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Abstract

The structure of a Bayesian network (BN)
encodes variable independence. Learning the
structure of a BN, however, is typically of
high computational complexity. In this pa-
per, we explore and represent variable inde-
pendence in learning conditional probability
tables (CPTs), instead of in learning struc-
ture. A full Bayesian network is used as
the structure and a decision tree is learned
for each CPT. The resulting model is called
full Bayesian network classifiers (FBCs). In
learning an FBC, learning the decision trees
for CPTs captures essentially both variable
independence and context-specific indepen-
dence. We present a novel, efficient deci-
sion tree learning, which is also effective in
the context of FBC learning. In our experi-
ments, the FBC learning algorithm demon-
strates better performance in both classifica-
tion and ranking compared with other state-
of-the-art learning algorithms. In addition,
its reduced effort on structure learning makes
its time complexity quite low as well.

1. Introduction

A Bayesian network (BN) (Pearl, 1988) consists of a di-
rected acyclic graphG and a set P of probability distri-
butions, where nodes and arcs in G represent random
variables and direct correlations between variables re-
spectively, and P is the set of local distributions for
each node. A local distribution is typically specified
by a conditional probability table (CPT). BNs are of-
ten used for the classification problem. In the classi-
fication learning problem, a learner attempts to con-
struct a classifier from a given set of labeled training
examples that are represented by a tuple of attribute
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variables used collectively to predict the value of the
class variable. This paper focusses on learning BN
classifiers.

Learning BNs has become an active research in the
past decade (Heckerman, 1999). The goal of learn-
ing a BN is to determine both the structure of the
network (structure learning) and the set of CPTs (pa-
rameter learning). Since the number of possible struc-
tures is extremely huge, structure learning often has
high computational complexity. Thus, heuristic and
approximate learning algorithms are the realistic solu-
tion. A variety of learning algorithms have been pro-
posed, such as (Cooper & Herskovits, 1992; Hecker-
man et al., 1995; Lam & Bacchus, 1994; Cheng et al.,
2002). Learning unrestricted BNs, however, seems
to not necessarily lead to a classifier with good per-
formance. For example, Friedman et al. (1997) ob-
served that unrestricted BN classifiers do not outper-
form naive Bayes, the simplest BN classifier, in a large
sample of benchmark data sets. Several factors con-
tribute to that. First, the standard BN learning al-
gorithms try to maximize the likelihood-based scoring
function, rather than the conditional likelihood-based
one (Friedman et al., 1997). The latter seems compu-
tationally intractable. Second, the resulting network
tends to have a complex structure, and thus has high
variance because of the inaccurate probability estima-
tion caused by the limited amount of training data.

One practical approach for structure learning is to im-
pose some restrictions on the structures of BNs, for
example, learning tree-like structures, in which each
node has at most one parent. This is essentially a
strategy with high bias and low variance. When strong
and complex variable dependencies do exist, however,
some dependencies have to be discarded. That would
damage the performance. It would be nice to have a
learning algorithm with both low variance and low bias
(with full power to represent arbitrary dependence).
Nevertheless, structure learning is the bottleneck in
BN learning.

The motivation of this paper is to overcome (or allevi-
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ate) the bottleneck of structure learning in BN learn-
ing. Our idea is that we do not use the structure to
represent variable independence. Instead, we assume
that all variables are dependent and use a full BN as
the structure of the target BN. We capture and repre-
sent variable independence, as well as context-specific
independence, in learning CPTs. In fact, a full BN
perfectly represents the joint distribution, and learn-
ing the structure of a full BN requires dramatically less
computation than does learning the structure of an ar-
bitrary BN. A full BN, however, usually has high vari-
ance because of its high structural complexity. This
issue can be alleviated by exploiting a structured rep-
resentation for CPTs. In this paper, we propose to
build a full BN and then learn a decision tree as the
representation of each CPT.

