
Problem Statement

Calling dynamically generated functions is a complex task in terms

of setting up the parameters and return values. This is a study of the

complexity and performance of multiple approaches to addressing

this issue.

Definitions

• Eclipse OMR – Collection of language-agnostic tools for

language runtime environment construction

• Eclipse OMR JitBuilder – an API, simplifying access to the

compiler.

• Libffi – Multi-platform open source project assisting with setting

up function calls

Example scenario

• Interpreter stack is composed of Values –union type for int32,

int64, float, double, 128-bit int

• A function pointer of void (*) (...) type is compiled;

• Interpreter stack changes before call

• Call is executed

• Interpreter stack changes after call

Complexity of the problems grows exponentially

• Number of types the language supports

• Number of parameters and their order

• Number of return values (0 or 1)

• Void return type is supported, so fn(); is a valid call

The maximum number of possible calls is

#𝑶𝒇𝑻𝒚𝒑𝒆𝒔

𝒑=𝟎

𝒎𝒂𝒙#𝑶𝒇𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔

(#𝑶𝒇𝑻𝒚𝒑𝒆𝒔 − 𝟏)𝒑

Calling Functions Dynamically Generated

By Eclipse OMR JitBuilder

The program complexity grows exponentially

switch(numberOfParams){
case 1 :
switch(numberOfReturnValues){
case 1:
switch(returnType){
case Type::I32:
switch (param0Type){
case Type::I32:{

uint32_t rv;
rv=reinterpret_cast<uint32_t (*)(uint32_t)>(fn)(param0);
Push(rv);

Proposed solutions and their characteristics

• Hard-coding a switch table

• Generating functions using OMR JitBuilder to modify the

interpreter stack and execute call – entry functions

• Using a library solution

For a program that has ten methods calling one another in a chain

Future work

• Preparing a call at runtime using

#include <functional>

• Explore boost library

Georgiy Krylov, Gerhard W. Dueck, Kenneth B. Kent
Faculty of Computer Science, University of New Brunswick

Younes Manton
IBM Canada

{gkrylov|gdueck|ken}@unb.ca {ymanton@ca.ibm.com}

Scalability Ease of use Performance

Hardcoded Worst Average Better

Entry functions Easy Average Varying

8.5E+06

9.5E+06

1.1E+07

1.2E+07

1.3E+07

1.4E+07

1.5E+07

1.6E+07

1.7E+07

1.8E+07

Ex
ec

u
ti

o
n

 T
im

e
(n

s)

Ith Run

Average Execution time Across Multiple Program Runs

 FULL

 INTERP

 MIXED - entry

 MIXED - hardcoded

 MIXED - libffi

