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ABSTRACT

With the booming development of intelligent terminals, the applications of speaker recognition have been seen increasingly rapid advances in the past two decades.
However, the flourish of speaker recognition technology still faces many challenges in IoT (Internet of Things) scenarios, especially preventing the disclosure of voiceprint.
preserving speaker recognition scheme, named AGREE, Is proposed for IoT. With AGREE, the speaker’s identity can be recognized In
ne data leakage of voiceprint. To be specific, based on random matrix theory, a voiceprint encryption algorithm and the corresponding
outation over ciphertext algorithm are proposed to achieve the efficient and accurate speaker recognition scheme by computing the match
score of voiceprint over the encrypted I-vector data. Detalled analysis shows that AGREE can resist various known security threats. Moreover, AGREE Is implemented with
a real speaker voiceprint dataset, and extensive simulation results demonstrate that our proposed scheme is highly efficient and can be implemented effectively.
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System Model of AGREE

store the key and other applications cannot read from it.

s UBM trainer is the UBM model trainer and the generator of UBM parameters. It can use some open source
speech voice datasets to train the model and generate parameters. After generating, UBM trainer sends (¢

% |oT devices are waiting for the user's recognition query and then choose a suitable speaker recognition
technology to use, which holds encrypted voiceprints of users. During the recognition phrase, IoT devices
compute the similarity between encrypted registering voiceprint and encrypted recognizing voiceprint, then
send the result of recognition to user. By the way, it can be extended to some smart devices in practice.
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s User is a participant of privacy-preserving speaker recognition, it can be a smart phone or a PC client. %\k&"?’
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User receives the UBM parameter data from UBM trainer. User sends encrypted voiceprint data to S
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Security Model A

Level-l: Security model under ciphertext-only attack. The model is
secure under this kind of adversary attack which can obtain the encrypted
voiceprint and the encrypted queries.

Level-ll: Security model under known-sample attack. With Level-l
security, we assume that the adversary has access to some plaintext
samples in the database but do not know the corresponding ciphertexts.
The model is secure under this kind of adversary attack.

Level-1ll: Security model under chosen-plaintext attack. With Level-I
and Level-Il security model, we assume that the adversary can get a set of
samples Iin the database and know the corresponding ciphertexts of these
samples. Moreover, the adversaries are assumed to enable to generate
gueries of their interest arbitrarily. The model is secure under this kind of

adversary attack. /
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I-vector Encryption Algorithm R

Algorithm 2 i-vector Encryption Algorithm in Registration Algorithm 3 i-vector Encryption Algorithm in Recognition
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