
ECLIPSE OMR JITBUILDER

Eclipse OMR JitBuilder, developed using Eclipse OMR project,
simplifies the task for a runtime system to incorporate a JIT
compiler. It is easy to implement and with just a few hundred lines of
code, it can target more than one platform.

MULTI-LEVEL INTERMEDIATE REPRESENTATION (MLIR)

MLIR is a modular and extensible compiler infrastructure. It provides
a common intermediate representation that can optimize code
generation across different hardware targets. It supports custom
optimizations, transformations and analyses.

PROBLEM STATEMENT

• Evaluation of SQL Expressions and tuple materialization
consumes a significant portion of query execution time.

• With relational database systems following an interpretation
based tuple-at-a-time model of volcano style query execution,
this process becomes more inefficient and slow.

• Recent research emphasizes the need to compile the query
plans, but the integration of these techniques within a database

system requires re-architecting the query engine.

RESULTS

Efficient SQL Query Compilation with JIT Compilers

CONTRIBUTIONS

• Development of CasaDB based on in-memory database query
compilation

• Conference Paper Published on query compilation

• Presented multiple posters

• Presented Efficient Compilation Of SQL Queries at CASCON x
Evoke 2022

• Received best video award at CASCON x EVOKE 2022

GOALS

• Light-weight integration of Eclipse OMR JitBuilder into

PostgresSQL-12.5 to JIT compiler operations

• A fast and multi-target backend generation technique using JIT

compilers (Eclipse OMR and MLIR) supporting code generation

for single node and distributed nodes.

APPROACHES

• Data-centric, run-time code generation model

• Use of pipelines and Intermediate Representation

select *
from R1,R3,

(select R2.z,count(*)
from R2
where
R2.y=3
group by
R2.z) R2

where
R1.x=7 and
R1.a=R3.b and
R2.z=R3.c

SQL query to Query
Execution Plan (QEP)
using pipeline

Saumya Verma, Sudip Chatterjee, Suprio Ray

Faculty of Computer Science, University of New Brunswick

{nivan, sverma3, sudip.chatterjee, sray}@unb.ca

Mark Stoodley, Calisto Zuzarte, Ian Finlay

IBM Canada

{mstoodle, calisto, finlay}@ca.ibm.com

Code generation (C++), compilation and execution using CasaDB

Code generation, compilation, and execution of
TPCH Q6 using MLIR Vs PostgreSQL

Execution time for interpreted vs. JIT compiled

*Contributors : Stephen A. MacKay, DeVerne Jones, Nithin Ivan, Shubh Sharma and Debajyoti Datta

std::vector<MaterializedTupleRef_V7_0_1_2_3_4_5_6_7_8> V7;

arrow::Result<std::vector<MaterializedTupleRef_V7_0_1_2_3_4_5_6

_7_8>> res_V7

=

cdb_arrow::arrow_read_MaterializedTupleRef_V7_0_1_2_3_4_5_6_7_8

("orders");

if(res_V7.ok()){V7 = res_V7.ValueOrDie();}

else {std::cerr << res_V7.status();}

std::cerr << "RETURNED from : orders" << std::endl;

std::cout << "RECORDS:V7 = " << V7.size() << std::endl;

tuplesFromAscii<MaterializedTupleRef_V7_0_1_2_3_4_5_6_7_8>("ord

ers");

auto end_2 = walltime();

auto runtime_2 = end_2 - start_2;

std::cout << "pipeline 2: " << runtime_2 << " s" << std::endl;

std::cout << "timestamp 2 end " << std::setprecision(15) <<

end_2 << std::endl;

auto start_4 = walltime();

std::cout << "timestamp 4 start " << std::setprecision(15) <<

start_4 << std::endl;

std::vector<MaterializedTupleRef_V8_0_1_2_3_4_5_6_7> V8;

