
Background
• Java programs are executed on JVMs after being translated into 

bytecodes, which can be interpreted or compiled.

• JIT compilers boost the performance of interpreted Java 
programs on the otherwise slow JVM.

• Testarossa JIT (TRJIT) is the default optimizing compiler in 
Eclipse OpenJ9 JVM.

Implementation of Array Bytecodes in MicroJIT

Shubham Verma, Kenneth B. Kent
Faculty of Computer Science, University of New Brunswick 

Marius Pirvu
IBM Canada

{sverma1, ken}@unb.ca

mpirvu@ca.ibm.com

Arrays and Arraylets
• Our goal is to enable non-contiguous memory allocation in 

MicroJIT arrays.

• Small arrays are allocated contiguously; large arrays are split into 
arraylets and allocated across regions.

• Arraylets are composed of a metadata spine and leaves, with 
arrayoids serving as pointers to the leaves.

Header 1 Header 2

Arrayoids ArrayoidsOther objects

HEAP

MicroJIT
• TRJIT provides optimized code, it increases overhead during 

runtime and start-up times.

• MicroJIT is a lightweight JIT compiler aimed at faster start-up 
times, with a template-based structure that eliminates 
intermediary phases, reducing memory footprint.

Motivation
• MicroJIT lacks support for array bytecodes, requiring switching 

back to the interpreter for execution, which hinders 
performance. Expanding bytecode support can improve JVM 
performance.

Implementation
• Templates for different array bytecodes consist of predefined 

assembly sequence, written in Netwide Assembler (NASM).

• Continuous arrays use fast path; Discontinuous use helper 
function that allocates memory in different regions.

• To check the correctness of the bytecodes, Junit regression test 
framework is used.

Load method
JVM

Yes Method 
compiled?

Execute compiled 
code

Compile with 
MicroJIT

Yes MicroJIT
enabled?

No

JIT 
required?

No

Yes

Compile 
with TRJIT

Interpret method

No

Go to next 
method

Evaluation Plan
• We intend to evaluate and compare the performance of the JVM, 

featuring array implementation in MicroJIT, against the interpreter 
and TRJIT, both with and without optimization.

• Our primary emphasis is on evaluating key metrics, including 
compile time, execution time, and memory footprint.


	Slide 1

