
Multiprocessing in Python to Exploit Multicore Hardware

Motivation

• Nowadays multi-core CPUs have become a standard in modern 
computer architecture. Multi-core CPUs are found not only in 
supercomputers, but also in personal laptops and mobiles.

• This has given tremendous computing power to such devices.

On the other hand Python is becoming a very popular language for
software development and data analysis but Global Interpreter Lock or
GIL ensures that only one thread runs in the interpreter at once.

• It executes statements serially.

• This property of Python prohibits parallel processing and the power of
modern multi-core CPUs cannot be utilized.

• To overcome the disadvantages of GIL, Python utilizes the
multiprocessing module and other frameworks, which spawns multiple
sub-processes and allows to execute Python code in parallel.

Problem Statement

• Research will be specifically conducted into enabling parallelism while
dealing with Python's Global Interpreter Lock (GIL) and utilize the
advantages of NUMA architecture.

Experiments

The following problem statements were executed in Python version 3.x 
and parallelized using multiprocessing module:

• Estimating the value of Pi using Monte Carlo method by generating a 
large number of random points and checking how many fall in the 
circle enclosed by the unit square. 

• Each worker process gets n number of points to calculate Pi

• Parallel Matrix vector Multiplication

• System configuration – Intel Core i7, 32.0 GB(RAM),x64-based Processor, Linux(OS),32(CPU),4(NUMA node)

Future Work

• Explore various Python-based frameworks, which supports parallel 
processing

• NUMA-aware parallel processing using Python

Rahul Roychowdhury, Dr. Eric Aubanel, Dr. Suprio Ray 

University of New Brunswick, Faculty of Computer Science

rroychow@unb.ca, aubanel@unb.ca, sray@unb.ca

Charlie Gracie

IBM Canada

Charlie_Gracie@ca.ibm.com

3.2

33.7

01.7

16.65

160

0.97
8.43

81.3

0.5 3.68

36

0

20

40

60

80

100

120

140

160

180

10^7 10^8 10^9

EX
EC

U
TI

O
N

 T
IM

E 
(S

EC
O

N
D

S)

PROCESS#

Monte Carlo Pi Estimation

2 4 8 32

https://callhub.io/understanding-python-gil/ https://blog.e-zest.com/non-uniform-memory-architecture-numa/

https://www.brandsoftheworld.com/logo/intel-6

https://callhub.io/understanding-python-gil/
https://blog.e-zest.com/non-uniform-memory-architecture-numa/
https://www.brandsoftheworld.com/logo/intel-6

