
USING FPGAs TO SOLVE THE HAMILTONIAN CYCLE PROBLEM

M. Serra K. Kent
Dept. of Computer Science Dept. of Computer Science
Univ. of Victoria Univ. of New Brunswick
Victoria, B.C., Canada Frederickton, N.B., Canada

ABSTRACT
The Hamiltonian Cycle (HC) problem is an important

graph problem with many applications. The general back-
tracking algorithm normally used for random graphs often
takes far too long in software. With the development of
field-programmable gate arrays (FPGAs), FPGA-based
reconfigurable computing offers promising choices for
acceleration. This research exploits the idea of an instance-
specific approach and proposes a system design based on a
reconfigurable hardware implementation for solving the
HC problems. In our implementation, only one FPGA is
used, on an internal PCI-based board. The experimental
results show that the reconfigurable hardware approach
yields significant runtime speedups over the conventional
approach, although the clock rate of the FPGA hardware is
much slower than that of the workstation running the soft-
ware solver.

1. INTRODUCTION AND CONTEXT
The focus of this research is to try and obtain an execu-

tion speed improvement for solving the Hamiltonian Cycle
(HC) problem using Field Programming Gate Arrays
(FPGAs) instead of using software alone, applied to gen-
eral random graphs without any (helpful) constraints. The
HC problem is a NP-Complete problem which involves
detecting whether a graph has a cycle that contains all the
vertices of the graph exactly once.

With the development of FPGAs, FPGA-based recon-
figurable computing offers promising solutions for many
applications, and many reconfigurable systems have been
developed [1]. Most of them show the potential of high
performance which is an order of magnitude higher than
conventional approaches. Zhong et al. [3] described an
instance-specific method for implementing the Boolean
Satisfiability (SAT) solver circuits in the reconfigurable
hardware, that is, using a template generator, and creating a
circuit specific to the problem instance to be solved. Their
experimental results show significant runtime speedups,
although the clock rate of the reconfigurable hardware is
100 times slower than that of the workstation running the
software solver. However, they used over 64 FPGAs and a
parallel approach.

We propose an instance-specific HC solver accelerator
which implements the backtracking algorithm to realize the
HC solver circuits in one FPGA. In this approach, for each
graph instance, the corresponding HC solver circuit is gen-
erated and implemented in the FPGA. We only use one
FPGA and a regular microprocessor with a PCI bus.

1.2 FPGAs
A Field Programmable Gate Array, FPGA, consists of a

two-dimensional array of uncommitted computational ele-
ments, Computational Logic Blocks (CLBs), with general
interconnection resources. Both are user-programmable.
We use the FPGAs from Xilinx and their CAD tools for
design and synthesis. The major steps in the tools include:
• Initial Design Entry. Design the circuit using VHDL.
• Logic Synthesis. The final optimized logic network is decom-

posed, such that it can use the set of available CLBs.
• Placement and Routing. This step involves selection of CLBs

and routing of the required connections among them.
• Configuration. The “bit file” obtained is the input to perform

the physical “personalization” on the FPGA, and can be down-
loaded when commanded to initialize for execution.

1.2 Hamiltonian Cycles
A graph G = (V, E) consists of a set of vertices V = {v1,

v2, …}, and a set of edges E = {e1, e2, …}, such that each
edge ek is identified with an unordered pair (vi, vj) of verti-
ces. A Hamiltonian Cycle in a connected graph is defined
as a closed walk that traverses every vertex of G exactly
once, except the starting vertex, at which the walk also ter-
minates. Given a graph, the main issues are to detect
whether or not it contains a Hamiltonian Cycle, or to find
all the Hamiltonian Cycles if any. Here we are only con-
cerned about the former. From a computational point of
view, it is a NP-Complete problem. We use a very general
backtracking algorithm which makes no assumption about
any graph characteristic, except that it is connected.
1.3 Reconfigurable Computing

One of the most fundamental trade-offs in the design of
computing devices involves the balance between flexibility
and efficiency. At one end of the spectrum are application
specific integrated circuits (ASICs); at the other end of the
spectrum are programmable processors. Reconfigurable
computing can be viewed as hybrid, as it intends to achieve
potentially much higher performance than processors,
while maintaining a higher level of flexibility than ASICs.
FPGAs are the main building blocks for a reconfigurable
architecture. Here we use an FPGA for hardware accelera-
tion of a graph problem, hoping to find a way to speed up
the running time, using an approach which can in the future
be used to other classes of computationally intense prob-
lems.

