sets and loses in 1 data set,
when k = 10. Compared to LWNB, ICLNB wins in 5 data sets, ties in 31
data sets and loses in 0 data set, when k = 5; and ICLNB wins in 6 data
sets, ties in 30 data sets and loses in 0 data set, when k = 10.

3. In terms of the average classification accuracy, ICLNB is the best among all
the algorithms compared. When k = 5, ICLNB’s average classification accu-
racy is 84.71%, and the highest average classification accuracy of the other
algorithms is 84.09% from KNNNB. When k = 10, ICLNB’s average classi-
fication accuracy is 85.01%, and the highest average classification accuracy
of the other algorithms is 84.36% from KNNDW.
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Table 2. Experimental results for instance cloning local naive Bayes (ICLNB) versus
instance-based k-nearest neighbor (KNN), instance-based k-nearest neighbor with dis-
tance weighted (KNNDW), instance-based k-nearest neighbor naive Bayes (KNNNB),
locally weighted naive Bayes (LWNB) and naive Bayes (NB): percentage of correct
classifications and standard deviation when k = 5.

Datasets ICLNB KNN KNNDW KNNNB LWNB NB

anneal 98.66±1.26 96.88±2.15 98.55±1.05 97.33±2.24 98.78±1.11 94.32±2.38
anneal.O 91.2±3.08 87.31±3.35 90.09±2.93 88.09±2.96 91.53±3.04 87.53±4.69
audiology 77.81±9.23 60.57±7.87 75.57±8.92 68.58±6.77 77.37±9.21 71.23±7.03
autos 83.83±6.63 66.29±8.28 83.4±7.61 78.55±9.2 81.4±5.23 64.83±11.2
balance 83.84±4.41 83.84±4.71 83.84±4.71 84.16±4.03 83.99±4.22 91.36±1.38
breast 73.85±8.84 73.78±4.38 75.55±7.2 75.55±3.78 72.09±9.52 72.06±7.97
breast-w 96.85±2 94.99±2.81 95.28±2.79 96.57±2.54 95.99±2.52 97.28±1.84
colic 77.72±3.55 80.68±6.65 82.33±5.35 81.51±7.01 78.56±5.38 78.81±5.05
colic.O 76.09±4.91 70.63±5.06 73.35±5.64 73.08±6 75.81±5.5 75.26±5.26
credit-a 82.61±2.73 85.07±3.62 84.93±2.99 85.22±3.19 82.75±4.24 84.78±4.28
credit-g 73.5±3.03 71.5±2.42 72.6±3.41 73.3±3.33 70.9±5.17 76.30±4.76
diabetes 72.14±4.68 69.14±1.84 70.58±3.33 71.23±3.25 69.15±4.66 75.40±5.85
glass 65.41±8.64 58.92±7.8 62.23±6.79 64.52±7.69 61.21±7.77 60.32±9.69
heart-c 79.14±8.59 81.41±12.7 81.42±11.4 82.75±8.94 80.77±9.36 84.14±4.16
heart-h 82.7±6.35 81.36±6.65 81.34±6.27 81.34±6.3 81.31±5.99 84.05±6.69
heart-s 81.11±5.91 80.74±6 81.48±5.79 81.85±5.64 80.37±7.42 83.70±5.00
hepatitis 84.42±7.61 84.46±6.25 82.54±4.41 83.88±6.2 80.63±8.57 83.79±8.79
hypoth. 93.05±0.93 93.03±0.89 93.05±0.84 93.03±0.89 92.29±0.86 92.79±1.02
ionosphere 92.31±3.31 89.44±3.34 90.02±2.8 90.02±3.11 91.73±3.43 90.89±3.49
iris 95.33±5.49 93.33±6.29 93.33±7.03 94.67±5.26 94±5.84 94.67±8.20
kr-vs-kp 97.97±0.71 96.03±1.19 96.97±0.96 96.9±0.85 97.31±0.86 87.89±1.81
labor 86.33±13.3 91.67±11.8 91.67±11.8 91.67±11.8 90±11.65 93.33±11.7
letter 92.16±0.32 88.02±0.63 90.17±0.55 89.87±0.4 90.8±0.4 70.00±0.81
lymph. 81.67±9.18 82.33±9.81 82.29±10.9 83.62±9.52 82.9±11.18 85.67±9.55
mushroom 100±0 100±0 100±0 100±0 100±0 95.57±0.45
p.-tumor 43.65±3.26 41.26±8.05 42.44±4.98 44.22±5.71 40.38±5.71 46.89±4.32
segment 94.85±0.95 90.74±1.61 93.38±1.55 91.6±1.26 94.63±1.49 88.92±1.95
sick 98.2±0.48 97.51±0.59 97.72±0.49 97.72±0.49 98.01±0.53 96.74±0.53
sonar 80.81±7.38 80.79±10.06 80.79±8.72 81.74±6.72 82.24±10.3 77.50±12.0
soybean 93.11±2.42 90.76±3.76 91.79±3.36 91.94±3.22 92.38±3.02 92.08±2.34
splice 86.18±2.02 79.81±2.81 82.23±2.63 85.86±1.47 82.6±2.3 95.36±1.00
vehicle 72.45±3.78 70.57±3.02 71.27±4.46 72.46±3.41 70.57±5.64 61.82±3.54
vote 95.18±2.51 94.03±2.69 93.81±3.06 94.95±2.37 93.58±4.27 90.14±4.17
vowel 94.14±1.7 81.31±1.73 92.42±3.06 90.1±2.17 94.65±2.52 67.07±4.21
waveform 74.22±1.59 73.42±1.55 73.92±1.86 74.42±1.85 69.98±1.94 79.96±1.92
zoo 97.09±4.69 92.09±6.3 96.09±5.05 95.09±5.18 97.09±4.69 94.18±6.60

