
Detection and Mitigation of Load Stalls on AArch64

Used Technologies

• AArch64 Assembly, Bash, C/C++, Java, Python

• Git, Perf

• Windows & Linux

Automated Framework

• Procedure is the same for all benchmarks

• Flexible

• Minimize manual processes

Jonas R. Schönauer, David Bremner, Kenneth B. Kent
Faculty of Computer Science, University of New Brunswick

{jonas.schoenauer,bremner,ken}@unb.ca

Julian Wang
IBM Canada

zlwang@ca.ibm.com

Load Stalls

• Processors use pipelines to increase instruction throughput

• Loading data from memory is costly

• When the processor waits for data it stalls

• Two different stall types

• Backend Stall

• Frontend Stall

AArch64

• Simple Instruction Set

• Few instructions can lead to frontend or backend stalls

Motivation

• Detect impact of Load Stalls on OpenJ9 runtime

• Previously shown: Load Stalls have a high impact on x86

• Automize data gathering process

Preliminary Results

Benchmarking Procedure

• Impact of Backend Stalls seems to be higher

• However, the averages are relatively close

• Impact comparison might not be suitable

Example: Stall

	Slide 1

