
Hardware/Software Co-Design of a Java Virtual Machine

Kenneth B. Kent
University of Victoria

Dept. of Computer Science
Victoria, British Columbia, Canada

ken@csc.uvic.ca

Micaela Serra
University of Victoria

Dept. of Computer Science
Victoria, British Columbia, Canada

mserra@csr.uvic.ca

Abstract

This paper discusses the initial results of research into
the development of a hardware/software co-design of the
Java virtual machine. The design considers a complete
Java virtual machine with full functionality expected to
run with the same capabilities as a fully software Java
virtual machine. We address issues such as why a partial
hardware implementation is suitable, the challenges in
realizing this goal, propose an initial partitioning of the
virtual machine between hardware and software, discuss
the desired hardware requirements and discuss some de-
tails of the hardware and software design.

1 Introduction

The Java platform as introduced by Sun Microsystems
in 1994 has spread throughout the computer industry and
has reached all domains. As good as Java is for providing
“write once, run everywhere” software, the running is not
always very good. The Java platform still relies upon soft-
ware interpreters to execute and accordingly suffers in per-
formance.

Since its introduction, many people have directed re-
sources towards moving Java away from the interpreter
and into hardware. The idea is not to decrease the features
or functionality of the virtual machine, but to increase its
performance. This can be accomplished in any one of three
ways: (i) create a general microprocessor that is optimized
for Java, yet still functions as a general processor; (ii)
make a stand-alone Java processor that runs as a dedicated
Java virtual machine; or (iii) create a Java co-processor
that works in unison with the general microprocessor.

This project makes advancements towards accomplish-
ing the co-processor approach to work in unison with a
general microcontroller to increase Java performance
where the co-processor is based on programmable hard-
ware (FPGA). This paper will address the following steps
in realizing this goal:

� Justification for choosing the programmable co-
processor solution over the other possibilities.

� Research into the Java platform to uncover major
problems to overcome during the development.

� Partitioning of the Java virtual machine between soft-
ware and hardware based upon statistics of what will
help increase the performance and make for an easy
design.

� Analysis of the partitioning to form a specification of
the desired hardware and software requirements to
meet the initial partitioning and design, and as well
any optional requirements that will help in the devel-
opment process.

� Description of the hardware and software design for
the partition that meets the requirements.

2 Co-processor Idea

Our goal is to provide a full Java virtual machine for a
regular windows workstation. For the purposes of this re-
search, we are not proposing to attach a co-processor to the
mainboard of a system. Rather, the co-processor should be
accessible to the system through one of the many available
system busses. This will allow for efficient design research
and testing of various configurations and optimizations.
This is due to the availability of field programmable gate
array (FPGA) cards that can be added to a system. One of
these cards can be used to perform verification and testing
of the design, while no such hardware is available to allow
for a reconfigurable hardware unit on the system main-
board. However, any research results that are obtained will
apply just the same if the co-processor is attached to the
mainboard directly. The single difference is that the con-
nection between the co-processor and the host processor
will be slower. The details of the reconfigurable hardware
card are discussed in section 6. An additional advantage of
this approach is that the reconfigurable co-processor can be
used for other hardware acceleration applications as
needed, exploiting indeed the true power of FPGA boards.

Here we focus on Java, but the research will yield a general
framework.

3 Design Issues

Some interesting design issues include:

� Addressing multiple Java applications executing
within a single Java virtual machine.

� Communication between the hardware and software
components of the design.

� Utilizing resources that are available, both resources
that are limited and new resources which were not
previously available to a fully software Java machine.

� Upholding the Java model, both supporting the full
Java API and providing the same level of security to
Java programs.

� Managing the scarce memory resources to ensure both
consistency of memory across the different levels of
cache and correct diligent garbage collection for faster
execution.

� Utilizing the potential for concurrent execution in
hardware and software.

� Designing and implementing with the realization that
the Java model and specification will grow and change
to allow the design to grow with the ever-changing
specification.

Each of these issues make this project unique and
challenging, but most importantly they demonstrate the
need for research on a rapidly reconfigurable platform.

