Linear Programs Size Reduction via Feature Sharing in Sparktope Compiler

Shermin Khosravi, David Bremner

Faculty of Computer Science, University of New Brunswick shermin.khosravi@unb.ca, bremner@unb.ca

Motivation

Building polynomial Linear Program (LP) models for problems that only have Exponential Extension Complexity (Rothvoss [1])
 EP_n = CH{x ∈ {0,1}⁽ⁿ⁾/₂ : x is the edge-vector of a perfect matching in K_n}

Proposed Methods

Reduce the size of LP by sharing different LP and Sparks features.

- Constraint sharing
 - Controlled x-0/1 property and Unique Execution Step constraints

IP that has a polynomial time oracle encoded in the LP

 Modeling LPs through more intuitive higher level programming languages in comparison to Algebraic Modeling Systems (AMS)
 Sparktope Compiler

- Q is Weak Extended Formulation (WEF) if
 - x-0/1 property
 - If "yes" $z^* = m + d$

$$Q = \{(x, w, s) : x \in [0, 1]^q, w \in [0, 1], s \in [0, 1]^r, Ax + bw + Cs \leq h\}$$
$$z^* = \max \{c^T x + dw : (x, w, s) \in Q\}$$

S(i,t) –

- $-B(b,t-1)+B(c,t) \le 1$
- Time sharing
 - Multiple Clocks in the LP model for Semi-independent Blocks of Code (SIB)

Code sharing

- Allow functions by introducing new constraints for Goto statements based on register values
- Eliminate expensive stack structure for nonrecursive functions

Where $c_j = \begin{cases} 1 & \text{if } \bar{x}_j = 1 \\ -1 & \text{if } \bar{x}_j = 0 \end{cases}$ $0 < d \le 1/2$

 $S(i,t) - S(k,t+1) \leqslant 0$

Problem

• Sparktope produces extremely large LPs for reasonably small codes which passes solver's limit on the number of constraints.

name	n	max steps	main.LB	init.UB	rows	columns	non-zeros	GB
mm8.lp	8	4000 (9747)	307	393	21,490,809	2,567,920	$80,\!568,\!489$	1.4(3.4)
mm10.lp	10	$7000\ (19629)$	472	611	$54,\!809,\!388$	$5,\!354,\!967$	$210,\!572,\!706$	3.6(11)
mm12.lp	12	$10000 \ (34771)$	673	877	$94,\!860,\!776$	$8,\!200,\!011$	$371,\!213,\!800$	6.3(23)
mm16.lp	16	16000 (83003)	1183	1553	$212,\!451,\!096$	14,288,092	$854,\!715,\!828$	15(80)

Table1: LPs produced for the Maximum Matching problem with n nodes [3]

References

[1] Rothvoss, T. (2017) 'The Matching Polytope has Exponential Extension Complexity', Journal of the ACM, 64(6), p. 41:1-41:19. Available at: https://doi.org/10.1145/3127497.
[2] Fiorini, S. et al. (2012) 'Combinatorial Bounds on Nonnegative Rank and Extended Formulations'. arXiv. Available at: https://doi.org/10.48550/arXiv.1111.0444.
[3] Avis, D. and Bremner, D. (2020) 'Sparktope: linear programs from algorithms'. arXiv. Available at: https://doi.org/10.48550/arXiv.101.044550/arXiv.2005.02853.

