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Background | ~ Motivation

* Java programs are executed on JVMs aiter being translated Into . MicroJIT lacks support for array bytecodes, requiring switching
bytecodes, which can be interpreted or compiled. back to the interpreter for execution, which hinders

» JIT compilers boost the performance of interpreted Java performance. Expanding bytecode support can improve JVM
programs on the otherwise slow JVM. performance.

» Testarossa JIT (TRJIT) is the default optimizing compiler in

Eclipse OpenJ9 JVM. |
Implementation

* Templates for different array bytecodes consist of predefined

VM . . .
[ Load method ] assembly sequence, written in Netwide Assembler (NASM).
« Continuous arrays use fast path; Discontinuous use helper
y function that allocates memory in different regions.
es Method JT No _ _
compiled3 required? * To check the correctness of the bytecodes, Junit regression test
Vo framework is used.
Compile with MicroJIT i | . . P
=— ;mPiled‘ MicroJIT public static int arraylLengthTest(int[] arr t) { P, JBaload®
code No ; return arr_t.length; 1, JBarraylength
Compile 2, JBreturnl
v with TRJT
G
[ ;::hled)(t ]( Interpret method < template start arraylengthTemplate

_64bit slot stack to rXX rax,0 . grab the reference from the operand stack

Arrays and Arraylets
* QOur goal Is to enable non-contiguous memory allocation In

pop single slot © reduce the mjit stack by one slot

mov r1ld, dword [rax+0x4] - grab array elements size after 4 bytes of header

_ push single slot . 1ncrease the stack by 1 slot
MicroJIT arrays. mov dword [r10], rlld

« Small arrays are allocated contiguously; large arrays are split Into R R N I e
arraylets and allocated across regions.

* Arraylets are composed of a metadata spine and leaves, with

+ push r1l value to stack

Evaluation Plan

* We intend to evaluate and compare the performance of the JVM,
featuring array implementation in MicroJIT, against the interpreter
and TRJIT, both with and without optimization.

HEAP * Our primary emphasis Is on evaluating key metrics, including

arrayoids serving as pointers to the leaves.

........... compile time, execution time, and memory footprint.
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