4 Justification

Before the justifications for implementing the Java vir-
tual machine as a co-processor, it must be argued as to why
we should implement the Java virtual machine in hardware
at all. There are several key ways in which Java can be
“souped up” [3][9]. The performance enhancements in-
clude such techniques as: better source compilers, bytecode
optimizers, better Java virtual machines, just-in-time com-
pilers, adaptive compilers, static native compilers, native
method calls, Java chips, and better source code. Each of
these can bring gains to the performance of Java, and some
of them can even work in unison with a hardware Java
machine to bring a combined performance increase. Such
techniques as writing better source code, using better
source compilers and using bytecode optimizers can pro-
vide an increase in performance whether a Java application
runs on a hardware Java machine or a virtual one.

The use of just-in-time, adaptive and static native com-
pilers, as well as using native method calls, brings per-
formance gains, but it does not provide the overall com-
plete solution that a hardware implementation would pro-
vide. In the case of using native method calls or static na-
tive compilers, the solution sacrifices the portability feature
of Java. Users will have to contend with more than just the
“download and execute” paradigm that was one of the
original selling points of Java. Any of the compiler solu-
tions will be hard pressed to provide the same level of per-
formance increase that a Java chip can bring due to the fact
that current processors today are not based on the same
stack based architecture with which Java was designed.
This will make for interesting problems in achieving solu-
tions for a mis-matched mapping.

All of these techniques offer potential for increased per-
formance of Java execution, however none of them offer
the same potential levels of increase as that of a Java vir-
tual machine implemented in hardware.

4.1 The Hardware Justification

Different hardware solutions have their merits and
flaws. The Java co-processor has the most appealing value
in that it does not replace any existing technology; instead
it supplements current technology to solve the problem.
Similar to the math co-processor of old, the Java co-
processor upon proving its merit can be integrated into the
general-purpose microcontroller.

In comparison to a stand-alone Java processor, this so-
lution provides greater flexibility to adapt to future revi-
sions to the Java platform. Since its birth Java has experi-
enced changes in all areas. The API is constantly changing
and, with it, the virtual machine itself has changed and
will continue to change (for example, with better garbage
collection techniques being devised). With a reconfigur-
able co-processor, changes in Java can more easily be in-
tegrated and made readily available. If the technology
were part of the main processor, this would not be as easy
a task. In addition, providing a Java-only processor will
just change the problem at hand, not fix it. The tables will
be turned and Java applications will run fast, while C and
other programming languages will be suffering from de-
creased performance of having to execute through a non-
native processor. With the different execution architecture
paradigms, a simple solution will not be available.

If Java were to be incorporated into the main processor
unit, there would have to be some trade-offs between exe-
cution for Java and for legacy programming languages
such as C. Surely some of these trade-offs will make it
difficult to provide optimizations for execution within the
processing unit. Wayner says: “An advantage for Java chip

proponents is how complex it is to design a chip for fast C
and Java code performance” [10]. To design a viable chip
for both is complex since users will definitely not want to
see a decrease in the performance of their current applica-
tions to see an increase for Java applications.

The Java co-processor solution also has the benefit of
choice. With it available as an add-on card, systems that
are not required to provide fast execution of Java can sim-
ply continue using a fully software solution. Systems that
do require fast Java execution can plug in the card and
increase performance without having to replace any of
their current components or more drastically having to
move to another system all together. As seen with other
similar products such as video accelerators, this is the pre-
ferred solution for consumers. Finally, the plug-in card can
be used as a co-processor for other applications, given its
reconfigurability.

5 Partitioning and Design

The Java virtual machine is comprised of two parts: a
low level instruction set from which all the Java language
can be composed, and a high level operating system to con-
trol flow of execution, object manipulation, and device
controllers. To partition the Java virtual machine between
hardware and software the first step is the realization of
what choices are to be made. Since part of the virtual ma-
chine is high level operating control, it is impossible to put
this work into the hardware partition due to the restrictions
of hardware. This leads to investigating the instruction set
of Java to determine what is capable of being implemented
in hardware.

5.1 Software Partition

The instructions that must remain in software are those
designed for performing object-oriented operations. These
include instructions for accessing object data, creating ob-
ject instances, invoking object methods, type checking,
using synchronization monitors, and exception support.

