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Abstract
A new methodology/data structure, the clause tree, is developed for automated
reasoning based on resolution in first order logic.  A clause tree T on a set S of
clauses is a 4-tuple <N,E,L,M>, where N is a set of nodes, divided into clause
nodes and atom nodes, E is a set of edges, each of which joins a clause node to an
atom node, L is a labeling of N ∪ E which assigns to each clause node a clause of
S, to each atom node an instance of an atom of some clause of S, and to each edge
either + or −.  The edge joining a clause node to an atom node is labeled by the
sign of the corresponding literal in the clause.  A resolution is represented by
unifying two atom nodes of different clause trees which represent complementary
literals.  The merge of two identical literals is represented by placing the path
joining the two corresponding atom nodes into the set M of chosen merge paths.
The tail of the merge path becomes a closed leaf, while the head remains an open
leaf which can be resolved on.  The clause cl(T) that T represents, is the set of
literals corresponding to the labels of the open leaves modified by the signs of the
incident edges.  The fundamental purpose of a clause tree T is to show that cl(T)
can be derived from S using resolution.

Loveland's model elimination ME, the selected literal procedure SL, and Shostak's
graph construction procedure GC are explained in a unified manner using clause
trees.  The condition required for choosing a merge path whose head is not a leaf
is given.  This allows a clause tree to be built in one way (the build ordering) but
justified as a proof in another (the proof ordering).

The ordered clause set restriction and the foothold score restriction are explained
using the operation on clause trees of merge path reversal.  A new procedure
called ALPOC, which combines ideas from ME, GC and Spencer's Ordered Clause
set restriction (OC), to form a new procedure tighter than any of the top down
procedures above, is developed and shown to be sound and complete.
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Another operation on clause trees called surgery is defined, and used to define a
minimal clause tree.  Any non-minimal clause tree can be reduced to a minimal
clause tree using surgery, thereby showing that non-minimal clause trees are
redundant.  A sound procedure MinALPOC that produces only minimal clause
trees is given.  Mergeless clause trees are shown to be equivalent to each of input
resolution, unit resolution and relative Horn sets, thereby giving short proofs of
some known results.  Many other new proof procedures using clause trees are
discussed briefly, leaving many open questions.

1. Introduction
This paper is concerned with automated reasoning using binary resolution.  Starting with a
set of clauses, each of which is the disjunction over a set of literals, one applies resolution
to them until the clause that one wants is found.  This clause is usually the empty clause,
because the most common method starts by negating the result that one wants to prove,
and then looking for a contradiction.  In this paper a clause is represented by a tree in
graph theory terms.  An input clause is represented by a clause node connected to atom
nodes each of which is labeled by an atom.  However the atom a labeling an atom node
can correspond to either a positive or negative literal in the clause, a or ~a, which is
indicated by a + or − sign labeling the edge joining the atom node to the clause node.
Figure 1(a) shows the tree representing the clause {a,b,~c,~d}.  Such a tree is called a
clause tree.

Clauses can be combined using resolution.  For example the clause {a,b,~c,~d} can
resolve with the clause {~b,~d,e,~g} upon b to form the new clause {a,~c,~d,e,~g}.
Clause trees also can be resolved, by identifying the leaf nodes that represent
complementary literals from two different clauses, as shown in Figure 1(b).  The leaves of
the resulting tree are the literals of the resulting clause.  But two of the leaves are labeled
by ~d.  The merging of the two literals ~d that occurs when the union of two sets occurs,
is not handled automatically by clause trees.  Instead the two atom nodes that correspond
to the same literal can be joined with a merge path as in Figure 1(c).  The literal at the tail
of a merge path is no longer considered to be a literal of the corresponding clause.
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Figure 1. Example clause trees

