
Problem Statement

• Modern processors are very fast.

• Modern memory has failed to keep up.

• Can result in the processor waiting for data to load from memory. 

• Caches can mitigate the impact sometimes.

• On cache miss, get data from slow main memory.

• Wasted time, lower performance. 

• Certain code patterns are more likely to cause those waits.

• Aim to reduce the number of times the processor is forced to 

wait.

• Many modern languages, e.g., Java, run in an environment

called a Virtual Machine (VM).

• Different design choices can change the number of waits.

Load Stall Minimization

Solution Rationale

• We want to reduce the number of waits by using the cache more 

judiciously.

• The behaviour of the CPU is dependent on the program 

structure.

• Being able to predict what the CPU will be trying to access next 

would be very useful.

• We can modify the VM to provide us with information on the 

programs being run.

Proposed solution

• We aim to make a predictor that specifically targets a problematic 

type of access.

• Our predictor analyzes the input program and makes a 

prediction.

• Those predictions can be used to better organize objects in 

memory and better utilize the caches.

• The better organization can help mitigate the number and effects

of those waits and thus improve performance.
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Fig. 2, Proposed solution structure

Fig. 1, Memory accesses
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