
Problem Statement

• Modern processors are very fast.

• Modern memory has failed to keep up.

• Can result in the processor waiting for data to load from memory. 

• Caches can mitigate the impact sometimes.

• On cache miss, get data from slow main memory.

• Wasted time, lower performance. 

• Certain code patterns are more likely to cause those waits.

• Aim to reduce the number of times the processor is forced to 

wait.

• Many modern languages, e.g., Java, run in an environment

called a Virtual Machine (VM).

• Different design choices can change the number of waits.

Load Stall Minimization

Solution Rationale

• We want to reduce the number of waits by using the cache more 

judiciously.

• The behaviour of the CPU is dependent on the program 

structure.

• Being able to predict what the CPU will be trying to access next 

would be very useful.

• We can modify the VM to provide us with information on the 

programs being run.

Proposed solution

• We aim to make a predictor that specifically targets a problematic 

type of access.

• Our predictor analyzes the input program and makes a 

prediction.

• Those predictions can be used to better organize objects in 

memory and better utilize the caches.

• The better organization can help mitigate the number and effects

of those waits and thus improve performance.

Hassan S. A. Arafat, David Bremner, Kenneth B. Kent

{harafat,bremner,ken}@unb.ca

Faculty of Computer Science, University of New Brunswick

Julian Wang

zlwang@ca.ibm.com

IBM JIT PPC CodeGen, IBM Canada

Central 
Processing Unit 

(CPU)

Main Memory

Caches

Slow access from 
main memory

Virtual Machine Predictor

Prediction

Program

Optimization

Access 
Patterns

Memory

Fig. 2, Proposed solution structure

Fig. 1, Memory accesses


	Slide 1