2. Related Work

Naive Bayes is the simplest BN classifier, in which each
attribute node (corresponding to an attribute variable)
has the class node (corresponding to the class vari-
able) as its parent, but does not have any other par-
ent, shown graphically in Figure 1. Naive Bayes does
not represent any variable dependencies given the class
variable. Extending its structure to explicitly rep-
resent variable dependencies is a direct way to over-
come the limitation of naive Bayes. Tree augmented
naive Bayes (TAN) is an extended tree-like naive Bayes
(Friedman et al., 1997), in which the class node di-
rectly points to all attribute nodes and an attribute
node can have only one parent from another attribute
node in addition to the class node.
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Figure 1. An example of naive Bayes

TAN is a specific case of general augmented naive
Bayesian networks (ANBs), which can represent ar-
bitrary variable dependencies. ANBs are the BN clas-
sifiers addressed in this paper. Note that learning an
ANB is similar to learning a BN.

There are a variety of algorithms proposed for BN
structure learning, mainly in two types:

1. Conditional independence based: These attempt

to detect the conditional dependency between two
nodes by performing tests of conditional indepen-
dence on the data, then search for a network in
terms of the detected dependencies and indepen-
dencies (Cheng et al., 2002).

2. Score based: Define a score to evaluate how well
a structure fits the data, and search for a struc-
ture that maximizes the score. There are a va-
riety of ways to define the scoring function, such
as the MDL score (Lam & Bacchus, 1994; Fried-
man et al., 1997), and the Bayesian Dirichlet score
(Cooper & Herskovits, 1992; Heckerman et al.,
1995). In the score-based approach, a greedy
search process is often used, which starts from
an initial structure and repeatedly applies local
operations (arc addition, arc removal, and arc re-
versal) to maximally improve the score.

There is another type of independence, called context-
specific independence (CSI) (Friedman & Goldszmidt,
1996), which holds only in certain contexts (given the
assignment of values to some variables). Friedman and
Goldszmidt (1996) propose to use decision trees to rep-
resent CPTs to capture CSI.

The most recent work in learning BN classifiers is
AODE (averaged one-dependence estimators) (Webb
et al., 2005). In AODE, an ensemble of TANs are
learned and the classification is produced by aggregat-
ing the classifications of all qualified TANs. In AODE,
a TAN is built for each attribute variable, in which the
attribute variable is set to be the parent of all other
attribute variables.

3. Representing Variable Independence

in CPTs

The key idea of BNs is to explore and exploit variable
independence to obtain a compact representation of
the joint distribution. Note that the structure of a
BN represents variable independence, which is defined
formally as follows.

Definition 1 Let X, Y, Z be subsets of the variable
set W. X and Y are said conditionally independent
given Z, denoted by I(X;Y|Z), if

P (X|Y,Z) = P (X|Z),whenever P (Y,Z) > 0.

Context-specific independence (CSI) addresses inde-
pendence with a finer granularity than variable inde-
pendence, defined as follows (Friedman & Goldszmidt,
1996).
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Definition 2 Let X, Y, Z, T be disjoint subsets of
W. X and Y are said to be contextually independent
given Z and the context t (an assignment of values to
the variables in T), denoted by Ic(X;Y|Z, t), if

P (X|Y,Z, t) = P (X|Z, t),whenever P (Y,Z, t) > 0.

CSI corresponds to regularities in CPTs, and thus
can be captured by the structured representation for
CPTs. The most naive form of a CPT is a table, which
enumerates all the conditional probabilities for each
assignment of values to the node and its parents. It has
been noticed that decision trees can be used as the rep-
resentation of CPTs (Friedman & Goldszmidt, 1996)
to obtain a more compact representation for CPTs.
The decision trees in CPTs are called CPT-trees.

Let ΠX be the parents of X in a BN B. It has been
noticed that, if Y ∈ ΠX and Y does not occur in the
CPT-tree of X, I(X,Y |ΠX − Y ) is true (Chickering
et al., 1997). This observation implies that, not only
CSI, but also variable independence, can be captured
and represented by CPT-trees. Thus, we do not need
to use the structure of a BN to represent variable in-
dependence. Instead, we assume that all variables are
fully dependent in structure learning, and explore both
variable independence and CSI in learning CPTs. We
use a full BN as the structure of the BN. That is a
structure in which the first variable is the parents of
all other variables, and the second variable is the par-
ents of all other variables except the first one, and so
on. Note that a full BN is a perfect representation of
the joint distribution, as follows.

P (X1, X2, · · · , Xn, C) =

P (C)P (X1|C)P (X2|X1, C) · · · P (Xn|Xn−1, · · · , X1, C).

