
Achieving Efficient and Privacy-Preserving Top-k Query over Vertically Distributed Data Sources
Yandong Zheng, Rongxing Lu*, Xue Yang and Jun Shao

Contact Email: rlu1@unb.ca
Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New Brunswick (UNB)

System Model

ABSTRACT
Top-k query is an efficient way to find the most important objects from high volumes of data. A common way to process the top-k query over distributed data is to bring them to a

centralized entity (e.g. cloud). However, there are privacy considerations during the top-k query when dealing with sensitive data (e.g. eHealthcare data) in such method. Apart from

data privacy, efficiency also needs to be taken into consideration. In this work, we propose an efficient and privacy-preserving top-k query scheme over vertically distributed data.

Specifically, we first design a data filtering technique to reduce the communication overhead and computational cost. Then, we propose a privacy-preserving top-k query scheme over

encrypted data by deploying the homomorphic encryption technique, which can well preserve the private information and achieve the functionality at the same time. Besides,

performance evaluation validates the efficiency of our proposed scheme.

A. Data Filtering Technique

Design Goals

(1) Top-k Query over Vertically Distributed Data Sources

As shown in Fig. 1, an 𝑙 -dimensional dataset 𝔸 is vertically

partitioned into 𝑙 subsets {𝔸1, 𝔸2, ⋯ , 𝔸𝑙}. Each data record 𝑥 in 𝔸

contains an identity 𝑖𝑑 and 𝑙 attributes 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 . Each 𝔸𝑖

contains 𝑥 in the form of (𝑖𝑑, 𝑥𝑖).

Suppose that the scoring function is 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 = σ𝑖=1
𝑙 𝑤𝑖𝑥𝑖,

where 𝑤𝑖 ∈ [0,1] and σ𝑖=1
𝑙 𝑤𝑖 = 1. Then, the top-k query over

▪ Privacy preservation: The private scoring function, data

stored in the cloud and the top-k query results should

be privacy-preserving.

▪ Efficiency: The proposed scheme should be

communication efficient and computation efficient.

▪ Service Provider (SP): The SP is responsible for bootstrapping the whole scheme.

▪ Data Sources 𝐷𝑆 = {𝐷𝑆1, ⋯ , 𝐷𝑆𝑙}: Data are vertically distributed in 𝐷𝑆, where 𝐷𝑆1 is a

primary data source with 𝑤1 > 0.5 and other 𝐷𝑆𝑖 is secondary data source.

▪ Cloud Server 𝐶𝑆 = {𝑆1, 𝑆2}: 𝑆1 and 𝑆2 cooperate to deal with data storing and query request.

▪ Query-authorized Users 𝑈 = {𝑈1, 𝑈2⋯}: Each 𝑈𝑖 can request a top-k query to the cloud

and receive the desirable result.

CIC

vertically distributed data sources is to find 𝑘 data records from a

set of vertically distributed subsets {𝔸1, 𝔸2, ⋯ , 𝔸𝑙} , where the

selected 𝑘 data records have the highest overall scores.

(2) Data Filtering Technique

Suppose that each 𝐷𝑆𝑖 has a dataset 𝔸𝑖, the attribute values in 𝔸1

has been transformed to 0,1 by the standardization and 𝔸1 is

sorted in the descending order of the attribute values 𝑥1. Before

outsourcing data to the cloud for top-k query, the primary data

source 𝐷𝑆1 can filter on the subset 𝔸1 and the filtered subset is

𝔸1
′ = {𝐴1 1 , 𝐴1 2 ,⋯ , 𝐴1 𝑁1 − 1 }, where 𝐴1 𝑁1 is the first data

record that satisfies 𝑤1𝐴1 𝑁1 . 𝑣𝑎𝑙𝑢𝑒 + 1 − 𝑤1 < 𝑤1𝐴1 𝑘 . 𝑣𝑎𝑙𝑢𝑒. At

the same time, each secondary 𝐷𝑆𝑖 refers 𝔸1
′ to filter the subset 𝔸𝑖

and the filtered subset 𝔸𝑖
′ = {𝐴𝑖[𝑗]|𝐴𝑖 𝑗 . 𝑖𝑑 ∈ 𝐼𝐷′} , where 𝐼𝐷′ =

{𝐴1 𝑗 . 𝑖𝑑|1 ≤ 𝑗 ≤ 𝑁1 − 1} contains all identities in 𝔸1
′ .

*This work has been accepted by IEEE International Conference on Communications 2019.

Fig. 1. Explanation for vertically distributed data sources

B. The Proposed Top-k Query Scheme over Vertically Distributed Data
(1) System Initialization

The SP generates public key 𝑝𝑘, private key 𝑠𝑘 = (𝑠1, 𝑠2), and a

set of access keys 𝐴𝐾 = {𝑎𝑘1, 𝑎𝑘2, ⋯ , 𝑎𝑘𝑙}. Meanwhile, the SP

determines the weight values {𝑤1, 𝑤2, ⋯ ,𝑤𝑙} of the scoring

function 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 = σ𝑖=1
𝑙 𝑤𝑖𝑥𝑖. Then, SP will send security

keys and weight values to corresponding entities.

(2) Local Data Filtering and Outsourcing

Each 𝐷𝑆𝑖 has a dataset 𝔸𝑖 and receives 𝑤𝑖 from SP. Before data

outsourcing, 𝐷𝑆𝑖 conducts data filtering and encryption as follows.