In ordinary resolution with clauses represented by sets, the order in which a sequence of
resolutions is done can have a significant impact on the result.  For example suppose we
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have the clauses {a,b,c}, {a,~b,d}, and {~a,d}.  Resolving between the first two clauses
on b produces {a,c,d}, and then resolving the result with the third clause on a produces
{c,d}.  See Figure 2(a).
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Figure 2. Two different results from resolutions on the same clauses

However, if we begin by resolving between the second and third clause on a producing
{~b,d} and then resolve with the first clause on b, we obtain the inferior result {a,c,d}.
See Figure 2(b).
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Figure 3. Clause trees from Figure 2
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Figure 3 shows the same sequences of resolutions as Figure 2, but using clause trees
instead of sets to represent the clauses.  Leaves with the same label are merged as soon as
they are connected by a path.  However the tree on the bottom of Figure 3(b) can be
improved by choosing a merge path from the open leaf labeled a to the internal node with
the same label.  Thus the inferior result is improved to yield a clause tree whose clause is
{c,d}.  If clause trees are used it does not matter in which order the resolutions are done,
as the resulting clause tree can be made the same.  Hence the clause tree corresponds to
two different searches.

Figure 3 illustrates how clause trees distinguish between the order in which the resolutions
must be performed in an ordinary resolution proof (proof ordering), and the order in
which the clause tree is constructed (build ordering).  The final clause tree could be built
using the build ordering of Figure 3(b) but is justified by the proof ordering of Figure 3(a).
A more general example is presented in Section 3.1 where we present a way of looking at
the (weak) model elimination procedure, ME, in which the proof ordering is different from
the build ordering.  In the proof ordering no resolutions are required with ancestor
clauses, as would be required in the usual justification of the procedure.  These ancestor
resolutions are replaced by merges in proof ordering.  In a manner similar to MESON
[21], ancestor merges correspond to the insertion of merge paths in build ordering.  These
ideas are extended in Sections 3.3 and 3.4 to the selected literal SL procedure [16] and
Shostak's graph construction GC procedure [29] respectively.  Using clause trees, it is
easily seen that GC is a restriction of a variant of SL, and that SL is a restriction of ME.

Section 4 develops the new concepts of visibility and support, which are relations between
nodes of clause trees.  The results of this paper rest on these relations.  Section 5 shows
that merge paths between nodes can be reversed, and that this does not essentially change
the visibility relation.  It also adapts the ordered clause set restriction [30][31] and the
foothold score restriction [32] to clause trees.

A theorem prover can take advantage of the internal nodes of a clause tree in two basic
ways.  It can improve a proof, making its result more general.  As shown in Figure 3, an
internal merge path can be chosen, to remove a literal.  But more can be done.  Most
resolution-based proof procedures require that merges be done wherever possible and that
tautologies be avoided.  Since a clause tree represents several distinct proofs, we can
detect if any one of those proofs contains a tautology or misses an opportunity to merge
literals.  The operation clause tree surgery, defined in Section 6, removes these internal
tautologies and unused merges by cutting out some branches of the clause tree, and hence
finds a smaller clause tree that subsumes the original.  Clause trees to which surgery
cannot be applied are said to be minimal.

Section 7 introduces ALP and AllPaths, top down procedures for building clause trees.
Using clause trees, a theorem prover can avoid building the same clause tree that arises by
reordering the resolution steps, and so can avoid redundant searching.   For instance, each
of these procedures in Section 7 can be further restricted by the ordered clause set
restriction.  Moreover, any clause tree that contains a tautology can also be avoided.  As a
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stronger example of avoiding redundant search, the procedure MinALPOC produces only
minimal clause trees.

Section 8 investigates clause trees without merge paths, and shows that a set of clauses
that admits a mergeless clause tree refutation, if and only if it admits an input refutation, if
and only if it admits a unit refutation, and if and only if it contains a subset that is a relative
Horn set that is unsatisfiable.  Although it is well known that the latter three concepts are
equivalent, the complete proofs that each is equivalent to the first concept provide
examples of using clause trees to investigate and understand automated reasoning with
resolution.

