
AOT compilation in OMR: Relocations

Eclipse OMR: Runtime creation toolkit 
OMR, a toolkit to support runtime construction, instruments 

runtime builders with hooks to useful modules: garbage collector 

or just-in-time compiler. Our focus: developing infrastructure for 

adding ahead-of-time (AOT) compilation and loading.

Ahead of Time Compilation

Compiling a program code before execution and persisting it for 
future reuse is one way to define ahead-of-time compilation. 
Necessary components are: code generation, program loading, 
relocation, and symbol resolution. 

AOT in OMR

There are two possible paths for AOT in OMR: using the system 
linker paired with UNIX ELF files, or using OMR’s own 
infrastructure (the subject of our research). The table below
describes the possible components of each process:

Ahead of Time Compilation: Relocations

Relocations in the classical sense are defined both as:

A process of modifying addresses to satisfy the memory 
context of the current program, or, a process of resolving 
references to external symbols defined within libraries or by 
other means, for instance, using the extern keyword.

ELF Relocations in OMR

Does not:

• Have global and local static data

• Support dynamic libraries for executable files

• Provide support for dynamic and object oriented languages

Does:

• Generate relocatable and executable object files

• Support custom metadata

OMR Specific Relocations

The relocations, as they are in OMR, have their own class 
hierarchy that has a range of responsibilities: 

Research Directions

• Implement external relocations: address VM values

• Investigate validations w.r.t language agnostic runtime 

environment, if desired, port to OMR

Georgiy Krylov, Petar Jelenkovic,

Gerhard W. Dueck, Kenneth B. Kent

University of New Brunswick, Faculty of Computer Science

{georgiy.krylov, petar.jelenkovic, gdueck, ken}@unb.ca

Daryl Maier

IBM Canada

maier@ca.ibm.com

With UNIX support OMR specific

Code generation Output of TR::JIT Just in Time compilation is reused

Storage Hard disk stores generated .o file 

(ELF format)

Shared cache, represented as a memory mapped file or shared 

memory region (work in progress)

Loading Is performed using ld UNIX loader Not needed – runs within a process Retrieved from a code cache

region inside the shared cache

Relocations and 

Symbol Resolution

Falls to dlopen(), has limitations Subject of ongoing research, work in progress

Kind Status

ELF-like relocations Present, used

Label relocations Used by JIT label relocations

External relocations At a starting stage

Validations Can be implemented

ELF file Relocations

In-memory code

Shared 

cache