Step-1: The primary 𝐷𝑆1 sorts the data records in 𝔸1 in the

descending order of the attribute values and searches the first 𝑁1
such that 𝑤1𝐴1 𝑁1 . 𝑣𝑎𝑙𝑢𝑒 + 1 − 𝑤1 < 𝑤1𝐴1 𝑘 . 𝑣𝑎𝑙𝑢𝑒 . Let 𝔸1

′ =

{𝐴1 1 , 𝐴1 2 ,⋯ , 𝐴1 𝑁1 − 1 } and 𝐼𝐷′ = {𝐴1 𝑗 . 𝑖𝑑|1 ≤ 𝑗 ≤ 𝑁1 − 1} .

Then, 𝐷𝑆1 broadcasts 𝐼𝐷′ to other data sources.

Step-2: Based on 𝐼𝐷′, each secondary 𝐷𝑆𝑖 generates the filtered

dataset 𝔸𝑖
′ = {𝐴𝑖[𝑗]|𝐴𝑖 𝑗 . 𝑖𝑑 ∈ 𝐼𝐷′}.

Step-3: Each 𝐷𝑆𝑖 encrypts each 𝐴𝑖
′[𝑗] ∈ 𝔸𝑖

′ as 𝐸𝑝𝑘 𝑤𝑖𝐴𝑖
′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒

and 𝐴𝐸𝑆𝑎𝑘𝑖(𝐴𝑖
′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒), where 1 ≤ 𝑗 ≤ 𝑁1 − 1.

Step-4: Each 𝐷𝑆𝑖 outsources encrypted data to 𝑆1 and 𝑆1
organizes the encrypted dataset as 𝔸′ = {𝑖𝑑 = 𝐴1

′ 𝑗 . 𝑖𝑑,

𝑐𝑖𝑝ℎ𝑒𝑟1 = (𝐸𝑝𝑘 𝑤1𝐴1
′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒 ,⋯ , 𝐸𝑝𝑘 𝑤𝑙𝐴𝑙

′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒),

𝑐𝑖𝑝ℎ𝑒𝑟2 = (𝐴𝐸𝑆𝑎𝑘1 𝐴1
′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒 ,⋯ , 𝐴𝐸𝑆𝑎𝑘𝑙 𝐴𝑙

′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒)

|1 ≤ 𝑗 ≤ 𝑁1 − 1}.

(3) Top-k Query over Encrypted Data

User 𝑈𝑖 can enjoy the top-k query service as the following steps.

Step-1: 𝑈𝑖 chooses a random session key 𝑎𝑘 and sends query

request with 𝐸𝑝𝑘(𝑘||𝑎𝑘) to 𝑆1.

Step-2: On receiving query request, 𝑆1 and 𝑆2 cooperate to

recover 𝑘 and 𝑎𝑘 from 𝐸𝑝𝑘(𝑘||𝑎𝑘). Then, 𝑆1 first builds a minimum

heap of size 𝑘 using the first 𝑘 data records of 𝔸′ and the overall

score of each heap node is used as the key value of the heap. For

𝐴′[𝑗] ∈ 𝔸′ , the heap node has attributes 𝐴′ 𝑗 . 𝑖𝑑, 𝐴′ 𝑗 . 𝑐𝑖𝑝ℎ𝑒𝑟1 ,

𝐴′ 𝑗 . 𝑐𝑖𝑝ℎ𝑒𝑟2 and 𝐸(𝑓(𝐴′ 𝑗)), where 𝐸(𝑓 𝐴′ 𝑗) is the overall

score of 𝐴′ 𝑗 in ciphertext and it can be computed as

𝐸 𝑓 𝐴′ 𝑗 = ς𝑖=1
𝑙 𝐸𝑝𝑘 𝑤𝑖𝐴𝑖

′ 𝑗 . 𝑣𝑎𝑙𝑢𝑒 .

Step-3: Compare each 𝐴′[𝑗] ∈ 𝔸′ with the root node of the heap, If

𝑓(𝐴′ 𝑗) is larger than that of the root node, delete the root node

and insert 𝐴′ 𝑗 into the heap. Otherwise, continue to consider the

next data record in 𝔸′. The top-k query is finished until all data

records in 𝔸′ have been checked.

Step-4: Suppose that 𝑇 ⊆ 𝔸′ is the 𝑘 data records in the heap, 𝑆1
encrypts each 𝑇[𝑗] ∈ 𝑇 as 𝐴𝐸𝑆𝑎𝑘(𝑇 𝑗 . 𝑐𝑖𝑝ℎ𝑒𝑟2) and sends them to

𝑈𝑖.

Step-5: On receiving the query results, the query user 𝑈𝑖 first uses

the session key 𝑎𝑘 to recover {𝑇 𝑗 . 𝑐𝑖𝑝ℎ𝑒𝑟2|1 ≤ 𝑗 ≤ 𝑘} . Then,

he/she can recover the data records in plaintext by using the

access key 𝐴𝐾.

C. Performance Evaluation

Fig. 2. Each 𝐷𝑆𝑖 ’s runtime for encrypting outsourced

data records varying with 𝑤1

Fig. 3. The runtime of top-k query over encrypted data

varying with 𝑤1

Fig. 4. The communication overhead of 𝐷𝑆𝑖-to- 𝑆1
varying with 𝑤1

