Problem A: Corporate Cashier Follies

Consider the following problem that has recently come up at the McCrafty Fast Food Corporation: An efficiency consultant on loan from ENRON has analyzed McCrafty restaurant operations worldwide and noted the following three universal factors when cashiers give customers change from a purchase:

1. Cashiers like to give back as few coins as possible;
2. Customers are willing to accept a lower amount than their actual change if it keeps a cashier happy; and
3. The relative strengths of preferences (1) and (2) vary from season to season and from country to country, e.g., some cashiers are lazier than others and some customers are stingier than others.

Given a set $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ of n coin-values and the amount amt owed a customer, the consultant has proposed the function

$$
f\left(r e t, i_{a}, i_{b}\right)= \begin{cases}\left(i_{a} \times \operatorname{minCoins}(C, r e t)\right)+\left(i_{b} \times(a m t-r e t)\right) & \text { if minCoins }(\mathrm{C}, \text { ret })>0 \\ \left(i_{b} \times a m t\right) & \text { otherwise }\end{cases}
$$

where ret is the amount returned by the cashier, i_{a} and i_{b} are cashier and customer irritation factors, respectively, and $\operatorname{minCoins}(C, x)$ is the minimum number of coins with values from the set C whose values sum to x (note that $\min \operatorname{Coins}(C, x)=0$ if there is no set of coins with values from C whose values sum to x). For example, given $C=\{2,5,25\}$ and $a m t=49$,

- $f(45,1,1)=(1 \times 5)+(1 \times(49-45))=9$;
- $f(47,1,1)=(1 \times 6)+(1 \times(49-47))=8$;
- $f(45,3,1)=(3 \times 5)+(1 \times(49-45))=19$; and
- $f(47,3,1)=(3 \times 6)+(1 \times(49-47))=20$.

The consultant conjectures that if the cashier always returns change equal to the value of ret that minimizes $f()$, cashier and customer satisfaction will be optimized and the McCrafty Corporation will also have access to a previously underutilized source of revenue.

Given C, amt, i_{a}, and i_{b}, compute a value ret that minimizes function $f()$ specified above. The input will consist of a $(3 \times i)$-line file, $i \geq 1$, such that in each group of 3 lines, line 1 gives the number n of coins in C, line 2 contains the n values of the coins in C sorted in ascending order, and line 3 gives the values of $a m t, i_{a}$, and i_{b}, respectively. You may assume that all input files are formatted correctly.

Sample input (available as file "A.in"):

3

2525
911
3
2525
921
3
2525
951
3
2525
922

Sample output (available as file "A.out"):

```
Amount returned on 9 cents is 9 cents [3 coin(s) / F-val = 3]
Amount returned on 9 cents is 5 cents [1 coin(s) / F-val = 6]
Amount returned on 9 cents is 0 cents [0 coin(s) / F-val = 9]
Amount returned on 9 cents is 9 cents [3 coin(s) / F-val = 6]
```