We call a full BN with CPT-trees a full Bayesian
network classifier (FBC). The structure of an FBC
does not encode any variable independence, which
can, however, be represented in CPTs. For exam-
ple, the variable independencies represented by the
naive Bayes in Figure 1 can be represented by an FBC,
shown in Figure 2.

We can prove that any variable independencies en-
coded by a BN B can be represented by an FBC as
follows. Since B is an acyclic graph, the nodes of B

can be sorted on the basis of the topological ordering.
Go through each node X in the topological ordering,
and add arcs to all the nodes ranked after X and not
in ΠX (the set of X’s parents). The resulting network
FB is a full BN. Build a CPT-tree for each node X in
FB, such that any variable that is not in ΠX in B does
not occur in the CPT-tree of X in FB. Then, FB es-
sentially represents the same variable independencies
as B. Thus, we have the following theorem.

Theorem 1 For any BN B, there is an FBC FB,
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Figure 2. An FBC for naive Bayes, in which pij denotes
the corresponding probability p(Xi|C).

such that B and FB encode the same variable inde-
pendencies.

FBCs have some obvious advantages. First, in prin-
ciple, structure learning is not even needed, since any
full BN is a perfect representation of the joint distribu-
tion. Even though, in practice, different full BNs may
perform differently because of the errors caused by the
sample’s finite size, the number of possible structures
of full BNs is n!, significantly less than the number
of possible structures of even TANs. Thus, it could
be expected that learning a full BN has dramatically
less computational cost than learning an arbitrary BN.
Second, learning a decision tree for a CPT captures
both variable independence and CSI. Thus, learning
an FBC could be more efficient than the traditional
approach that learns the structure first to capture vari-
able independence and then learns decision trees for
CPTs to capture CSI. In addition, the high variance
for a full BN is avoidable in an FBC through the CPT-
tree representation.

4. Learning Full Bayesian Network

Classifiers

Learning an FBC consists of two parts: construct a
full BN, and then learn a decision tree to represent the
CPT of each variable. We implement a full BN using
a Bayesian multinet (Heckerman, 1991). A multinet
is a set of BNs, each of which corresponds to a value
c of the class variable C. A multinet for an FBC is
correspondingly a set of FBCs.

4.1. Learning the Structure of FBC

Given a training data set S, we partition S into |C|
subsets , each Sc of which corresponds to the class
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value c, and then construct an FBC for Sc. Note that
learning the structure of a full BN actually means
learning an order of variables and then adding arcs
from a variable to all the variables ranked after it. In
fact, given the order of variables, learning a BN is rel-
atively easier. However, learning the order of variables
is still difficult. Recently, Teyssier and Koller (2005)
propose to learn the order of variables through a so-
phisticated local search. In this paper, we adopt a
straightforward method, which ranks a variable based
on its total influence on other variables. The influence
(dependency) between two variables can be measured
by mutual information defined as follows.

M(X;Y ) =
∑

x,y

P (x, y)log
P (x, y)

P (x)P (y)
, (1)

where x and y are the values of variables X and Y

respectively. Note that, since we compute the mu-
tual information in each subset Sc of the training set,
M(X;Y ) is actually the conditional mutual informa-
tion M(X;Y |c).

In practice, it is possible that the dependency be-
tween two variables, measured by Equation 1, is caused
merely by noise. In that case, the dependency is not
reliable and should not be taken into account. Thus,
we need a threshold to judge if the dependency be-
tween two variables is reliable. One typical approach
to defining the threshold is based on the Minimum
Description Length (MDL) principle. Friedman and
Yakhini (1996) show that the average cross-entropy
error is asymptotically proportional to logN

2N , where N

is the size of the training data. We adopt their result
to define the threshold to filter out unreliable depen-
dencies as follows.

ϕ(Xi, Xj) =
logN

2N
× Tij , (2)

where Tij = |Xi|× |Xj |, |Xi| is the number of possible
values of Xi, and |Xj | is similar. Assume that we use
the most naive form as the representation for CPTs.
Then, if Xi and Xj are independent, the total size of
two CPTs for Xi and Xj is |Xi| + |Xj |. If we rep-
resent the dependency between Xi and Xj , the total
size of the two CPTs are |Xi| × |Xj |+ |Xi| (assuming
Xi is the parent of Xj). Thus, roughly speaking, Tij

represents the size increase for representing the depen-
dency between Xi and Xj . In our implementation, the
dependency between Xi and Xj is taken into account
only if M(Xi;Xj) > ϕ(Xi, Xj).