Our clause trees differ from the structures defined by Eisinger [8] with the same name,
although the concepts are closely related.

Clause trees are closely related to connection tableaux [17].  Tableaux however are rooted
trees, whereas clause trees are unrooted.  The operation of tableau expansion corresponds
to adding a clause tree with only one clause node to another clause tree.  Clause trees can
resolve with other clause trees that have more than one clause node, but this is not the
case in tableaux.  Choosing merge paths in a rooted clause tree correspond to several
different operations in tableaux: tableau reduction, folding up and folding down.  In
particular, we identify ancestor paths for reduction operations, left hooks for factoring
(folding down) and left paths for c-reductions (folding up). Also all connection tableaux
calculi defined in [17] are top-down, whereas clause trees can be built bottom-up in
addition to top-down [13][14].

2. Definitions
We use the standard definitions from first order clausal logic, as in [6] or [21].  An atom
is an atomic formula.  A literal is an atom a or the negation ~a of an atom.  The
complement ~b of a literal b is the negation of b if b is an atom, and the atom of b
otherwise.  A clause is a set of literals, possibly empty.  All variables in a clause are
assumed to be universally quantified.  A substitution maps variables to terms.  An
instance of a literal or clause is the result of applying some substitution to its variables.  A
ground instance  is one with no variables. A clause C1 subsumes a clause C2 if there is a
substitution θ such that C1θ ⊆ C2.  A substitution θ unifies two literals b1 and b2 if b1θ =
b2θ.  A most general unifier θ of two literals b1 and b2 is one such that for each unifier σ
of b1 and b2 there exists a substitution ρ such that b1σ = (b2θ)ρ.  An interpretation of a
set of clauses consists of a non-empty domain D, an assignment to each n-place function
symbol a mapping from Dn to D, and an assignment to each n-place predicate symbol a
mapping from Dn to {true, false}.  Given a set S = {C1,...,Cn} of clauses and an
interpretation I, I satisfies S if for every ground instance S' = {C1',...,Cn'} of S, some
literal of each Ci' is mapped to true by I.  A model of S is an interpretation that satisfies S.
A set of clauses is satisfiable if there exists a model of it.  S entails C, written S |= C, if
every model of S is a model of C.  In this paper, a proof procedure is a procedure that
takes an input set S of clauses and an input clause C, and attempts to determine if C is
derived from S, written S |– C.  A proof procedure is sound if S |– C implies S |= C.  A
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proof procedure is complete if S |=  C implies there exists a clause D such that S |– D and
D subsumes C.

We also use standard terms from graph theory.  A graph G consists of a set of nodes N,
and a set E of unordered pairs of nodes called edges, written G = <N,E>.  An edge e =
{v,u} is incident with, or joins  its endpoints v and u, and v and u are adjacent to each
other as well as being incident with e.  A node is of degree k if it is incident with exactly k
edges.  A path in a graph is an alternating sequence of nodes and edges such that adjacent
elements in the sequence are incident with each other, no node appears twice, and the first
and last elements are nodes.  Thus P = <v0,e1,v1, ..., vk-1,ek,vk> is a path if for all i=1,...,k,
vi is in N, ei = {vi-1,vi} is in E, and v0 is in N. The first node v0 is called the tail of the path,
the last node vk is called the head of the path, e1 is called the tail edge, ek is called the
head edge, and the path is said to join or connect the tail to the head.  The length is the
number of edges.  Note that a path is determined uniquely by its set of edges and its
orientation, which is the direction that it runs.  A tree is a graph in which there is a unique
path joining any given ordered pair of nodes.  We write path(t,h) for the path that joins
node t to node h in a tree.  The nodes of degree one in a tree are called the leaves of the
tree.

