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Problem DeepMACIE

Rule Generation

The success of neural network, which most of the deep learning algorithms are built upon, is
influenced by its major shortcoming, i.e., it cannot justify the inference it makes. Adding an ex-
planation feature to a neural network would enhance its trustworthiness and learning capability.
This add-on feature, usually represented by if-then rules, could be employed in safety-critical
systems. The explanation capability of a neural network would improve its generalization in
the classification or help the system to supplement additional data to the incomplete dataset
based on the values of the condition and action parts.

Rule Evaluation

| Deep Neural Network |

AN

Rule Extraction

Evaluate Selected
Rules with Test Data

: : » \V Y Activation Values Output
Data KK7 i{%,,lh. X% Bias Values (Removing duplicates Metrics
g O SO O " f—— and >
" A major concern in the area of cybersecurity is to give a clear explanation of the internal \‘X(’V" ‘< \,N,b,'/.\’\&"{/ X <
: : NP Uncovered RSP BRIRITKES S Conflicting Rules) Take the Majority Vot
logic of the system and obtain an insight into the problem. Samples x3 '1',:}‘\ KOS 917'*1\‘ /2 Normalization a gf eaeCh aF{(JIne >|/oero e
. . . . AT % . . .
" The main goal of this paper is to extract refined rules from a trained Deep Neural Network //;‘\‘ "‘5‘}:\\'//7)’{\\ and Discretization Sample Based on
(DNN) to substitute the deep learning model for classifying unseen Android malware sam- x4 \\'//‘\\‘ A of Bias and Select Rules both Rule Confidence
> V Activation Values
oles. \\\\ with High Confidence and Coverage

Matrix Controlled Inference Engine (MACIE)

MACIE is a medical diagnostic expert system developed in the mid-1980s.
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clauses generated so far give a valid justification that is maximally general. = Android Malware Dataset Table: Evaluation metrics on the training bins of the Android malware dataset.
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9:  Find an input j € vars_unused such that y;.w; ;.z; > 0 and |w; ;| is maximized = 2,909 samples were run successfully in Copperdroid

10: Output rule condition ¢; ; using z; € = and its activation value. = Four categories: banking, adware, and SMS malware, and benign DNN 0.99 0.99/7 0.993 0.99 0.025 0.003
11:  r; = append(r;, ¢; ;) = 134 distinct system calls as feature vector DeepMACIE 0.9/74 0.957 0.966 0.951 0.065 0.043
12: current .= current + w; ;.x; C . :
! = Adam Opti tion Algorith ters fine-tuned
13: unknown = unknown — |w; ;| A PRITzation ASOTL (Parame ers fine-tuned) Table: Comparison of the average ACC, FPR, and F; of DNN with DeepMACIE and J48
14:  vars unused := vars_unused — {5} = Cross-Entropy as the loss function

Android Malware Dataset ACC (%) FPR (%) F; (%)

15: end while = Sigmoid as the activation function

16: return r; = Stratified 5-folds cross-validation DNN 100 0.3 100
DeepMACIE (retrain uncovered samples) 95 5.7 88
Table: Classification metrics (%) of DNN for different values of a and 3, Decision Tree (J48) 39 11 89
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We did a series of experiments to optimize the parameters of the deep network.

Table: Classification metrics (%) of DeepMACIE for different values of a and 3 " The outstanding performance of DeepMACIE on the training data bins proves that
V(///A\\ ' ° P @ 1 our approach is promising enough to be applied to real cybersecurity datasets.
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