Each of these object-oriented instructions requires sup-
port that is too extensive to be implemented in hardware
since they need class loading and verification. Loading and
verification involve locating the bytecode for a class, either
from disk or a network, and verifying that it does not con-
tain any security violations. Once the bytecode is verified,
if the instruction requires creation of an object then the
creation may require accessing the virtual machine mem-
ory heap and the list of runnable objects. This process re-
quires complex execution and a significant amount of
communication with the host system. As such, it is better

to execute the instruction entirely on the host system than
within the Java co-processor hardware.

Exceptions are a very complex mechanism to imple-
ment in any situation. The reason for this is the effects that
an exception can have on the calling stack and the flow of
execution. Within the virtual machine it could involve
folding back several stack frames to find a location where
the exception is finally caught. An exception in Java also
involves the creation of an Exception object that is passed
back to the location where the exception is caught. This
can result in class loading and verifying as part of the ex-
ception throwing process. As a result of this potential com-
plexity, the exception instructions should be implemented
in software where manipulating the execution stack is
more easily performed.

5.2 Hardware Partition

For each instruction it is obvious that if more can be
implemented in hardware the better it is, since the overall
purpose of this design is to obtain faster execution. Addi-
tionally, all instructions can be implemented in software,
as shown by current implementations of the Java virtual
machine. So for a preliminary investigation, the research
entails determining if an instruction can be moved from
software to hardware. We look at grouping of instructions
to be implemented in hardware with a brief explanation for
why the decision was made.

Some of the instructions that exist in the Java virtual
machine are instructions that can be found in any proces-
sor. As such there is no question that these instructions can
be implemented in the hardware partition of the Java ma-
chine. These instructions include: constant operations,
stack manipulation, arithmetic instructions, shift and logi-
cal operations, comparison and branching, jump and re-
turn, and data loading and storing instructions. Some of
these instructions also include instructions that are typi-
cally found in a floating-point unit co-processor.

In addition there are other Java specific instructions that
can be implemented in hardware. These instructions are
mostly the quick versions of the object-oriented instruc-
tions of Java that distinguish the hardware co-processor
from a general microprocessor. These instructions are used
for creating new objects, accessing synchronization moni-
tors, invoking object methods, and accessing object data.
Once these instructions are invoked upon an object, subse-
quent calls can use the quick version that does not require
class loading or verification. It is the implementation of
these instructions in hardware that can contribute to the
hardware speed-up of Java.

6 Development Environment

With the partitioning of the Java machine between
hardware and software investigated, we can discuss the
development environment that will be needed to support
the research. From the requirements and specifications it
can be seen that our concerns lie with the memory avail-
able, the size of the FPGA, and the layout and capabilities
of the data paths. We believe that a commercially available
board, with minor customization, is able to support the full
design, following our specifications below.

6.1 Memory Requirements

The random access memory available on the FPGA card
must be used to hold the virtual machines data stack, and
its execution stack. These are the minimal items that need
to be held in memory. It would be beneficial if the card
were able to house several sets of data and execution stacks
for different Java processes that are executing. This would
significantly speed-up the context switching between proc-
esses since no communication with the host system would
be necessary to load/store a process context. It would also
be beneficial if the memory were large enough so that it
could hold Java classes in memory that have already been
verified and resolved by the software partition. Thus any
references to classes would not result in a stoppage for the
class to be retrieved from the host processors memory.
From a conservative estimate, our FPGA card contains no
less that 4 Mb of memory for holding in the minimal case
the data and execution stack of a process.

In addition to RAM we require programmable read-only
memory to hold some of the base Java classes that are used
most often. Thus, verification and loading of these classes
can be skipped altogether when they are referred to in the
Java program, as there is no reason to fear a security prob-
lem of having the classes corrupted. Obviously, the larger
the ROM the more base classes can be fit in. We plan to
house the minimal and more common java.lang, java.util,
and java.math just to name a few.

6.2 FPGA Requirements

It is hard to determine the required size of the FPGA
that will hold the Java hardware design since we are cur-
rently only at the design stage. The required size is better
determined after some initial implementation time is spent.
As such, any estimates that are made on the required
FPGA size are just that, estimates. With the amount of
knowledge about what we would like to house in the hard-
ware partition, and the possibilities of shifting some fea-
tures from software to hardware and vice-versa, for the
purposes of development we want the largest FPGA we can

find. There is a lot of potential for experimentation once
the implementation is completed by shifting different func-
tionality to and from hardware and software. By getting a
large FPGA it will be possible to test different configura-
tions to find the best solution.