The total influence of a variable Xi on other variables,

denoted by W (Xi), is defined as follows.

W (Xi) =

M(Xi;Xj)>ϕ(Xi,Xj)∑

j(j 6=i)

M(Xi;Xj). (3)

Consequentially, we have the following learning algo-
rithm based on W (Xi).

Algorithm FBC-Structure(S, X)

Input : A set S of labeled examples, a set X of vari-
ables.

Output : A full BN B.

1. B = empty.

2. Partition the training data S into |C| subsets
Sc by the class value c.

3. For each training data set Sc

• Compute the mutual information
M(Xi;Xj) and the structure penalty
ϕ(Xi, Xj) between each pair of variables
Xi and Xj based on Equation 1 and
Equation 2.

• Compute W (Xi) for each variable Xi

based on Equation 3.

• For all variables Xi in X

– Add all the variables Xj withW (Xj) >

W (Xi) to the parent set ΠXi
of Xi.

– Add arcs from all the variables Xj in
ΠXi

to Xi.

• add the resulting network Bc to B.

4. Return B.

Note that the structure learning algorithm for FBC
depicted above is O(n2 ·N), where n is the number of
variables and N is the size of the training data.

4.2. Learning CPT-trees

After the structure of an FBC is determined, a CPT-
tree should be learned for each variable Xi. Certainly,
a traditional decision tree learning algorithm, such as
C4.5, can be used to learn CPT-trees. But the time
complexity is typically O(n2 · N). Note that a deci-
sion tree should be learned for each variable. Thus the
resulting FBC learning algorithm would have a com-
plexity of O(n3 · N).

We propose a fast decision tree learning algorithm for
learning CPTs. Before the tree-growing process, all
the variables Xj in ΠXi

are sorted in terms of mutual
information M(Xi, Xj) on the whole training data,
which determines a fixed order of variables. In the tree
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growing process, remove the variableXj with the high-
est mutual information from ΠXi

, and compute the
local mutual information MS(Xi, Xj) on the current
training data S. If it is greater than the local thresh-
old ϕS(Xi, Xj), Xj is used as the root, and partition
the current training data S according to the values of
Xj and repeat this process for each branch (subset).
Otherwise, try another variable. The key point here is
that, for each variable, we compute the local mutual
information and local threshold just once. Whether
failed or not, it is removed from ΠXi

and is never
considered again. In contrast, the traditional decision
tree learning algorithm computes the local mutual in-
formation of each unused variable at each step. Our
algorithm is depicted as follows.

Algorithm Fast-CPT-Tree(ΠXi
, S)

Input: ΠXi
is the set of parents of Xi, and S is a set

of labeled examples.

Output: A decision tree T with Xi as the predictive
variable.

1. Create an empty tree T.

2. If (S is pure or empty) or (ΠXi
is empty)

Return T.

3. qualified = False.

4. While (qualified == False) and (ΠXi
is

not empty)

• Choose the variables Xj with the highest
M(Xj ;Xi).

• Remove Xj from ΠXi
.

• Compute the local mutual information
MS(Xi, Xj) on S based on Equation 1.

• Compute the local structure penalty
ϕS(Xi, Xj) on S based on Equation 2.

• If MS(Xj ;Xi) > ϕS(Xi, Xj) qualified =
True

5. If qualified == True

• Create a root Xj for T.

• Partition S into disjoint subsets Sx, x is
a value of Xj .

• For all values x of Xj

– Tx=Fast-CPT-Tree(ΠXi
,Sx)

– Add Tx as a child of Xj .

