Intelligent Mobile Crowdsensing with Deep Reinforcement Learning

Chenghao Xu and Wei Song

Task Allocation Problem for Mobile Crowdsensing

System Model: A task allocation problem aims to plan paths for a group of workers (denoted by U) to complete a set of data collection tasks (denoted by *V) in a cost-effective manner.*

Each worker $u \in U$:

- Initial location $l_{u,0}$ ullet
- Travel capacity $f_{u,0}$
- Unit travel cost c_{μ}
- Unit travel time q_{μ}

Each task $v \in V$:

Location l_{ν}

Objective: Maximize the total profit from the gap between the total compensation for workers' sensing effort and the total budget from completed tasks by planning path P_{1} for each worker $u \in U$.

- Total travel distance of worker u over path P_u should be less than his/her travel capacity $f_{u,0}$.
- For each unit of travel distance, the worker spends time 2) q_{μ} and requires incentive payment c_{μ} .
- Task v can only be completed when a worker reaches 3) location l_{ν} of the task before its sensing deadline τ_{ν} .

- Budget b_{ν}
- Expiry time τ_{ν}

Solution with Deep Reinforcement Learning (DRL)

DRL Approach:

Examples:

The greedy method hires 2 workers to The GDRL method hires 4 workers to complete 9 tasks and earn a profit of 31. complete 18 tasks and earn a profit of 81.

Performance of DRL, Heuristic, and Metaheuristic Methods

Performance Ratio:

This research was supported in part by Natural Sciences and Engineering Research Council (NSERC) of Canada and Faculty of Computer Science of UNB.

© [2022] IEEE. Reprinted, with permission, from Chenghao Xu and Wei Song, Intelligent Task Allocation for Mobile Crowdsensing with Graph Attention Network and Deep Reinforcement Learning, IEEE Transactions on Network Science and Engineering, vol. 10, no. 2, pp. 1032-1048, February, 2023.

Running Time: