
Achieving Efficient and Privacy-Preserving k-NN Query for Outsourced eHealthcare Data
Yandong Zheng, Rongxing Lu* and Jun Shao

Contact Email: rlu1@unb.ca 
Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New Brunswick (UNB)

System Model

ABSTRACT
The boom of Internet of Things devices promotes huge volumes of eHealthcare data are collected and aggregated at eHealthcare provider. As eHealthcare data are very sensitive yet

cloud servers are not fully trusted today, many security, privacy and efficiency challenges will arise when cloud meets eHealthcare data. In this work, aiming at addressing the privacy

and efficiency challenges, we present an efficient and privacy-preserving k Nearest Neighbors (k-NN) query scheme for encrypted eHealthcare data in cloud. The proposed scheme is

characterized by integrating 𝑘d-tree, homomorphic encryption technique as well as a proposed monotonically increasing and one-way function for efficient storing encrypted data in the

cloud and privacy-preserving k-NN query over encrypted data.

A. 𝒌d-tree Technique

Design Goals

Definition of 𝒌-tree: The 𝑘d-tree is a binary tree and each

tree node is a 𝑘 dimensional data record. Meanwhile, each

tree node 𝑥 contains four attributes 𝑐𝑑, 𝑑𝑎𝑡𝑎, 𝑙𝑒𝑓𝑡, and

𝑟𝑖𝑔ℎ𝑡, which denote the cutting dimension, key value, left

child and right child, respectively. We use 𝑥. 𝑐𝑑, 𝑥. 𝑑𝑎𝑡𝑎,

𝑥. 𝑙𝑒𝑓𝑡 and 𝑥. 𝑟𝑖𝑔ℎ𝑡 to denote attributes of 𝑥, respectively.

In addition, the 𝑘d-tree satisfies order relation, i.e., for each

tree node 𝑥,

𝑥. 𝑙𝑒𝑓𝑡. 𝑑𝑎𝑡𝑎 𝑥. 𝑐𝑑 ≤ 𝑥. 𝑑𝑎𝑡𝑎 𝑥. 𝑐𝑑 < 𝑥. 𝑟𝑖𝑔ℎ𝑡. 𝑑𝑎𝑡𝑎 𝑥. 𝑐𝑑 .

Algorithm of k-NN query: As shown in Algorithm 3, in the

k-NN query, we adopt the Best Bin First Search strategy,

which will give a higher searching priority for those

subtrees that are more likely to contain the 𝑘 nearest data

records. At the same time, we use a priority queue 𝑃𝑄 with

size 𝑘 to store the current top 𝑘 closest data records with

the query data record 𝑥. The data records in the queue are

stored in the descending order of distances with the query

data record 𝑥, i.e., 𝑃𝑄1 has the largest distance with 𝑥.

With the priority queue, a subtree 𝑇 can be pruned when it

satisfies (𝑥 𝑐𝑑 − 𝑇. 𝑑𝑎𝑡𝑎[𝑐𝑑])2.

▪ Privacy preservation: The data stored in

the cloud and the k-NN query records

and corresponding query results should

be privacy-preserving.

▪ Computation efficiency: The proposed

scheme should be computation efficient

in terms of k-NN query.

▪ Data Owner: Data owner outsources encrypted

data to the cloud.

▪ Cloud Server 𝐶𝑆 = {𝑆1, 𝑆2}: 𝑆1 and 𝑆2 cooperate to

store outsourced data and process k-NN query

requests from users.

▪ Users 𝑈 = {𝑈1, 𝑈2⋯}: Each 𝑈𝑖 can request a k-NN

query to the cloud and receive the desirable result.

CIC

*This work has been accepted by the Journal of Medical Systems.

Fig. 1. An example of 𝑘d-tree

Security Model
▪ Data Owner: The data owner is considered to be

honest.

▪ Cloud Server: Both 𝑆1 and 𝑆2 are honest-but-

curious, but they are not allowed to collude.

▪ Users: The authorized users are honest, but

unauthorized users may launch some malicious

attacks.

