Implementation of Array Bytecodes in MicroJIT

Shubham Verma, Kenneth B. Kent MicroJIT
Faculty of Computer Science, University of New Brunswick TRJIT provides optimized code, It increases overhead during
Marius Pirvu runtime and start-up times.
IBM Canada * MicrodIT is a lightweight JIT compiler aimed at faster start-up

times, with a template-based structure that eliminates

1, k
{svermal, ken;@unb.ca intermediary phases, reducing memory footprint.

mpirvu@ca.ilbm.com

Background | ~ Motivation

* Java programs are executed on JVMs aiter being translated Into . MicroJIT lacks support for array bytecodes, requiring switching
bytecodes, which can be interpreted or compiled. back to the interpreter for execution, which hinders

» JIT compilers boost the performance of interpreted Java performance. Expanding bytecode support can improve JVM
programs on the otherwise slow JVM. performance.

» Testarossa JIT (TRJIT) is the default optimizing compiler in

Eclipse OpenJ9 JVM. |
Implementation

* Templates for different array bytecodes consist of predefined

VM . . .
[Load method] assembly sequence, written in Netwide Assembler (NASM).
« Continuous arrays use fast path; Discontinuous use helper
y function that allocates memory in different regions.
es Method JT No _ _
compiled3 required? * To check the correctness of the bytecodes, Junit regression test
Vo framework is used.
Compile with MicroJIT i | . . P
=— ;mPiled‘ MicroJIT public static int arraylLengthTest(int[] arr t) { P, JBaload®
code No ; return arr_t.length; 1, JBarraylength
Compile 2, JBreturnl
v with TRJT
G
[;::hled)(t](Interpret method < template start arraylengthTemplate

_64bit slot stack to rXX rax,0 . grab the reference from the operand stack

Arrays and Arraylets
* QOur goal Is to enable non-contiguous memory allocation In

pop single slot © reduce the mjit stack by one slot

mov r1ld, dword [rax+0x4] - grab array elements size after 4 bytes of header

_ push single slot . 1ncrease the stack by 1 slot
MicroJIT arrays. mov dword [r10], rlld

« Small arrays are allocated contiguously; large arrays are split Into R R N I e
arraylets and allocated across regions.

* Arraylets are composed of a metadata spine and leaves, with

+ push r1l value to stack

Evaluation Plan

* We intend to evaluate and compare the performance of the JVM,
featuring array implementation in MicroJIT, against the interpreter
and TRJIT, both with and without optimization.

HEAP * Our primary emphasis Is on evaluating key metrics, including

arrayoids serving as pointers to the leaves.

........... compile time, execution time, and memory footprint.

Header 1 Header 2

\—’

CAS-Atlantic

AN J (. J

I I I
[Arrayoids } %ther object% [Arrayoids}

	Slide 1

