
2. Improved BGN Encrypted Data Generation

Achieving Privacy-Preserving Edit Distance Query in Cloud and Its Application on Genomic Data
Jason Chang (Undergraduate) and Rongxing Lu

Contact Email: jchang@unb.ca, rlu1@unb.ca
Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New Brunswick (UNB)

System Model

ABSTRACT
Edit distance is one of the most frequently used metrics for sequence comparison in many fields, including computational biology. Edit distance approximates the similarity

between sequences by counting the minimum number of operations required to transform one sequence into the other. With recent advances in cloud computing, cloud

servers are capable of providing large-scale storage and powerful computational resources, which motivates researchers to outsource their data for edit distance

computation on larger data sets. However, outsourcing data and computing edit distance on the cloud raise concerns over privacy. In this paper, we propose a secure model

for achieving privacy-preserving edit distance query in cloud. The proposed scheme combines BGN encryption and improved data generation method to securely and

efficiently process the query without revealing original data to the cloud. Additionally, we explore applications on genomic data with block-wise edit distance approximation.

3. Edit Distance Computation

▪ Data Owner: A service provider owns a set of strings

𝑆 = {𝑆1, 𝑆2 , 𝑆3, ⋯ , 𝑆𝑁} which is encrypted before outsourced to the

cloud server. Data owner will also authorize the end user with

some query key. Data owner will not participate in the concrete

edit distance query.

▪ Cloud Server: A powerful entity that stores the outsourced

strings 𝑆 = {𝑆1, 𝑆2 , 𝑆3, ⋯ , 𝑆𝑁} from the data owner and processes

the edit distance queries from the authorized end user.

▪ End User: An authorized user that owns the query key and will

query those records of interest to him/her. It will encrypt its query

string before launching a query.

CIC

Application on Genomic Data

1. BGN Key Authorization

▪ Given the security parameter κ, the data,

owner first generates the bilinear parameters

(𝑁, 𝑔, 𝐺, 𝐺𝑇 , 𝑒) by running 𝐶𝐺𝑒𝑛(𝜅) , where

𝑁 = 𝑝𝑔. Then, the data owner sets the BGN

public key 𝑝𝑘 = (𝑁, 𝐺, 𝐺𝑇 , 𝑒, 𝑔, ℎ) and the

private key 𝑠𝑘 = 𝑝, where ℎ = 𝑔𝑞. Further,

the data owner chooses a cryptographic hash

function 𝐻 ∶ {0.1}∗→ 𝑍𝑁, and also chooses a

secret key 𝜅 ∈ 𝑍𝑁 . Finally, the data owner

keeps (𝑝, 𝜅) secretly, and publishes 𝑝𝑘 =

(𝑁, 𝐺, 𝐺𝑇 , 𝑒, 𝑔, ℎ) and 𝐻 ∶ {0.1}∗→ 𝑍𝑁

Ord 0 1 2 3 4 5 6 7 8 9 10 11 12

𝑀𝑗 ‘M’ ‘I’ ‘D’ ‘L’ ‘F’ ‘N’ ‘A’ ‘S’ ‘E’ ‘O’ ‘T’ ‘U’ ‘Z’

Ord 13 14 15 16 17 18 19 20 21 22 23 24 25

𝑀𝑗 ‘X’ ‘I’ ‘B’ ‘V’ ‘G’ ‘K’ ‘W’ ‘C’ ‘H’ ‘Y’ ‘P’ ‘Q’ ‘R’

▪ The data owner, given a query key 𝑘, will use BGN encryption to generate ciphertext 𝑆𝑖 for each

letter 𝑆𝑖 𝑖𝑛 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 𝑆, 𝑆𝑖 = 𝐸𝑇 𝐼𝐷𝑆, 𝑘, 𝑆𝑖 = 𝑒(𝑔, 𝑔)𝑝∙𝐻(𝐼𝐷𝑠| 𝑘 |𝑆𝑖) ∈ 𝐺𝑇. An end user will prepare its

string Q, 𝑄𝑗 = 𝐸𝑇 𝐼𝐷𝑆, 𝐾, 𝑄𝑗 , 𝑟𝑗 = 𝑔𝐻(𝐼𝐷𝑠| 𝑘 |𝑄𝑗) ∙ ℎ𝑟𝑗 ∈ 𝐺, with a random number 𝑟𝑗 ∈ 𝑍𝑁.

▪ However, when two characters 𝑆𝑖 , 𝑆𝑗 𝑖𝑛 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 𝑆 are the same, we also have [𝑆𝑖] == [𝑆𝑗].

