Linear Programs Size Reduction via Feature Sharing in Sparktope Compiler

Shermin Khosravi, David Bremner

Faculty of Computer Science, University of New Brunswick shermin.khosravi@unb.ca, bremner@unb.ca

Motivation

- Building polynomial Linear Program (LP) models for problems that only have Exponential Extension Complexity (Rothvoss [1])
$\mathrm{EP}_{n}=\mathrm{CH}\left\{x \in\{0,1\}^{\binom{n}{2}}: x\right.$ is the edge-vector of a perfect matching in $\left.K_{n}\right\}$
$\sum_{i j \in \delta(S)} x_{i j} \geqslant 1$,
$\sum_{i j \in \delta(i)} x_{i j}=1$
$0 \leqslant x_{i j} \leqslant 1$,
$i \leqslant 1,2, \ldots, n$

Fig1: Extended Formulation [2]

- Possibility of modeling Integer Programs (IP) as a single compact IP that has a polynomial time oracle encoded in the LP

- Modeling LPs through more intuitive higher level programming languages in comparison to Algebraic Modeling Systems (AMS) Sparktope Compiler

- Q is Weak Extended Formulation (WEF) if
- x-0/1 property
- If "yes" $z^{*}=m+d$
$Q=\left\{(x, w, s): x \in[0,1]^{q}, w \in[0,1], s \in[0,1]^{r}, A x+b w+C s \leqslant h\right\}$
$z^{*}=\max \left\{c^{T} x+d w:(x, w, s) \in Q\right\}$
Where $\quad c_{j}=\left\{\begin{aligned} 1 & \text { if } \bar{x}_{j}=1 \\ -1 & \text { if } \bar{x}_{j}=0\end{aligned}\right.$
$0<d \leqslant 1 / 2$

Problem

- Sparktope produces extremely large LPs for reasonably small codes which passes solver's limit on the number of constraints.

name	n	max steps	main.LB	init.UB	rows	columns	non-zeros	GB
$\mathrm{mm} 8 . \mathrm{lp}$	8	$4000(9747)$	307	393	$21,490,809$	$2,567,920$	$80,568,489$	$1.4(3.4)$
$\mathrm{mm10.lp}$	10	$7000(19629)$	472	611	$54,809,388$	$5,354,967$	$210,572,706$	$3.6(11)$
$\mathrm{mm12.lp}$	12	$10000(34771)$	673	877	$94,860,776$	$8,200,011$	$371,213,800$	$6.3(23)$
$\mathrm{mm16.lp}$	16	$16000(83003)$	1183	1553	$212,451,096$	$14,288,092$	$854,715,828$	$15(80)$

Table1: LPs produced for the Maximum Matching problem with n nodes [3]

Proposed Methods

Reduce the size of LP by sharing different LP and Sparks features.

- Constraint sharing
- Controlled $x-0 / 1$ property and Unique Execution Step constraints

- Time sharing
- Multiple Clocks in the LP model for Semi-independent Blocks of Code (SIB)

$$
\begin{gathered}
S(1,1)=1 \\
\sum_{i=1}^{l} S(i, t)=1
\end{gathered}
$$

Assembly Code
SIB 1
\vdots
SIB 2
\vdots
SIB 1
SIB 2
\vdots
SIB1
\vdots

Main Clock

Sub-Clock 1

Sub-Clock 2

Fig2: Trace of run $S(i, t)$ [3]

- Code sharing

- Allow functions by introducing new constraints for Goto statements based on register values
- Eliminate expensive stack structure for nonrecursive functions

$$
S(i, t)-S(k, t+1) \leqslant 0
$$

Assembly Code
Function Call
Function Call
Function Call

Function Call

Function
Function

References

[1] Rothvoss, T. (2017) 'The Matching Polytope has Exponential Extension Complexity', Journal of the ACM, 64(6), p. 41:1-41:19. Available at: https://doi.org/10.1145/3127497.
[2] Fiorini, S. et al. (2012) 'Combinatorial Bounds on Nonnegative Rank and Extended Formulations'. arXiv. Available at: https://doi.org/10.48550/arXiv.1111.0444.
[3] Avis, D. and Bremner, D. (2020) 'Sparktope: linear programs from algorithms'. arXiv. Available at: https://doi.org/10.48550/arXiv.2005.02853.

CAS-Atlantic