6. Return T.

The time complexity of the Fast-CPT-Tree algorithm
is O(n ·N), significantly less than O(n2 ·N), the time
complexity of the traditional decision tree learning al-
gorithm. In addition, it does not need to compute
M(Xi, Xj), since it has been done in the structure

Table 1. Description of data sets.
Data set Size # Att Missing Class
Letter 20000 17 N 26
Mushroom 8124 22 Y 2
Waveform 5000 41 N 3
Sick 3772 30 Y 2
Hypothyroid 3772 30 Y 4
Chess End-Game 3196 36 N 2
Splice 3190 62 N 3
Segment 2310 20 N 7
German Credit 1000 24 N 2
Vowel 990 14 N 11
Anneal 898 39 Y 6
Vehicle 846 19 N 4
Pima Diabetes 768 8 N 2
Wisconsin-breast 699 9 Y 2
Credit Approval 690 15 Y 2
Soybean 683 36 Y 19
Balance-scale 625 5 N 3
Vote 435 16 Y 2
Horse Colic 368 28 Y 2
Ionosphere 351 34 N 2
Primary-tumor 339 18 Y 22
Heart-c 303 14 Y 5
Breast cancer 286 9 Y 2
Heart-statlog 270 13 N 2
Audiology 226 70 Y 24
Glass 214 10 N 7
Sonar 208 61 N 2
Autos 205 26 Y 7
Hepatitis 155 19 Y 2
Iris 150 5 N 3
Lymph 148 19 N 4
Zoo 101 18 N 7
Labor 57 16 N 2

learning. That makes it even more efficient. In the
context of CPT-tree learning, it is also effective accord-
ing to our experiments. Thus, the resulting FBC learn-
ing algorithm has the time complexity of O(n2 · N).

5. Experiments

5.1. Experiment Setup

We conduct our experiments under the framework of
Weka (Witten & Frank, 2000). In our experiments,
we use the 33 UCI data sets, selected by Weka, which
represent a wide range of domains and data character-
istics. A brief description of the data sets is in Table
1. To better understand the effect of training data
size on the algorithm performance, we sort the data
sets by their sizes. Numeric variables are discretized
using unsupervised ten-bin discretization implemented
in Weka. Missing values are also processed using the
mechanism in Weka, which replaces all missing values
with the modes and means from the training data. In
addition, all the preprocessing is done with the default
parameters in Weka implementation.

We implemented FBC within the Weka
framework. The source code is available at
http://www.cs.unb.ca/profs/hzhang/FBC.rar. For all
the other algorithms compared in our experiments, we
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use their implementation in Weka. In our experiment,
the performance of an algorithm on each data set has
been observed via 10 runs of 10-fold stratified cross
validation. In our experiments, we conducted the
two-tailed t-test with a 95% confidence interval to
compare each pair of algorithms on each data set.

5.2. Experimental Results

We observed both classification performance and rank-
ing performance for each algorithm, measured by accu-
racy and AUC (the area under the Receiver Operating
Characteristics curve) (Provost & Fawcett, 1997), re-
spectively. Ranking performance of a classifier is cru-
cial in many applications and has attracted a great
deal of attention recently (Provost & Domingos, 2003).

Note that we tried to optimize the algorithms com-
pared in our experiments and the details are depicted
as follows.

FBC : Full Bayesian network classifier. We adopt
Laplace smoothing with a default parameter 0.5 as-
signed by WEKA.

AODE: Averaged One-Dependence Estimators (Webb
et al., 2005). All parameter setting is given in (Webb
et al., 2005).

HGC: Hill climbing BN learning algorithm (Hecker-
man et al., 1995). Laplace smoothing with a default
parameter 0.5 is applied. In addition, each node is
allowed to have at most 5 parents, by which HGC
achieves the best performance according to our obser-
vation.

TAN: An improved ChowLiu algorithm for learning
TAN (Friedman et al., 1997). Laplace smoothing with
a default parameter 0.5 is applied.

NBT: An algorithm to combine naive Bayes with de-
cision trees by deploying a naive Bayes on each leaf of
a decision tree (Kohavi, 1996).

C4.5L: The traditional decision trees induction algo-
rithm C4.5 (Quinlan, 1993) using Laplace smoothing
with a default parameter 1.0 (Provost & Domingos,
2003). In addition, pessimistic pruning is applied.

SMO: The sequential minimal optimization algorithm
for training an SVM classifier using polynomial or RBF
kernels (Platt, 1998; Keerthi et al., 2001). Linear ker-
nel, rather than RBF kernel, is used. To obtain proper
probability estimates, we use logistic regression models
to calibrate the output probabilities.

Table 2 and Table 4 show the accuracies and AUC of
the classifiers. Table 3 and Table 5 show the results of
the two-tailed t-test, in which each entry w/t/l means

that the algorithm in the corresponding row wins in
w data sets, ties in t data sets, and loses in l data
sets, compared to the algorithm in the corresponding
column.