A rooted tree is a tree with a specified node called the root.  The nodes on the path from a
given node to the root, excluding itself, are called the ancestors of that node.  The second
node on that path is called the parent of the first node, while the node itself is called a
child of its parent.  The children of a parent node are totally ordered; a child that comes
earlier (later) in the order than a second child is said to be to the left (right) of the second
child.  A node n is left (right) of a node m if any ancestor of n is left (right) of any
ancestor of m.  The level of a node is the length of a path joining it to the root.  As we
shall see, clause trees by definition are unrooted trees with some additional structures, but
while they are being constructed, the trees can be rooted.

We define clause trees in two steps.  First we define mergeless clause trees and then clause
trees with merge paths.

Definition 1. Mergeless clause tree
Given a set S of clauses, a mergeless clause tree T on S is a 4-tuple <N,E,L,φ > where N
is a set of atom nodes and clause nodes, E is a set of edges that each join an atom node
to a clause node, and L is a labeling that maps each atom node to an atom, each clause
node to a clause in S,  and each edge to either + or –.  The graph <N,E> must be a tree.
In addition, T conforms to either Definition 1(a) or (b).

Definition 1(a).  Elementary mergeless clause tree
Given a clause C in S and a substitution θ  for variables in C, the mergeless clause tree
T= <N,E,L, φ>  representing Cθ = {a1,...,an} satisfies the following:
1) N consists of a clause node and n atom nodes, where L labels the atom nodes with

a1,...,an and labels the clause node with C.
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2) E consists of n undirected edges, each of which joins the clause node to one of the
atom nodes and is labeled by L positively or negatively according to whether the atom
is positive or negative in the clause.

Definition 1(b).  Resolving two mergeless clause trees
Let T1 = <N1,E1,L1,φ> and T2 = <N2,E2,L2, φ > be two mergeless clause trees with no
nodes in common such that n1 is an atom node leaf of T1 and n2 is an atom node leaf of
T2.  No variable may occur in both the label of an atom node in T1 and the label of an
atom node in T2.  Let L1 label n1 with some atom a1 and label the edge {n1, m1}
negatively, and L2  label n2 with the atom a2 but label the edge {n2, m2} positively.
Further let a1 and a2 be unifiable with a substitution θ.  Let N = N1 ∪N2 − {n1}.  Let E =
E1∪E2 − {{n1,m1}} ∪ {{n2,m1}} where {n2,m1} is a new edge.  Let L be a new labeling
relation that results from two modifications to L1 ∪ L2; the new edge {n2,m1} is labeled
negatively, and θ  is applied to the label of each atom node.  Then T = <N,E,L,φ>  is a
mergeless clause tree.

Definition 2. Unifiable merge and tautology paths
Let T= <N,E,L, φ> be a mergeless clause tree that contains two distinct atom nodes n1

and n2 such that the atoms that label these nodes are unifiable.  A unifiable path P in T
is the unique directed path from n1 to n2.  If the tail and head edges of P both have the
same sign, then P is a unifiable merge path.  If the signs on the tail and head edges of P
are different, then P is a unifiable tautology path.  If the labels on n1 and n2 are identical
and the signs on the tail and head edges are identical (respectively, opposite) then the
unifiable path P is called a merge path (respectively, a tautology path.)

A clause tree may have many merge paths, but not all of them need to be added to the set
of chosen merge paths (the fourth parameter of the clause tree tuple.)  Those that do,
remove a leaf from the set of open leaves.  Note that a merge path is fully determined by
its atom nodes and orientation, indeed simply by its head and tail.

Definition 3. Clause tree
Given a set S of clauses, a clause tree T on S is a tuple <N,E,L,M>, the set of nodes,
edges, labels and chosen paths respectively, as defined by Definition 3(a), (b) or (c).

Definition 3(a). Elementary clause tree
Given a clause C in S, and a substitution θ for variables in C, the mergeless clause tree T
= <N,E,L,φ>  representing Cθ  is a clause tree.