Mean 84.71±4.32 82.05±4.68 84.12±4.58 84.09±4.30 83.83±4.88 82.41±4.88
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Table 3. Experimental results for instance cloning local naive Bayes (ICLNB) versus
instance-based k-nearest neighbor (KNN), instance-based k-nearest neighbor with dis-
tance weighted (KNNDW), instance-based k-nearest neighbor naive Bayes (KNNNB),
locally weighted naive Bayes (LWNB) and naive Bayes (NB): percentage of correct
classification and standard deviation when k = 10.

Datasets ICLNB KNN KNNDW KNNNB LWNB NB

anneal 99±0.82 95.88±1.97 98.55±1.05 97.1±2.05 98.89±1.05 94.32±2.38
anneal.O 90.98±3.47 84.41±3.3 89.75±3.1 86.64±3.48 91.64±3.04 87.53±4.69
audiology 77.83±7.59 58.79±8.3 74.72±6.74 68.1±6.28 77.79±8.11 71.23±7.03
autos 80.38±6.8 62.52±8.03 82.88±6.63 76.57±8.47 81.88±5.84 64.83±11.2
balance 83.84±4.41 83.84±4.71 83.84±4.71 84.16±4.03 83.99±4.22 91.36±1.38
breast 73.15±8.78 73.09±4.25 75.22±5.58 74.85±4.09 72.8±8.74 72.06±7.97
breast-w 96.99±1.84 93.99±3.42 94.28±3.5 96.57±2.54 96.13±2.45 97.28±1.84
colic 77.98±5.65 83.13±6.29 84.23±5.09 83.13±5.75 80.98±3.82 78.81±5.05
colic.O 76.09±3.57 69.82±3.4 73.09±5.23 73.09±5.54 75.8±4.25 75.26±5.26
credit-a 83.77±2.54 86.09±4.39 85.51±3.74 86.52±4.21 83.33±4.11 84.78±4.28
credit-g 73.5±3.1 71.9±3.28 73.7±3.13 74.4±3.5 72.1±4.18 76.30±4.76
diabetes 72.01±5.47 69.02±2.19 69.27±4.12 72.01±4.5 69.4±4.23 75.40±5.85
glass 67.75±8.15 57.06±8.03 60.82±7.99 64.55±8.76 60.74±5.83 60.32±9.69
heart-c 78.85±7.28 81.09±9.77 81.42±9.55 83.1±7.37 80.11±8.99 84.14±4.16
heart-h 81.33±6.14 82.02±6.06 81.68±5.66 81.67±4.73 82.34±6.06 84.05±6.69
heart-s 80.74±6 82.22±7.37 82.96±6.1 82.59±5.53 80±7.45 83.70±5.00
hepatitis 84.38±7.13 84.5±6.22 83.25±5.35 83.92±6.93 82.54±6.17 83.79±8.79
hypothy. 93.21±0.66 93.08±0.64 93.16±0.58 93.21±0.62 92.37±0.87 92.79±1.02
ionosphere 90.9±4.58 89.74±2.78 89.74±3.37 90.31±3.62 91.44±3.03 90.89±3.49
iris 94.67±6.13 93.33±6.29 93.33±7.03 94±5.84 94±5.84 94.67±8.20
kr-vs-kp 97.59±0.81 95.06±1.34 96.84±0.95 96.46±0.78 97.56±0.76 87.89±1.81
labor 90±14.1 85.67±14.5 89.67±11.9 91.67±11.9 90±11.7 93.33±11.7
letter 92.83±0.33 86.56±0.67 89.68±0.64 89.73±0.55 91.25±0.43 70.00±0.81
lymph. 83±10.8 80.86±12.0 82.86±13.1 85±9.18 82.29±10.92 85.67±9.55
mushroom 100±0 99.91±0.08 100±0 100±0 100±0 95.57±0.45
p.-tumor 43.34±3.7 42.47±5.67 43.03±5.86 46±4.85 40.97±5.6 46.89±4.32
segment 95.45±0.82 89.65±1.84 92.68±1.59 91.6±1.54 94.81±1.43 88.92±1.95
sick 98.12±0.55 97.03±0.73 97.45±0.6 97.56±0.53 98.01±0.53 96.74±0.53
sonar 81.33±9.57 81.33±8.42 80.38±8.44 81.83±9.39 84.14±6.38 77.50±12.0
soybean 93.84±2.39 89.01±2.12 91.94±3.29 91.94±3.06 92.96±2.77 92.08±2.34
splice 91.76±1.45 83.26±2.42 85.2±2.11 90.5±1.25 86.65±1.69 95.36±1.00
vehicle 71.28±4.77 68.68±2.74 70.8±4.48 70.69±3.01 72.46±4.5 61.82±3.54
vote 96.1±2.64 92.9±3.61 93.36±3.28 94.95±2.81 93.57±3.86 90.14±4.17
vowel 93.54±1.73 67.68±4.04 91.62±3.63 89.49±3.02 94.24±2.02 67.07±4.21
waveform 76.76±1.33 76.36±1.15 76.34±1.15 77.2±1.35 72.7±1.86 79.96±1.92
zoo 98.09±4.03 89.18±9.78 96.09±5.05 95.09±5.18 97.09±4.69 94.18±6.60