From our experimental results, FBC demonstrates
good performance in both classification and ranking.
Overall, the performance of FBC is the best among
the algorithms compared.

Table 3. Summary of the experimental results on accuracy.

AODE HGC TAN NBT C4.5 SMO
FBC 8/22/3 4/27/2 6/27/0 6/27/0 11/19/3 6/24/2
AODE 5/20/8 5/24/4 5/24/5 11/18/4 5/22/6
HGC 7/23/3 6/26/1 9/23/1 5/26/2
TAN 4/26/3 12/17/4 4/22/7
NBT 8/24/1 3/28/2
C4.5 5/23/5

5.3. Computational Complexity

The efficiency of a learning algorithm is critical in
many applications. The time complexities of the algo-
rithms compared in our experiments are summarized
in Table 6.

Note that FBC is among the most efficient algorithms
in both training time and classification time. In addi-
tion, according to our experiments, FBC is among the
fastest algorithms in terms of training time. For exam-
ple, SMO took 586 seconds on the “Letter” data set,
while NBT took 302 seconds and FBC only used 3 sec-
onds. Due to the space limit, we do not systematically
present the experimental results in running time.

6. Conclusion

In this paper, we propose the use of a full BN as the
structure of the BN classifier and explore both vari-
able independence and CSI in learning CPT-trees. We
present an efficient decision tree learning algorithm for
learning CPT-trees. The FBC learning algorithm pro-
posed in this paper demonstrates good performance in
both classification and ranking, and has a relatively
low time complexity.

In learning an FBC, the variable order plays an impor-
tant role. In this paper, we used a straightforward but
efficient method to determine the order. A natural
question is, can a more sophisticated method yield-
ing a more accurate variable order improve the perfor-
mance of FBC further? This is a topic for our future
research.
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Table 2. Experimental results on accuracy

