
Experimental Results
 Evaluating the performance impact of each of the six dimensions
 Measured runtime with accurate timer, reporting average of five runs
 Please see paper [3] for additional results and details

Aggregation is widely used to extract useful information from large volumes of data. In-memory databases are rising in popularity due to the demands of big data analytics applications.
Many different algorithms and data structures can be used for in-memory aggregation, but their relative performance characteristics are inadequately studied. Prior studies in aggregation
primarily focused on small selections of query workloads and data structures. We undertook a comprehensive analysis of in-memory aggregation that encompasses 20 popular and state-of-
the-art algorithms and data structures. Insights gained from theoretical and empirical evaluation are used to identify the trade-offs of each algorithm, with the goal of offering insights to
practitioners. Our results allowed us to identify the best approach in different situations, based on specific characteristics of the query workload and dataset.

In-memory Aggregation for Big Data Analytics
Puya Memarzia, Virendra C. Bhavsar, and Suprio Ray

Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada

ABSTRACT

References: [1] Puya Memarzia, Suprio Ray, and Virendra C. Bhavsar, “On Improving Data Skew Resilience In Main-memory Hash Joins”, 22nd International Database Engineering & Applications Symposium (IDEAS), May 
2018 [2] Gray, Jim, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Weinberger. "Quickly generating billion-record synthetic databases." In Acm Sigmod Record, vol. 23, no. 2, pp. 243-252. ACM, 1994. 
[3] Puya Memarzia, Suprio Ray, and Virendra C. Bhavsar, “A Six-dimensional Analysis of In-memory Aggregation”, International Conference on Extending Database Technology (EDBT-2019), 2018.

(a) Vector COUNT (Q1)

Motivation
 Aggregation: a ubiquitous and expensive 

operation commonly used in data analytics
 Applications: data warehousing, data 

mining, business intelligence tools, …
 Plethora of algorithms and data structures 

could be used to implement aggregation
 What are the tradeoffs and opportunities to 

improve performance?
 How to select the best tool for the job?

 Memory getting faster, denser, and cheaper
 Significant speedups (orders of magnitude) 

over disk-based query processing
 Data resides in main memory
 Performance highly influenced by memory 

access patterns [1]

Figure 3. Six analysis dimensions (important factors that can be evaluated independantly) 

Figure 4. Variable dataset distribution - Vector COUNT (Q1) - 100M records - 1M group-by cardinality

Conclusions
 Aggregation heavily impacted by data and workload characteristics
 Sort-based approaches: generally perform best on holistic workloads
 Hash-based approaches: generally the fastest on distributive workloads
 Tree-based approaches: too slow for write-once-read-once (WORO)

workloads. Potential for write-once-ready-many (WORM) workloads or
situations requiring dynamic growth

Sponsored by:

1. Algorithm and Data Structure 3. Key Distribution and Skew2. Query and Aggregate Function

4. Group-By Cardinality 5. Dataset Size and Memory Usage 6. Concurrency and Multithreaded Scaling
threads

In-memory Query Processing

D
ata

App App

Data

(optional disk snapshots)

D
ata

D
ata

CPU

RAMRAM

Disk resident data 

Experimental Methodology

 Hash-based, sort-based, and tree-
based approaches

 Including popular, state-of-the-art, 
and custom implementations

 Aggregation query categories
 Scalar or Vector
 Distributive, Algebraic, or Holistic
 Range predicate

 Data key distribution (Zipfian, heavy 
hitter, moving cluster, etc.)

 Data ordering (randomness/locality)

0

10

20

30

40

50

60

70

80

Rseq Rseq-Shf Hhit Hhit-shf Zipf MovCQ
ue

ry
 E

xe
cu

tio
n 

Ti
m

e 
(C

P
U

 C
yc

le
s)

 B
ill

io
ns

Dataset distribution

ART Judy Btree Hash_SC Hash_LP Hash_Sparse Hash_Dense Hash_LC Introsort Spreadsort

 Number of unique values in 
group-by columns

 Determines size of output

 Support for concurrent (shared memory) 
access

 Ability to scale up with additional threads

 Size of input data
 Algorithm memory efficiency
 Query memory requirements

Figure 2. Comparison of disk-based and memory-based approaches

Label Type

ART Tree

Judy Tree

Btree Tree

Hash_SC Hash Table

Hash_LP Hash Table

Hash_Sparse Hash Table

Hash_Dense Hash Table

Hash_LC Hash Table

Hash_TBBSC Hash Table

Hash_LCMC Hash Table

Introsort Sort Algorithm

Spreadsort Sort Algorithm

Sort_QSLB Sort Algorithm

Sort_BI Sort Algorithm

ART Judy Btree Hash_SC Hash_LP Hash_Sparse Hash_Dense Hash_LC Introsort Spreadsort

102 103 104 105 106 107

0

5

10

15

20

25

30

35

40

Q
ue

ry
 E

xe
cu

tio
n 

Ti
m

e 
(C

P
U

 C
yc

le
s)

 B
ill

io
ns

Group-by Cardinality

102 103 104 105 106 107

0

10

20

30

40

50

60

Q
ue

ry
 E

xe
cu

tio
n 

Ti
m

e 
(C

P
U

 C
yc

le
s)

 B
ill

io
ns

Group-by Cardinality

102 103 104 105 106 107

higher cardinality = more unique 
values => more cache/TLB misses

Hash_LP

Spreadsort

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8

No of threads

Q
ue

ry
 E

xe
cu

tio
n 

Ti
m

e 
(C

P
U

 C
yc

le
s)

 B
ill

io
ns

Hash_TBBSC Hash_LCMC Sort_QSLB Sort_BI

0

5

10

15

20

25

1 2 3 4 5 6 7 8

No of threads

Q
ue

ry
 E

xe
cu

tio
n 

Ti
m

e 
(C

P
U

 C
yc

le
s)

 B
ill

io
ns

Hash_TBBSC Hash_LCMC Sort_QSLB Sort_BI

(a) Vector COUNT (Q1) – 1K Groups (b) Vector COUNT (Q1) – 1M Groups

Hash_TBBSC
Hash_LCMC

Limited improvement beyond 4 threads

Reminder: we have four physical cores 
with hyperthreading

Runtime generally faster and more 
consistent on Hash_TBBSC

Hash_LCMC more efficient at high 
cardinality (1M groups)

AlgorithmQueryDataset

 Six dataset distributions
 Extends popular datasets

originally proposed in [2]
 Up to 100M key-value pairs
 Variable cardinality/skew

 Seven query workloads
 Covers all fundamental

aggregation categories

 Initial pool of 20 algorithms
selected for evaluation

 Microbenchmarks used to filter
out inefficient implementations

Distributive query example (Q1)

SELECT product_id, MEDIAN(amount)
FROM sales GROUP BY product_id

SELECT product_id, COUNT(*)
FROM sales GROUP BY product_id

Holistic query example (Q3)

Table 1. Algorithms and Data Structures

(b) Vector MEDIAN (Q3)

Figure 5. Variable cardinality - 100M records

expensive to process: Zipf and Rseq-Shf
cheaper to process: Rseq and MovC (locality matters!)

Figure 6. Multithreaded scaling (concurrent algorithms) - 100M records

Figure 1. Aggregation overview and motivation