6.3 Data Bus

The size of the bus between the host processor and the
FPGA card as well as the layout of how each of the re-
quired components on the card communicate with one an-
other is important to our design and implementation. For
the data bus between the host processor and the FPGA
card, it is desirable to have a bus that is either 32 or 64 bits
wide, since the Java virtual machine is a 32-bit architecture
and the majority of data within the machine is this width.

Within the FPGA card, our data is traveling mostly
from all of the different memory that is available to the
FPGA, and then from the FPGA back out to the memory.
Having a layout on the card that supports this directional
flow of data allows for optimal communication on the card.
It is also desirable for the memory on the card to be acces-
sible through the main bus connecting the card to the host
processor. This allows for data transfers between the card
and the host processor without having to be routed through
the FPGA, thus allowing for both data transfer and compu-
tation simultaneously.

7 Hardware Design

After some investigation of how Sun Microsystems de-
veloped their picoJava processor, some ideas were unveiled
regarding features that could just as easily be implemented
in the co-processor hardware partition that will allow for
increases in performance [5][6][7][8]. The block diagram
of the design of the hardware partition implemented on the
FPGA is depicted in figure 1. The shaded logical blocks
are configurable in size and are not required. Within the
block diagram, all connections are 32 bits wide with one
exception. This is due to the fact that Java is built on a 32-
bit architecture. The exception is the connection between
the Stack cache and the arithmetic units that is 96 bits.
This allows for long operands to pass from the cache to the
arithmetic units in a single cycle.

The logical blocks that are unique to this design are the
host interface, and the host controller. The host interface
provides communication between the FPGA and the com-
ponents on the board, as well as communication with the
host system. The interface is connected inside the FPGA to
both the instruction and data caches as well as the host
controller. Instructions for execution flow through the in-
terface and into the instruction cache for execution. Data

from the execution of the program flows bi-directionally
through the interface between the data cache and the RAM
that is on board the PCI card. Most importantly, the I/O
interface provides a means by which the host controller can
interact with the host system.

The host controller maintains the link between the host
system and the hardware. It is responsible for halting the
hardware in the event that execution needs to stop while
the host system carries out part of the execution. In addi-
tion, it is responsible for changing the context of the cur-
rent execution when signaled by the host system. In es-
sence it is the hardware mediator between the hardware
and software.

7.1 Memory Interaction

Between the Java co-processor, which is in the FPGA,
and the memory that is available on the board, there must
be some interaction. The memory on board the card is used
as an intermediate memory location between the host sys-
tem and the Java co-processor. As the host system resolves
classes and sets the location of execution with the Java co-
processor, it places into the cards RAM, the class itself and
the instructions that are located at the address of execution.
The Java co-processor through its I/O interface retrieves
data from the memory and brings it into the instruction
cache on the FPGA for execution. The memory must also
contain any data that cannot fit into the data cache and is
used too often to be swapped back out onto the host system.

To handle the amounts of data that are being transferred
back and forth between the host system and the card, in the
event that the memory on board is not sufficient enough to
hold all the application and necessary data generated, the
memory must be split into manageable blocks to allow for
quick and efficient transferring. As blocks are transferred
into the memory they are flagged as being in use by the
Java co-processor, and as they are used and determined to
not currently be in use they are flagged appropriately and
cached by the host system the next time data needs trans-
ferring to the Java co-processor. Further research may
uncover a better solution to marking blocks of memory that
can be swapped out. It is worthwhile to note that the gar-
bage collector will free any memory within the blocks that
are no longer in use, but is not involved in the caching of
data between either of the memory caches.

Blocks of the memory are not labeled to hold either data
or instructions. The reason for this is to allow the applica-
tion the ability to dictate how the memory is used. In the
case where an application is very small and uses a lot of
data, more blocks will be used for data handling. Con-
versely, when an application is large and the amount of
data storage it uses is small, more blocks of memory will
be used to hold the application. This allows for adaptabil-
ity of the memory to the particular application.