Therefore, instead of repeating the BGN encryption operation, we can perform the improved data

generation:

1. First, randomly order all letters in a set of alphabetical letters 𝑀 = {′𝐴′, ′𝐵′, ⋯ , ′𝑍′}.

2. We generate the ciphertext [𝑀𝑗] for each letter 𝑀𝑗 ∈ 𝑀 and set 𝑀𝑗 . 𝐼𝐷 = Ord(𝑀𝑗).

3. When a character 𝑆𝑖 is equal to 𝑀𝑗, we can simply set [𝑆𝑖]. 𝐼𝐷 = 𝑂𝑟𝑑 𝑀𝑖 and obtain 𝑆𝑖 by

reading 𝐵𝑙[[𝑆𝑖]. 𝐼𝐷].

ID 0 1 2 3 ⋯ 22 23 24 25

[𝑀𝑗] [‘M’] [‘I’] [‘D’] [‘L’] ⋯ [‘Y’] [‘P’] [‘Q’] [‘R’]

The array 𝐵𝑙 to store (index = [𝑀𝑗].ID, value = [𝑀𝑗]) for all 𝑀𝑗∈ 𝑀.

The array to store randomly ordered set 𝑀 = {′𝐴, ′ ′𝐵′, ⋯ , ′𝑍′}.

Note that, without knowing the key 𝑘, the cloud cannot recover 𝑆𝑖, 𝑄𝑗
from𝑒(𝑔, 𝑔)𝑝∙𝐻(𝐼𝐷𝑠||𝑘||𝑆𝑖), 𝑒(𝑔, 𝑔)𝑝∙𝐻(𝐼𝐷𝑠||𝑘||𝑄𝑗), because the unknown 𝑘
makes it impossible to recover them by brute-force guessing. On the

other hand, since the data owner knows 𝑘, he can recover 𝑄𝑗 by

brute-force guessing each value 𝑥 in space, compute 𝐻(𝐼𝐷𝑆||𝑘||𝑥),

and compare whether 𝑒(𝑔, 𝑔)𝑝∙𝐻(𝐼𝐷𝑠||𝑘||𝑄𝑗) == 𝑒(𝑔, 𝑔)𝑝∙𝐻(𝐼𝐷𝑠||𝑘||𝑥). If
yes, the data owner recovers the correct 𝑄𝑗.

▪ In our proposed scheme, the probability to correctly guess 𝑆𝑖 from [𝑆𝑖] is
1

26!
. However, there are only 4 characters for set 𝑀 =

{′𝐴′, ′𝐶′, ′𝐺′, ′𝑇′} in genomic data and thus a higher probability
1

4!
. To address this challenge, we apply the segmentation technique.

▪ We divide each string 𝑆𝑙 ∈ 𝑆 into α segments 𝑆𝑙 = 𝑆𝐺𝑙1, 𝑆𝐺𝑙2, ⋯ , 𝑆𝐺𝑙𝛼 and include the identifier 𝐼𝐷𝑆𝐺𝑙𝑘 for each segment 𝑆𝐺𝑙𝑘 ∈ 𝑆𝑙 into

the encryption. In such a way, when two characters 𝑆𝑙𝑖 𝑎𝑛𝑑 𝑆𝑙𝑗 are in the same segment of a string 𝑆𝑙, we can link their ciphertexts.

However, if 𝑆𝑙𝑖 𝑎𝑛𝑑 𝑆𝑙𝑗 are in different segments of a string 𝑆𝑙, we cannot link their ciphertexts. With this strategy, we can greatly

improve the security of each string 𝑆𝑙 ∈ 𝑆 to
1

(4!)𝛼
=

1

24𝛼
.

ID String

𝐼𝐷𝑆1 𝑆1 = 𝐴𝐵𝐶𝐷…

𝐼𝐷𝑆2 𝑆2 = 𝐵𝐷𝐺𝐷…

… …

𝐼𝐷𝑆𝑁 𝑆𝑁 = 𝑍𝑋𝑊𝐴…

End User Cloud Server

Authorize the
query key

Data Owner

Authorize the processing key

Outsource encrypted string set
𝕊 = {𝑆1, 𝑆2, ⋯ , 𝑆𝑁}

Edit Distance Query (𝑄, 𝐼𝐷𝑆𝑙)

Edit Distance Query Response

▪ In addition, previous studies have reported block-wise approximation algorithm for the edit

distance function. Therefore, we can compute approximate edit distance query defined as:

𝐴𝑝𝑝𝑟𝑜𝑥𝐸𝐷 𝑆𝑙 , 𝑄 ≈ ෍

𝑘=1

𝛼

𝐸𝐷(𝑆𝐺𝑙𝑘 , 𝑄𝑆𝐺𝑘)

