
Python on OMR

Background

• A JIT compiler is a compiler that compiles code at runtime and 
can be thought of as a middle-ground between static 
compilation and interpretation, hence, they can be used to 
gain the best of both worlds.

• Since compilation occurs during runtime, JIT compilers are 
able to access runtime profile information and consequently 
make better optimization decisions than a static or ahead-of-
time (AOT) compiler.

Problem Statement

• Interpreted languages offer several advantages, among these 
are ease of use and fast start-up time. 

• Despite these advantages, interpreted languages offer subpar 
performance when compared to their compiled counterparts.
• For this reason, they are usually excluded from 

consideration for domains that demand high performance.

• Our goal is to bridge this performance gap by creating a low 
overhead interface between the CPython runtime and OMR's 
JIT component. This would allow developers to JIT compile 
Python methods without leaving the Python environment.

• Secondary goals include evaluating the reusability of OMR’s 
JIT compilation and Garbage Collection components.

Dayton J. Allen, David Bremner, DeVerne Jones
University of New Brunswick, Faculty of Computer Science

{dayton.allen, bremner, deverne.jones}@unb.ca
Mark Stoodley, Daryl Maier, Leonardo Banderali 

IBM Canada
{mstoodle, maier}@ca.ibm.com, leob@ibm.com

Eclipse OMR & JitBuilder

OMR is an open-sourced project that provides several 
enterprise-class reusable runtime components to aid in the 
development of language runtimes. 

JitBuilder is a static 
library with a high-
level interface to 
the Eclipse OMR 
JIT compiler 
technology. The 
library exposes an 
API that 
encapsulates the 
details of the 
underlying 
intermediate 
representation 
used by OMR.

• Another advantage that JIT compilers have over AOT 
compilers is that they can perform de-optimization. Meaning, 
they are able to revert optimizations that result in incorrect or 
worse performing code.

*Graph obtained at https://github.com/niklas-heer/speed-comparison

Dayton J Allen