Mean 85.01±4.42 81.14±4.77 84.15±4.56 84.34±4.35 84.36±4.37 82.41±4.88
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4. ICLNB outperforms naive Bayes significantly, just as KNNNB and LWNB
do. That verifies the idea that there are weaker attribute dependences within
the neighborhood of the test instance.

From our experiments, we have other two interesting observations below,
showing that the probability estimation in naive Bayes could not be improved
by the instance weighting in KNNDW when k is small.

1. The difference between LWNB and KNNDW in classification accuracy is not
significant. When k = 5, LWNB wins in 3 data sets and loses in 2 data sets.
When k = 10, LWNB wins in 2 data sets, and loses in 2 data sets.

2. LWNB does not outperforms KNNNB significantly. When k = 5, LWNB
wins in 4 data sets and loses in 3 data sets. When k = 10, LWNB wins in 6
data sets, and loses in 4 data sets.

In our experiments, we also tested some relatively large k values, and the
experimental results are similar. For example, ICLNB outperforms LWNB in 5
data sets, ties in 30 data sets and loses in 1 data set, when k = 50. We have
not presented the experimental results in this paper due to the limit of space.
In fact, ICLNB consistently outperforms all other algorithms compared in this
paper at all the various k values we tested.

Table 4. Summary of experimental results: classification accuracy comparisons when
k = 5. An entry w/t/l means that the algorithm at the corresponding row wins in w
data sets, ties in t data sets, and loses in l data sets, compared to the algorithm at the
corresponding column.

NB KNN KNNDW KNNNB LWNB

KNN 8/23/5
KNNDW 10/22/4 8/28/0
KNNNB 10/23/3 9/27/0 3/30/3
LWNB 10/20/6 10/24/2 3/31/2 4/29/3
ICLNB 10/23/3 12/24/0 6/30/0 6/30/0 5/31/0

Table 5. Summary of experimental results: classification accuracy comparisons when
k = 10.

NB KNN KNNDW KNNNB LWNB

KNN 5/23/8
KNNDW 9/22/5 11/25/0
KNNNB 9/24/3 13/23/0 3/31/2
LWNB 11/20/5 13/20/3 2/32/2 6/26/4
ICLNB 10/21/5 15/21/0 5/31/0 7/28/1 6/30/0
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4 Conclusions

In this paper, we have proposed a novel model ICLNB for learning local naive
Bayes within KNN using instance sampling. Instance sampling leads to relatively
large training data for the local naive Bayes, and results in a naive Bayes with
more accurate parameters. Thus, the classification of the local naive Bayes is
more accurate. Indeed, when the neighborhood size is small, ICLNB deals with
the problem of lack of training data effectively. Moreover, ICLNB performs well
for various sizes of the neighborhood.

Although considerable work has been done in combining k-nearest neighbor
with naive Bayes, some questions still remain unknown. Firstly, the basic as-
sumption in combining k-nearest neighbor with naive Bayes is that, within the
small neighborhood, attributes have a less chance to have strong dependences.
However, the underlying reason is not clear. Another interesting direction for
future research is how to apply KNN and its variants to the problems beyond
classification, such as the problems in which accurate probability estimates or
an accurate probability-based ranking of instances are required.
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