Definition 3(b).  Resolving two clause trees
Let T1 = <N1,E1,L1,M1> and T2 = <N2,E2,L2, M2> be two clause trees with no common
nodes such that n1 is an open leaf of T1 and n2 is an open leaf of T2.  Let T' = <N,E,L, φ>
be the mergeless clause tree resulting from resolving the two mergeless clause trees
<N1,E1,L1, φ> and <N2,E2,L2, φ> at the nodes n1 and n2 as in Definition 1(b).  Let M be
the set of merge paths that results from M1 ∪ M2 by replacing each occurrence of n1 in
each path of M1 with n2. Then T = <N,E,L,M>  is a clause tree.
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Definition 3(c).  Choosing a merge path
Let T = <N,E,L,M> and let n1 and n2 be two open leaves in T such that P = path(n1,n2) is
a unifiable merge path of <N,E,L,φ> using the substitution θ, with n2 not being the tail of
any chosen merge path in M and n1 not being the head or tail of any chosen merge path.
Let Lθ  be the labeling relation that results from applying θ to the label of each atom
node, and otherwise leaving L the same. Then T1 = <N,E,Lθ,M ∪{P}> is a clause tree.
P is called a chosen merge path in T1.

A path is a (unifiable) merge or tautology path in a clause tree <N,E,L,M> if it is a
(unifiable) merge or tautology path in the mergeless clause tree <N,E,L,φ>.  Note that a
clause tree is based on an undirected graph (tree), but that a merge path is directed.
Referring back to Figure 1, we see that the three parts of the figure illustrate the three
parts of the Definition 3, respectively.  We occasionally use T to refer to the tree <N,E>
underlying the clause tree T=<N,E,L,M>.

Definition 4. Instance of a clause tree
A clause tree T' = <N,E,L',M> is an instance of a clause tree T = <N,E,L,M> if L' and
L are identical on the clause nodes and edges, and there is a substitution θ such that for
each atom node n, L'(n) = (L(n))θ.

Where confusion does not arise we will use Tθ for T' and Lθ for L'.

Definition 5. Open leaf, associated literal, clause of a clause tree and subsumption of
clause trees
An open leaf is an atom node leaf that is not the tail of a chosen merge path.  Each edge
has an associated literal which is formed by the atom label of the incident atom node,
modified by negation if the edge is labeled negatively.  The clause of a clause tree T,
written cl(T), is the disjunction of literals associated with the open leaves.  A clause tree
T1 subsumes a clause tree T2 if cl(T1) subsumes cl(T2).

One restriction on chosen merge paths is that the head of one cannot be the tail of another.
The purpose of a merge path is to indicate where a proof of the complement of the literal
at the tail of a merge path can be found.  If this restriction were lifted, there could be two
paths based on the same edge set but oriented differently, in which the tail of one was the
head of the other.  Both ends would be closed, but neither would have a proof.  Nor do
we want two different proofs indicated for a single tail.  One can imagine other definitions
for chosen merge paths (such as removing the condition that n1 in Definition 3(c) is not
the tail of a path) which would sometimes allow the head of a path to be the tail of another
but which would avoid this type of circular situation.  However other definitions such as
merge connected (see below) and path reversal (in Section 5) would become more
complicated.  We believe that the gain in generality is minimal, and is not needed for the
development of better procedures or for the understanding of the present procedures.
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Definition 6. Merge connected nodes
In a clause tree T, two atom nodes are said to be merge connected if they are connected
by a chosen merge path in either direction or if they are the tails of two chosen merge
paths that have a common head.  In addition every  node is merge connected to itself.

Clearly atom nodes that are merge connected must be labeled by the same atom.  The
relation merge connected is an equivalence relation on the set of atom nodes in a clause
tree.  In each equivalence class there is a single node that is the head of the chosen merge
paths.  The remainder of the nodes in the equivalence class are closed leaves that are the
tails of chosen merge paths with the same head.  These tails break up naturally into two
possibly empty sets: those that are incident with a negative edge and those incident with a
positive edge.