8 Software Design

The software partition is co-designed with the hardware
so as to provide a seamless interface between the two parti-
tions in the final implementation. The software partition is
designed with the intention of not controlling the execu-
tion, but rather supporting the execution of the application
by the Java co-processor. Accordingly, the functionalities
of the software tend towards passive execution except in
the instances where the Java co-processor requests the as-
sistance of the software. Figure 2 depicts the block diagram
of the software design with respect to the threads of execu-
tion that are necessary in the software to support the Java
co-processor. Each of the threads in the figure are standard
threads within the Java virtual machine except for the
hardware handler that is added for communicating with
the hardware partition.

The key component comprising the interface on the
software side is the hardware handler. This thread is a
passive thread that waits for requests either from the hard-
ware or software partitions so that it can carry the request
through the entire Java machine. Requests from the soft-
ware partition are received from the Scheduler and appli-
cation threads. For a thread to get a time slice it is passed
to the Java machine for execution. During this context

Figure 1: Co-processor hardware design

I/O Bus, Memory and Host Interface

Host

Controller

Execution

Controller

Stack

Cache

Instruction Buffer

And

Decode/Folding

Data Cache

Controller

Integer

Unit

Floating Point

Unit

Instruction

Cache

Data

Cache

switching, the hardware handler is responsible for saving
the context of the previously executing thread and passing
the new context to the host controller for loading into the
Java co-processor. In addition to invoking context switch-
ing within the Java hardware, the hardware handler must
also receive events from application threads. These events
will often result in context switches to user threads that
will handle the event. There is no difference in the han-
dling of the context switch; it is just generated by a differ-
ent thread. Part of the context switching control also re-
quires the hardware handler to be able to halt and resume
the execution of the Java hardware.

The hardware handler is also an essential component in
the communication of data between the Java co-processor
and the software partition. If the Java hardware were to
support a ROM on board the card to hold standard Java
base classes that can be trusted, then this thread will be
responsible for retrieving the classes from the FPGA card
in the event that the class loader in software wants to load
one of the base classes. The thread must also be used to
maintain the synchronization of data between the memory
on the FPGA card and the memory located on the host
system. Due to the many important duties of its thread, it
must be implemented in a very efficient manner to promote
fast execution.

9 Conclusions

This paper discusses the idea of a hardware/software co-
designed Java virtual machine. The paper discusses some
of the design issues that must be conquered through the
project and the justification of why the virtual machine
should be implemented in this fashion. Following this we
described the partitioning of the design, the development
environment for our research work, and lastly some of the
finer details of the co-design. This research demonstrates
that a Java co-processor is a practical and effective solution
to Java’s performance problems.

References

[1] El-Kharashi, M.W. and ElGuibaly, F. Java Microproces-
sors: Computer Architecture Implications. PACRIM 1997.

[2] El-Kharashi, M.W.; ElGuibaly, F. and Li K.F. Quantitative
Analysis for Java Microprocessor Architectural Require-
ments: Instruction Set Design. International Conference on
Computer Design, 1999.

[3] Halfhill, T.R. How to Soup up Java (Part I). BYTE, May
1998.

[4] Silberschatz, A. and Galvin, P.B. Operating Systems Con-
cepts (4th edition). Addison-Wesley Press, June 1994.

[5] Sun Microsystems. The Java Chip Processor: Redefining the
Processor Market. Sun Microsystems, November 1997.

[6] Sun Microsystems. picoJava-I: Java Processor Core. Sun
Microsystems Data Sheet, December 1997.

[7] Sun Microsystems. picoJava-I: picoJava-I Core Microproc-
essor Architecture. Sun Microsystems white paper, October
1996.

[8] Sun Microsystems. picoJava-II: Java Processor Core. Sun
Microsystems data sheet, April 1998.

[9] Wayner, P. How to Soup up Java (Part II): Nine Recipes for
Fast, Easy Java. BYTE, May 1998.

[10] Wayner, P. Sun Gambles on Java Chips. BYTE. November
1996.

Figure 2: Software partition design of co-processor

Clock

Idler

Scheduler

Hardware Handler

Finalizer

Garbage Collector

Instance

Store

Object

Store

Thread

Pool

PCI Bus

