Motivation

- **Limitations of Precise Reasoning**
 - Concepts without well-defined boundaries often have to be defined with 'artificial' boundaries
 - Originally uncertain relationships have to be forced into precise relationships for knowledge representation
 - Distorting reality and expert thinking
 - Giving up important properties
 - Loss of authentic representation

- **Uncertainty Reasoning**
 - Uncertainty is an intrinsic feature of real-world knowledge
 - Based on known uncertain facts (evidence)
 - Applying uncertain axioms and rules
 - Resulting in conclusions that are uncertain to some degree
 - Better resembling human reasoning in its use of approximate information and uncertainty to generate decisions

Description Logics and OWL

- **Description Logics**: Logic-based knowledge representation formalisms about the conceptual knowledge of arbitrary domains
 - DLs basics include concepts, roles, individuals, constructors, axioms and assertions
- **OWL: Web Ontology Language**
 - W3C's OWL 1 & 2 recommendations for the Semantic Web
 - Based on Description Logics
 - Three OWL 1 species: OWL Lite, OWL DL, and OWL Full
 - Three OWL 2 profiles: OWL 2 EL, OWL 2 QL, and OWL 2 RL

Fuzzy Logic and Vague Sets

- **Fuzzy Logic**: Membership function $u(x)$ with single value ($D \rightarrow [0,1]$)
 - No accuracy measurement
- **Vague Sets**: Interval-valued
 - $[u(x), 1-u(x)]$
 - Truth-membership function: $u_t(x)$
 - False-membership function: $u_f(x)$
 - Positive and negative evidence
 - Accuracy measurement

Solution

- **Fuzzy Description Logic fALCHIN**
 - A fuzzy extension to the Description Logic ALCHIN
 - Based on Vague Sets
 - fALCHIN includes fuzzy concepts, roles, and constructors
- **Fuzzy Knowledge Base**
 - Fuzzy axioms and fuzzy assertions
- **Core Reasoning Algorithm**
 - Based on tableau algorithm with fuzzy extension
- **Various Inference Services and Procedures**
 - F-OWL (Fuzzy OWL)
 - A fuzzy extension to OWL 1 & 2
 - Abstract concrete syntax / functional-style syntax
 - Core semantics based on fALCHIN
- **Prototype Implemented in Prolog: fALCAS**

System Architecture

Application Services

- **Medical Application Scenarios**
 - Consistency Checking (general)
 - Fuzzy Instance Entailment (patient eligibility)
 - Instance role entailment
 - Instance concept entailment
 - Fuzzy Concept Subsumption and Similarity (symptom and diagnosis comparison)
 - Fuzzy Retrieval (patient documents)
 - Top-k instances retrieval
 - Threshold-θ instances retrieval