Data Set FBC AODE TAN HGC SMO C4.5L NBT
Letter 89.10±0.64 85.54±0.68• 83.11±0.75• 87.15±0.85 • 88.65±0.69 80.51±0.78• 83.49±0.81•
Mushroom 100.00±0 99.95±0.07• 99.99±0.03 100.00±0 100.00±0 100.00±0 100.00±0
Waveform 80.24±1.64 84.24±1.6 ◦ 80.72±1.78 82.26±1.62 ◦ 82.56±1.75◦ 72.21±1.79• 81.62±1.76
Sick 97.79±0.72 97.52±0.72 97.61±0.73 97.84±0.73 97.64±0.71 98.18±0.67 97.86±0.69
Hypothyroid 93.16±0.56 93.56±0.61◦ 93.23±0.68 93.39±0.55 93.48±0.5 93.24±0.44 93.05±0.65
Chess 96.36±1.16 91.03±1.66• 92.05±1.49• 95.64±1.29 94.78±1.39• 99.44±0.37◦ 97.81±2.05
Splice 95.12±1.11 96.12±1 ◦ 95.39±1.16 96.51±0.99 ◦ 92.92±1.45• 94.08±1.29• 95.42±1.14
Segment 95.01±1.38 92.92±1.4 • 94.54±1.6 94.79±1.29 94.38±1.78 93.19±1.69• 92.64±1.61•
German Credit 75.27±3.54 76.45±3.88 75.86±3.58 73.08±3.85 75.35±3.73 72.25±3.48• 75.54±3.92
Vowel 93.46±2.65 89.64±3.06• 93.10±2.85 92.70±2.87 86.86±3.55• 73.29±4.69• 88.01±3.71•
Anneal 99.04±1.07 96.83±1.66• 98.34±1.18 98.94±1 99.23±1.23 98.76±0.99 98.40±1.53
Vehicle 74.23±3.43 71.65±3.59• 73.71±3.48 68.10±4.14 • 68.80±3.83• 70.38±3.69• 68.91±4.58•
Pima Diabetes 74.85±4.33 76.57±4.53 75.09±4.96 75.92±5.34 74.43±4.36 73.88±4.64 75.28±4.84
Wisconsin-breast 97.25±1.77 96.91±1.84 95.05±2.24• 96.94±1.68 95.95±2.13 91.86±3.01• 97.17±1.75
Credit Approval 84.81±3.98 85.78±3.75 84.22±4.41 86.00±3.95 84.94±3.81 85.32±4.41 84.55±4.11
Soybean 94.41±2.39 93.31±2.85 95.24±2.28 95.13±2.43 93.00±3.05 92.55±2.61 92.30±2.7 •
Balance-scale 91.44±1.3 89.78±1.88• 86.22±2.82• 91.44±1.3 89.55±3.57 64.14±4.16• 91.44±1.3
Vote 94.36±3.34 94.52±3.19 94.57±3.23 94.87±2.92 96.00±2.95 96.27±2.79 94.78±3.32
Horse Colic 79.22±5.93 81.26±5.83 80.55±6.23 81.28±5.41 80.14±5.38 84.83±5.93◦ 82.58±5.65
Ionosphere 90.80±4.41 91.74±4.28 92.23±4.36 93.40±4.12 89.15±4.71 87.61±5.55 89.18±4.82
Primary-tumor 47.32±5.38 47.87±6.37 46.76±5.92 41.48±7.43 • 43.32±6.4 41.01±6.59• 45.84±6.61
Heart-c 83.34±6.41 83.07±7.05 82.78±6.98 81.83±7.14 82.57±7.26 79.61±6.49 81.23±6.68
Breast cancer 70.39±8.2 72.73±7.01 70.09±7.68 72.84±6.65 69.59±7.45 75.26±5.04◦ 71.66±7.92
Heart-statlog 83.81±5.39 83.63±5.32 79.37±6.87• 82.59±6.39 82.48±6.34 79.85±7.95 82.26±6.5
Audiology 74.05±6.68 71.66±6.42 72.68±7.02 73.36±7.47 80.38±7.5 ◦ 76.69±7.68 76.66±7.47
Glass 62.44±8.48 61.73±9.69 58.43±8.86 58.36±9.3 64.75±8.53 58.28±8.52 58.00±9.42
Sonar 77.38±10.2 79.91±9.6 73.66±10.1 69.16±11.42 75.45±9.57 70.99±8.99 71.40±8.8
Autos 76.70±9.62 75.09±10.2 76.98±9.21 79.52±9.37 79.39±8.24 77.86±9.02 77.78±9.59
Hepatitis 86.90±7.94 83.55±9.73 82.13±9.17• 80.19±10.1 • 80.86±10.2• 81.50±8.24• 81.69±9.25•
Iris 93.73±7.02 94.00±5.88 91.67±7.18 96.07±4.65 95.87±4.9 96.00±4.64 95.27±6.16
Lymph 85.20±8.58 85.46±9.32 84.07±8.93 82.61±9.42 81.64±9.28 78.21±9.74 82.21±8.95
Zoo 94.17±6.76 94.66±6.38 93.69±7.75 96.74±5.47 92.52±7.5 92.61±7.33 94.65±6.39
Labor 94.90±9.18 94.73±8.79 87.67±13.8 89.57±11.9 84.93±13.8• 84.97±14.2 94.70±9.29

◦, • statistically significant improvement or degradation

Table 5. Summary of the experimental results on AUC.

AODE HGC TAN NBT C4.5L SMO
FBC 7/22/4 6/25/2 9/24/0 8/24/1 25/7/1 10/20/3
AODE 5/21/7 8/20/5 9/22/2 26/6/1 9/19/5
HGC 9/22/2 7/24/2 22/10/1 8/22/3
TAN 6/23/4 20/12/1 7/20/6
NBT 19/13/1 1/26/6
C4.5L 1/11/21

Table 6. Summary of the time complexities of algorithms.

Training Classification
FBC O(n2 · N) O(n)
AODE O(n2 · N) O(n2)
HGC O(n4 · N) O(n)
TAN O(n2 · N) O(n)
NBT O(n3 · N) O(n)
C4.5 O(n2 · N) O(n)
SMO O(N2.3) O(n)
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Table 4. Experimental results on AUC

Data Set FBC AODE TAN HGC SMO C4.5L NBT
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Heart-statlog 91.16±4.91 91.28±4.7 88.19±5.75• 90.27±5.2 89.64±5.66 84.91±7.88• 89.83±5.82
Audiology 70.42±1.01 70.05±1.08• 70.25±1.05 70.39±1.14 70.79±0.94 62.04±2.36• 70.17±1.26
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