B. The Monotonically Increasing and One-way Function

Suppose 𝐷 = {𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙)|𝑥𝑖 ∈ 𝑍+, 𝑥𝑖 ≤ 𝑈, 𝑖 = 1,2,⋯ , 𝑙} is an 𝑙 dimensional dataset, where 𝑈

is the upper bound of all data values in 𝐷. Let 𝐷𝑆 = {𝑑𝑖𝑠𝑡2 𝑥, 𝑦 = σ𝑖=1
𝑙 (𝑥𝑖 − 𝑦𝑖)

2|𝑥, 𝑦 ∈ 𝐷} denote a

set of Euclidean distances, which contains the distance of any two data records in 𝐷. Then, we can

construct a function 𝑓, which maps each 𝑑2 ∈ 𝐷𝑆 to 𝑓(𝑑2). In specific, for each 𝑑2 ∈ 𝐷𝑆, 𝑓(𝑑2) is

𝑓 𝑑2 = 𝑎1 𝑑2 𝑚𝑜𝑑 Δ + 𝑎2 𝑑2 𝑚𝑜𝑑 Δ +⋯+ 𝑎𝑛 𝑑2 𝑚𝑜𝑑 Δ + 𝑒

where Δ = 𝑙 ∙ 𝑈2, each coefficient 𝑎𝑖 is an integer and 𝑎𝑖 > ∆𝑖 for 𝑖 = 1,2,⋯ , 𝑛. In addition, 𝑒 is a

noise and randomly chosen from (Δ, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛).

Theorem 1: The function 𝑓 is a monotonically increasing and one-way function.

C. The Proposed k-NN Query Scheme

(1) System Initialization

Data owner bootstraps the whole system. In specific, the data owner generates Paillier’s

public key 𝑝𝑘 and private key 𝑠𝑘, randomly selects access key 𝑎𝑘 and chooses AES

algorithm as the basic encryption algorithm. Then, it will publish the public key 𝑝𝑘, and

distribute 𝑠𝑘 to cloud server 𝑆2. At the same time, it also sends 𝑎𝑘 to each authorized user.

(2) Outsourcing Encrypted Data to the Cloud

The data owner encrypts and outsources dataset 𝐷 = {𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙)}as follows.

Step-1: Build an 𝑙d-tree for the dataset 𝐷 using 𝑙d-tree building algorithm.

Step-2: Encrypt the built tree. In specific, for the key value of tree node 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙),

the data owner encrypts it as 𝐸 𝑥 = 𝐸 𝑥1 , 𝐸 𝑥2 , ⋯ , 𝐸(𝑥𝑙 , 𝐴𝐸𝑆𝑎𝑘 (𝑥)), and outsources

the encrypted 𝑙d-tree to the cloud server 𝑆1.

(3) Maintaining Encrypted Data in the Cloud

After outsourcing the encrypted 𝑙d-tree to the cloud, data owner maintains the 𝑙d-tree by

either inserting a new record or deleting an obsolete one.

Insertion: Data owner can insert 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙) into the encrypted 𝑙d-tree as follows.

First, data owner sends 𝐸 𝑥 = 𝐸 𝑥1 , 𝐸 𝑥2 , ⋯ , 𝐸(𝑥𝑙 , 𝐴𝐸𝑆𝑎𝑘 (𝑥)) to 𝑆1. Then, 𝑆1 inserts

𝐸 𝑥 into the encrypted 𝑙d-tree by the insertion algorithm. Since 𝑆1 cannot access the

plaintext 𝑙d-tree, he/she will face a challenge when running the insertion algorithm, i.e.,

how to compare two encrypted data. This can be solved by running the privacy-preserving

data comparison protocol.

Deletion: Data owner can delete 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑙) from the encrypted 𝑙d-tree. First,

he/she 𝐸 𝑥 = 𝐸 𝑥1 , 𝐸 𝑥2 , ⋯ , 𝐸(𝑥𝑙 , 𝐴𝐸𝑆𝑎𝑘 (𝑥)) to 𝑆1. Then, 𝑆1 deletes 𝐸(𝑥) from the

encrypted 𝑙d-tree according to the deletion algorithm. During the deletion process, 𝑆1 also

solves the encrypted data comparison by the privacy-preserving data comparison protocol.

(4) k-NN Query over Encrypted Data

User 𝑈𝑖 can query the k nearest data records with 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑙) as the following steps.

Step-1: 𝑈𝑖 encrypts 𝑦 as 𝐸 𝑦 = (𝐸 𝑦1 , 𝐸 𝑦2 , ⋯ , 𝐸(𝑦𝑙)), and sends a k-NN query request

as well as 𝐸(𝑦) to the cloud server 𝑆1.

Step-2: On receiving the query, 𝑆1 cooperates with 𝑆2 to run the k-NN query algorithm over

encrypted 𝑙d-tree. Similarly, encrypted data comparison can be processed by the privacy-

preserving data comparison protocol, and Euclidean distance computation can be

computed by the privacy-preserving Euclidean distance computation protocol, which

integrates the permutation technique with a monotonically increasing and one-way

function 𝑓. After running k-NN algorithm, the query results (i.e., 𝑘 nearest data records)

are stored in 𝑃𝑄.

Fig. 2. Privacy-preserving data 

comparison protocol

Fig. 3. Privacy-preserving Euclidean 

distance computation protocol


