
Scalable Privacy-Preserving Query Processing Over Ethereum Blockchain
Shlomi Linoy, Hassan Mahdikhani, Suprio Ray, Rongxing Lu, Natalia Stakhanova and Ali Ghorbani

Canadian Institute for Cybersecurity (CIC), University of new Brunswick (UNB)

.

System Model

ABSTRACT
Blockchain technologies have recently received considerable attention, partly due to the success of crypto-currency applications such as Bitcoin and Ethereum. As the adoption of blockchain
technologies by various sectors increases, there is a need for tools that enable regulation enforcement, for e.g. enabling auditors to monitor, examine and ensure compliance of the data stored by
the blockchain systems with regulations in a privacy preserving way. Primarily a transaction repository, blockchain based systems provide very limited query support and extending it could be
cumbersome. For instance, the execution of queries over an Ethereum client requires the installation of a client node (e.g. Geth), and its synchronization with the whole Ethereum network can
take several days. Furthermore, its current query support (using Web3 API) is limited to basic search capabilities, like searching a block by a single block number or hash code, which can be time
consuming and inefficient when a large number of blocks or transactions are required. Finally, there is no support for privacy-preserving query processing within Ethereum clients. To address
these issues, we propose a system that can provide auditors with efficient, scalable and richer blockchain query processing over Hadoop and synchronized Ethereum clients. In addition, the
system ensures the auditors' privacy by utilizing cryptography techniques over semi-trusted servers to protect the auditors' identities, queries and their results in all involved parties.

As an increasing number of sectors integrate blockchaintechnologies, it is important to have an efficient and secureauditing system to help monitor and analyze blockchainrepositories
while preserving the auditors’ privacy. To thisend, our proposed system uses big data processing tech-niques to support all the above requirements. Thanks to bigdata infrastructures
being very affordable and accessible, inaddition to having blockchain repositories transparent bydesign, any private, academic, or commercial entity caneasily implement and use the
proposed system. Our systemprovides a secure, robust, and scalable way to process SQLqueries over any blockchain and enables multiple auditorsto execute queries over blockchain
data in an efficientand scalable way, while preserving the privacy of auditors’identities and prevent the disclosure of the queries beingused and their results. It supports SQL queries
with rangeand aggregate functions. It transforms each SQL queryinto MapReduce tasks to be run using Hadoop. An in-memory B+Tree-based index is utilized to index
existingEthereum blocks. The system uses Hadoop to fetch missingblocks from Ethereum clients. We conducted a systematicperformance study, which suggests that the system’s
per-formance can improve by adding more Hadoop nodes andmore synchronized Ethereum clients.

Ethereum’s Block/Transaction

Conclusion

CIC

Performance Evaluation

User Query
 Encrypted Batches
 Generate Hashset of User
Requested Blocks

Proxy Machine Server

 Decrypt Batches

 Search B+Tree Index

 Decrypt Proxy’s Response
Apply remaining where clause
conditions
Apply the aggregate functions

Encrypt Batches
 Generate Hash for each Batch

 Run MapReduce Job to Fetch from Geth
 Store the Result in HDFS Repository
 Update the B+Tree (BlockID & UUID)

 Retrieve UUID File from B+Tree
 Run MapReduce Job to Retrieve Blocks’
Data from HDFS

11

8 17

2 5 8 10 13 14 15 18 20

f1 f8 f3 f4 f2 f2 f6 f7f5

User/Client

N

Y

SK SK

 Store the Hashset
{H(LxǁUxǁSK), H(LyǁUyǁSK), …, H(LzǁUzǁSK)}

 Forward Encrypted Batches

Enc(L2--U2, SK), H(L2ǁU2ǁSK)

Enc(L1--U1, SK), H(L1ǁU1ǁSK)

Enc(Lk--Uk, SK), H(LkǁUkǁSK)

. . .

. .
 .

N
od

e1

N
od

e2

 N

od
en

Hadoop Cluster

. .
 .

G
et

h1

 G
et

h2

 G

et
hm

Geth Clients

L2--U2L1--U1 Lk--Uk

. . .

 Filter the Batches by
Comparing Stored Hashset

Enc(L2--U2, SK)

Enc(L1--U1, SK)

Enc(Lk--Uk, SK)

. .
 .

User’s Requested Blocks Hashset
{H(LxǁUxǁSK), H(LyǁUyǁSK), …, H(LzǁUzǁSK)} . . .



. . .

Ly--UyLx--Ux Lz--Uz

. . .

BlockBody

Size TXs RcvdAt RcvdFromTDUncles Hash

BlockHeader

BlckNum (N)

ParentHash UnclesHash CoinBase StateRoot RcptHash LogsBloomTxHash

Difficulty GasLimit GasUsed Timestamp ExtraData MixDigest Nonce

Transaction(S)

Price GasLimitAcntNonce Recipient Amount Payload

FromSizeHash

BlockBody

BlockHeader
N-1

Transaction(S)

BlockBody

BlockHeader
N+1

Transaction(S)

Flow of User Query Execution

1. Decrypt batches to find block numbers’
range.
2. Fetch missing blocks from Ethereum client
using MapReduce job and store them in HDFS.
3. Retrieve previously fetched data using
MapReduce (if blocks have been indexed in
B+Tree).
4. Split results and encrypt each batch
result.
5. Generate hash for each batch’s range.

Server

Send Encrypted Result and Hashes

Filter the batch set using
previously saved client
hashset values.

User Send Query
SELECT MAX(value) FROM transactions WHERE block_number BETWEEN 100 AND 2000

1. Parse query.
2. Extract fetch query:
SELECT * FROM transactions WHERE
block_number BETWEEN 100 AND 2000.
3. Calculate extended range and update
query:
SELECT * FROM transactions WHERE
block_number BETWEEN 87 and 2061.
4. Split the new extended range into
batches.
5. Encrypt batches.
6. Generate hashset for batches that
contain blocks between 100 and 2000.

Save client hashset

Proxy

Send Encrypted Batches

Send Filtered Encrypted Batches

Client

Send Enc. Batches and Hashset

Send Final Result

1. Decrypt and merge encrypted batches
into fetch_result.
2. Execute remaining user query parts:
SELECT MAX(value) FROM fetch_result

0

50

100

150

200

250

300

350

400

100 1K 10K 100K 200K 300K 400K 500K

Ti
m

e(
s)

Client - Execute Aggregate Function

Client - Response Decryption & Apply Filtering

Proxy - Filter Result

Server - Result Encryption

0

50

100

150

200

250

300

350

100 1K 10K 100K 200K 300K 400K 500K

Ti
m

e(
s)

Client - Response Decryption & Apply Filtering

Proxy - Filter Result

Server - Result Encryption

Averall Average
Breakdown

48.49

19.36

32.15

Fetching from HDFSFetching from Ethereum Geth clients SELECT MAX (value)
FROM transactions
WHERE blocknumber
BETWEEN <LB> AND <UB>.

SELECT *
FROM transactions
WHERE blocknumber
BETWEEN <LB> AND <UB> AND
accountaddress = <someaccountaddress>

	Slide Number 1

