
Problem Statement

Calling dynamically generated functions is a complex task in terms 

of setting up the parameters and return values. This is a study of the 

complexity and performance of multiple approaches to addressing 

this issue.

Definitions

• Eclipse OMR – Collection of language-agnostic tools for 

language runtime environment construction

• Eclipse OMR JitBuilder – an API, simplifying access to the 

compiler. 

• Libffi – Multi-platform open source project assisting with setting 

up function calls

Example scenario

• Interpreter stack is composed of Values –union type for int32, 

int64, float, double, 128-bit int

• A function pointer of void (*) (...) type is compiled;

• Interpreter stack changes before call

• Call is executed

• Interpreter stack changes after call

Complexity of the problems grows exponentially

• Number of types the language supports

• Number of parameters and their order

• Number of return values (0 or 1)

• Void return type is supported, so fn(); is a valid call

The maximum number of possible calls is
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Calling Functions Dynamically Generated

By Eclipse OMR JitBuilder

The program complexity grows exponentially

switch(numberOfParams){
case 1 :
switch(numberOfReturnValues){
case 1:
switch(returnType){
case Type::I32:
switch (param0Type){
case Type::I32:{

uint32_t rv;
rv=reinterpret_cast<uint32_t (*)(uint32_t)>(fn)(param0); 
Push(rv);

Proposed solutions and their characteristics

• Hard-coding a switch table

• Generating functions using OMR JitBuilder to modify the 

interpreter stack and execute call – entry functions

• Using a library solution

For a program that has ten methods calling one another in a chain

Future work

• Preparing a call at runtime using

#include <functional>

• Explore boost library
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