Definition 7. Merge sets
The merge sets of a clause tree are the equivalence classes defined by the merge
connected relation.  The head node of a merge set  is the head of every path in the merge
set, or the singleton node in the set if there are no merge paths.

See Figure 4 for an example clause tree where the atom nodes 1, 2, 3, 4, 5 and 6 are
labeled with a and are all merge connected.  Node 4 is the head node of this merge set.
We enclose the name of an atom node in a box and the name of a clause node in a circle; a
label is written either beside the node or replaces the node if the node is omitted from the
figure.

a 1 a 2
a 3

a 5 a 6

a 4

+

_

+
+

+

__

Figure 4. {1,2,3,4,5,6} is a merge set
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Technically the clauses of the clause trees in Figure 1(b) and (c) are the same since sets do
not allow elements to occur multiple times.  However the clause tree of  Figure 1(c) is
more useful because there is only one open leaf for each literal in the clause.  In
Figure 1(b) the literal ~d corresponds to two open leaves, whereas it corresponds to only
one open leaf in Figure 1(c).  Generally one does not want a literal to correspond to
multiple open leaves, so one usually chooses a merge path between open leaves as soon as
it is possible to do so.  However there are procedures that deliberately disobey this rule in
the later sections of this paper.

Figure 3 shows that merge paths do not have to go between two  leaves, but can go from
a leaf to an interior node.  At first glance it is not apparent that Figure 3(a) corresponds to
a clause tree, because the heads of the merge paths are not open leaves.  However it is
easy to use the definition of clause tree recursively to construct it.  More formally:

Definition 8. Derivation of a clause tree
Given a set P of clauses, a derivation of Tn  from P is a sequence T1, ..., Tn  of clause
trees such that each Ti  for i = 1, ..., n  is the result of one of the following:
• an application of Definition 3(a) on a member of P,
• an application of Definition 3(b) on Tj  and Tk where j < i and k < i, or
• an application of Definition 3(c) on Tj  where j < i.

Theorem 1.  Suppose that <N,E,L,φ> is a mergeless clause tree.  Then <N,E,L,M> is a
clause tree if and only if it has a derivation.

Proof. By induction.  The definition of derivation mirrors the definition of clause tree. 
�

Theorem 2.  Let S be a set of clauses and C a clause. S |= C if and only if there exists a
clause tree T from S such that cl(T) subsumes C.

Proof.  S |= C if and only if there is a sequence of clauses C1, C2,...,Cn such that Cn

subsumes C and each Ci is either in S or Ci is the result of resolving Cj and Ck, where j<i
and k<i.  This is a slightly generalized restatement of Robinson's main result in [26].  Each
member of the sequence Ci corresponds to either an application of Definition 3 (a), or an
application of Definition 3 (b) followed by as many applications of Definition 3 (c) as
required (choosing merge paths between open leaves) so that no two open leaves are left
that are labeled by the same atom.  Conversely, the definition of a clause tree mirrors the
definition of the derivation, so clearly S |= cl(T).  Further cl(T) |= C  since cl(T) subsumes C.

�

Definition 9. Closed clause tree
A clause tree is said to be closed if it has no open leaves.

Corollary 3.  S is an unsatisfiable set of clauses if and only if there is a closed clause tree
T from S.
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Corollary 4. Any proof procedure that refutes a set of clauses by building a closed clause
tree is sound.

Definition 10. Isomorphic clause trees
Two clause trees T1 = <N1,E1,L1,M1> and T2 = <N2,E2,L2,M2,>, defined on the same set
of clauses S,  are said to be isomorphic if there is a bijection Ψ:N1 → N2 such that:
(a) {v,u} is in E1 iff Ψ({v, u}) ≡ def {Ψ(v), Ψ(u)} is in E2,
(b) L1(x) = L2(Ψ(x)) for all x in N1∪E1, and
(c) path P = <v,e,...,u> is in M1 iff Ψ(P) ≡ def <Ψ(v), Ψ(e), ..., Ψ(u)> is in M2.