In general, a reconfigurable computing system contains
both a microprocessor and the reconfigurable hardware.
The processor executes the tasks that can be performed bet-
ter in a general-purpose device due to their irregularity, or
their data types, or their need for external communication;
while the reconfigurable hardware uses FPGAs to imple-
ment custom algorithm-specific circuits for the tasks that
can exploit their parallel nature, so that they can be per-
formed at greater speed. Yet, unlike an ASICs approach,
these systems remain flexible because the same custom cir-
cuitry for one task can be reused for a completely different
task. The reconfigurable systems, therefore, combine the
best of both general-purpose and custom-made solutions:
flexibility and low cost in the first case, and speed in the
latter. We use Compile-Time Reconfiguration, where the
device is reconfigured once during the set-up of the sys-
tem, and remains unchanged during the execution, until.it
is reconfigured for a new application.
1.4 Instance-Specific Approach

In this research, we did not use the hardware/software
codesign approach, where a problem is appropriately parti-
tioned between software units, running on a general CPU,
and hardware units, running on a specialized hardware.
Instead, we move the whole algorithm to the reconfig-
urable hardware using an “instance-specific” approach.

In a general-purpose approach, the CPU reads instruc-
tions from a program loaded in memory. When changing
the software instructions, the functionality of the system
alters without changing the hardware. Once an algorithm is
loaded into memory, it remains unchanged. and only the
data changes depending on what kind of graph instance we
want to solve. Conversely, in the instance-specific
approach, the FPGA is tailored to an instance which con-
sists of a specific algorithm and specific data, e.g. the back-
tracking algorithm and a graph instance in this project. A
generator reads the algorithm and a graph instance, so that
the solver circuit specific to the current graph instance can
be generated. After synthesis and implementation, the bit
file which can be downloaded onto the FPGA is generated.
Then we reconfigure the FPGA to realize the solver circuit
in hardware, and start the computation in the newly config-
ured hardware.

In the instance-specific approach, the solver circuit
must be generated for each graph instance, and we consider

all the steps, including the solver circuit generation, syn-
thesis and implementation, reconfiguration, and the FPGA
execution as part of the total hardware running time. How-
ever, this is not necessary the case for other research [2, 3]
where they gained significant hardware improvement by
comparing only the FPGA execution time (not including
time used for synthesizing and implementation) to the soft-
ware running time.

2. THE ARCHITECTURE
The H.O.T Development System (DS) is a product from

VCC (Virtual Computer Corp.). It is a standard commercial
platform for the development and rapid prototypes of prod-
ucts using reconfigurable components. The H.O.T II PCI
board resides in a regular Wintel workstation and commu-
nicates via a PCI bus. The board has the following compo-
nents:
• one XC4062XLA FPGA with 2304 CLBs;
• Configuration Cache Manager (CCM);
• Two memory banks A and B with 4 MB of SRAM in total;
• A Configuration Flash and a Configuration Cache;

The FPGA communicates with the PCI bus and a VCC
customized backend design which is inside the H.O.T. II
Interface, through the Xilinx LogiCORE PCI Interface
Macro (inside the H.O.T. II Interface). The customized
backend design allows a user to communicate with the
Configuration Cache Manager (CCM) and the two banks
of memory. The CCM controls the Run-Time Reconfigura-
tion (RTR), which allows a user to download or reload the
design into the FPGA at execution time. The CCM can
configure the FPGA from two on-board sources: the Con-
figuration Flash and the Configuration Cache. The Config-
uration Flash contains the boot-up configuration for the
system, which includes the configuration of the Xilinx
LogiCore PCI Interface and the H.O.T II Interface. The
Configuration Cache can hold three configurations and the
user can load them into the Cache over the PCI Bus. The
programmable clock can be programmed from 360KHz to
100MHz.

3. THE EXPERIMENTAL SETUP
The purpose of this project is to try and achieve hard-

ware acceleration to find whether a graph has a Hamilto-
nian Cycle using an FPGA, instead of using software
alone. The overall experiments involve two main parts:
timing the software and timing the FPGA-based solver, in
order to compare them. The experiments start with the gen-
eration of the adjacency matrix of a graph. The adjacency
matrix is then fed into the hardware solver and the software
solver separately, so that their running time can be com-
pared.

Based on the definition of the Hamiltonian Cycle prob-
lem, we know that if a graph G contains any Hamiltonian
Cycle(s), the degree of each vertex must be ≥ 2. Thus we
decided to choose the graphs to experiment on in this
project to be sparse ones, i.e. they have a relatively small
number of edges and the degree of each vertex is ≥ 2. This

Algorithm Data
Generator

Synthesis and Implementation
solver circuit

FPGABit File

answer

Figure 2. The instance-specific approach

implies that we only attempt to solve the problem for
“hard” instances.

Two types of graphs are chosen to experiment on: 1)
Random graphs; 2) Complete graphs. Random graphs are
chosen with the purpose of examining the acceleration of
the hardware solver in general and finding out the CLB
usage of them; complete graphs are used to find out the
CLB usage per graph and per node. The random graphs are
generated by a C program whose output is an adjacency
matrix and which has two parameters: graphSize and
edgeProbability. The former represents the total number of
vertices and the latter controls the adjacency between any
two different vertices by calling on drand48(), a standard C
function which generates double-precision pseudo-random
values that are uniformly distributed over the interval [0.0,
1.0] A complete graph is a simple graph in which there
exists an edge between every pair of vertices and can be
generated using the random graph software by specifying
an edge probability of ‘1.

The Software Solver is a C program which implements
the backtracking algorithm. The hardware solver contains
5 phases: (1) Generation of the VHDL description of a
graph instance; (2) Generation of the Xilinx Foundation
Project; (3) Loading the VHDL files into the Xilinx Foun-
dation tool; (4) Synthesis; (5) FPGA configuration and
solver circuit Execution. The first phase generates the
VHDL files of the Hamiltonian Cycle Solver Circuit for a
given graph G, which is done automatically by two Perl
programs, which take as input an adjacency matrix and
produce the first step towards the design of a netlist for a
graph instance and its algorithm.

The solver circuit that is implemented on the FPGA
consists of a network of intercommunicating finite state
machines (FSMs), each corresponding to one vertex in G.
At any point during the computation, exactly one FSM is
active in the process of changing its state and output val-
ues; this FSM is said to be in control. The FSM corre-
sponding to vertex v successively passes control to each of
the FSMs corresponding to the vertices in the neighbor-
hood of v. When a FSM has passed control to each of these
neighboring machines, and none of them continued the
computation, backtracking occurs. An FSM backtracks by
entering the idle state and signaling back to the FSM from
which it received control. At this point the latter machine
passes control to another neighbor (or backtracks itself)
and another branch of the computation tree is explored.

Figure 3 illustrates the structure of an arbitrary FSM,
called R. The vertex corresponding to R has the following
neighbors: NB1, NB2, …, NBd-1, and NBd. As shown in
Figure 3, R has d + 2 states in total, where d states corre-
spond to its d neighbors, and the other two states are Idle
and Stuck. State Idle means R has not been activated yet,
state stuck means all neighbors of R are activated. Once
activated, R enters the next state along the state cycle such
that the corresponding FSM is idle, and passes control to it,
e.g. R is activated when it is at Idle state and the neighbor
NB1 has not been activated yet; then R passes control to

the FSM that corresponds to NB1. If no such state exists,
state stuck is entered, which causes backtracking, i.e. at the
following clock cycle, R returns to state idle.

The computation terminates with noHamiltonian when
the arbitrarily chosen initial FSM, i.e. the machine which
was first given control, backtracks; or it terminates with
isHamiltonian when all FSMs are in non-idle states, and
the control machine represents a vertex that is adjacent to
the initial vertex.

The Perl programs use the adjacency matrix as their
input and follow the FSM paradigm just described to pro-
duce a set of VHDL files which describe the entire Hamil-
tonian Cycle Solver Circuit for the given graph. Thus the
VHDL files represent a complete circuit for this instance.
We then need to generate the VHDL code for the H.O.T. II
interface, so that we can specify the connection between
the user design, e.g. the Hamiltonian Cycle circuit, and the
H.O.T. II interface. This has to be done for every graph
instance. The files are now ready to be loaded into the Xil-
inx Foundation Tool, where they are compiled into an XNF
(Xilinx Netlist Format) netlist of gates. The netlist is the
input to the Xilinx Implementation Tool, which proceeds
through its steps of translation, mapping, place & route,
timing, configuration, execution. We emphasize again that
all hardware timing results contain these configuration and
synthesis phases.

4. EXPERIMENTAL RESULTS
The running times of the software solver and the hard-

ware solver are compared in order to find out whether the
FPGA-based solver wins or not. We present here a set of
random graphs, because the software solver always wins
for the complete graphs. The graph generation mechanism
discards graphs that are trivially non_Hamiltonian, which
refers to graphs with minimum degree less than 2 or those
that are disconnected.

Table 1 lists only a subset of the random graphs used for
this experiment, for lack of space here. The results for all
graphs are available from the authors. The graphs shown
here are the ones with 35 nodes (n = 35) and edge probabil-
ity (p) ranging from 0.12 to 0.15. For each of these (n, p)

Idle

NB

Stuc
k

NB1

NB
. .
.

NB

Figure 3. The structure of an arbitrary FSM

pair, 5 random graphs are generated, for example,
v35p012.1 represents one of the graphs with 35 nodes and
0.12 edge probability. All times are given in seconds. The
second column shows if the graph has a Hamiltonian Cycle
or not: “1” for yes, “2” for no. The “Map time” in column 4
is the sum of the synthesis time and the implementation
time. For the execution, the maximum clock rate over all
circuits was 40MHz, so a very conservative clock rate of
16MHz was used for the computed average of the actual
FPGA execution time, shown in column 5. The total hard-
ware time needed for the FPGA-based solver is given in
column 6. Thus we are comparing the software running
time to the total hardware time which includes the mapping
time, the FPGA reconfiguration time and the FPGA execu-
tion time. Column 7 shows when the FPGA-based solver
wins as a ratio. The shaded rows indicate when the FPGA-
based solver wins. There we see that the FPGA-based
solver wins for most of the graphs with speedup ranging
from 2 to 30. However for some of the graphs, e.g. the
graphs v35p012.3 and v35p012.4, their FPGA execution
time is much less than the software running time, but no
acceleration is obtained for them because of the map-time
overhead. Note that in some cases the software needed
much more time for completion, but it was stopped execut-
ing once the hardware had finished.

We also computed the overall map time for random
graphs, and found that the average map time for the biggest
random graphs that fit into our small target FPGA is less
than 1367 seconds, certainly a significant portion of the
total hardware running time. However, the synthesis and
implementation are done using the general CPU resources
in the Xilinx Foundation tool, while the bit file is down-
loaded and executed in the target FPGA; thus the two pro-
cesses can be done in parallel. Some map time can be
saved by performing the synthesis and the implementation
while the FPGA runs for another graph instance.

From the data above and the rest of the data collected,
we can conclude:
• The software solver is more suitable for sparse random graphs

with total number of vertices <= 20, because of the overhead
mapping time for them in the hardware implementation.

• The FPGA-based solver has a better winning chance for
sparse random graphs with total number of vertices >= 35,
because the software usually takes far too long to solve those
graph problems, and the mapping time for them becomes a
small portion of the total hardware running time.

• Since the synthesis and the implementation for a graph
instance can be done in parallel, using the CPU resource, with
the execution in FPGA for another graph instance, we could
only consider the FPGA execution time, and win for almost all
graph instances.

• The CLB usage we plotted expands linearly with the size of
the graphs.

5. SUMMARY
The Hamiltonian Cycle (HC) problem is not only a

important graph problem, but also being widely used in
applications such as telecommunication and computer net-

works. We proposed a new approach, namely, using an
FPGA to solve the Hamiltonian Cycle problem. The sys-
tem requirements for this new approach is low: only one
FPGA is used. The experimental results show that the
FPGA-based solver speeds up the runtime for sparse ran-
dom graphs with total number of vertices >35, and has a
winning potential over the conventional approach for the
larger sparse random graphs. There is potential for further
improvement as the capacity and performance of FPGA's
improve. The HC-solver is a case study of a class of
instance-specific reconfigurable hardware applications,
which can be used to other classes of computationally
intense problems.

6. REFERENCES

[1] List of FPGA-based Computing Machines. URL: http://
www.io.com/~guccione/HW_list.html

[2] C. Plessl and M. Platzner, “Instance-Specific Accelerators
for Minimum Covering”, 1st International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA), pp. 85-91, June 200

[3] P. M. Zhong, Martonosi, P. Ashar, and S. Malik, “Using
Configurable Computing to Accelerate Boolean Satisfi-
ability”, IEEE Transactions on CAD of Integrated Circuits
and Systems, vol. 18, No. 6, June 1999.

1 2 3 4 5 6 7
graph SW time Map

time
FPGA time HW time Speed

up
v35p012.3 2 196 790 5.5 796 0.25
v35p012.4 1 315 898 9.2 907 0.35
v35p012.1 2 8516 920 245 1165 7.31
v35p012.5 2 22606 709 654 1363 16.59
v35p012.2 2 65298 1325 1866 3191 20.46
v35p013.3 2 563 813 16 829 0.68
v35p013.4 2 16782 972 482 1454 11.55
v35p013.5 2 220551 1117 6521 7638 28.88
v35p013.1 2 227186 1086 6601 7687 29.55
v35p013.2 2 303765 1137 8724 9861 30.80
v35p014.3 2 >691200 1217 360304 361621 >>
v35p014.1 2 >2246400 1302 637080 638382 >>
v35p014.2 2 >691200 1213 149401 150614 >>
v35p014.5 2 28290 1035 798 1833 15.43
v35p014.4 2 91334 968 2679 3647 25.05
v35p015.3 1 0.37 1018 0.04 1018 0.00
v35p015.5 1 289 1181 9 1190 0.24
v35p015.2 2 501 896 14 910 0.55
v35p015.4 1 2480 1170 73 1243 2.00

Table 1: Graphs with 35 nodes