3. Existing Top Down Procedures Restated in terms of Clause Trees
Well-known top down proof methodologies such as weak Model Elimination procedure
(ME), the Selected Literal procedure (SL) and Graph Construction (GC) can be translated
into manipulating clause trees.

3.1 Weak Model Elimination
Consider the following example that proves the literal q from the clauses:

C1 = {q,a,b}
C2 = {~a,b}
C3 = {~a,~b}
C4 = {~b,a}.

We start with the negation ~q of the theorem to be proved, and apply the weak ME
procedure [21] as implemented by PTTP[35]:

Step # Chain ME Operation Clause Tree in Figure 5
1. ~q query T1
2. [~q]ab extension with {q,a,b} T2
3. [~q]a[b]~a extension with {~a,~b} T3
4. [~q]a[b][~a]~b extension with {~b,a} T4
5. [~q]a[b][~a] reduction T5
6. [~q]a contraction(2×)
7. [~q][a]b extension with {~a,b} T6
8. [~q][a][b]~a extension with {~a,~b} T7
9. [~q][a][b] reduction T8
10.

�
contraction(3×)

The construction of the clause tree that corresponds to this proof is shown in Figure 5.
The tree is rooted at the clause node corresponding to the query (top clause).  The
children of a node are ordered left to right in the order that they occur in the input clause,
which an algorithm could reorder.  In fact the ME procedure works right to left because it
works on the right hand end of the chain.
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Figure 5. The build ordering of a clause tree

Each extension step corresponds to the addition of an input clause to the clause tree to the
rightmost open leaf, which is called as the current node.  The trees T1, T2, T3, T4, T6 and
T7 result from these additions.  Each reduction step corresponds to the insertion of a
merge path from the current node to an ancestor node in the tree.  Trees T5 and T8 result
from these steps.  Not all of the 10 ME steps above have a corresponding step in the
construction of the clause tree in Figure 5.  The contraction steps correspond to changing
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the focus of the algorithm, that is the current node, to a node at a higher level or to a node
that is further to the left in the clause tree.

However the above construction is not a derivation (Definition 8) because neither the
merge path introduced in T5 nor the one in T8 is between leaves.  To show that clause tree
T8 has a derivation, we show a sequence of binary resolution steps, a proof ordering, in
Figure 6.  Figure 6 is read from top to bottom.  Each dashed circle surrounds one clause
tree and is labeled by the clause of that tree.  The dashed lines connect the clauses
resolved together to their resolvents.  The bottom-most clause tree is T8.
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Figure 6. The proof ordering of a clause tree

Any ME proof is equivalent to a rooted clause tree that grows downward from the query
in build ordering as the proof progresses.  Any input clause that contains the appropriate
literal can be resolved with the right-most open leaf.  As in ME, if a node cannot be
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extended, then the procedure backtracks to the previous step where another clause could
be chosen to extend the clause tree at the appropriate open leaf.  The equivalence of ME
and this procedure is easily seen and we do not formally prove it.

The justification of the steps in a derivation or in terms of binary resolution steps can be
from the bottom of the tree to the top.  We do not need to use resolution steps with
ancestor clauses as is usually done in order to keep the proof ordering in line with the
build ordering.  Ancestor resolution is replaced by insertion of a merge path to an ancestor
node.

3.2 Build Ordering Concepts: Choosing Merge Paths
Although the definition of a clause tree allows choosing a merge path between nodes only
when both are open leaves, after it is used in a resolution step the head of the merge path
is no longer a leaf.  Under some conditions choosing a merge path to an internal node can
be allowed.  To choose such a merge path, one must show that some derivation can be
constructed.  The sequence of operations in the derivation does not have to be the
sequence that an algorithm uses to build T.  Thus two orderings of operations are
considered: the proof ordering that satisfies Definition 3, and the build ordering that may
include the insertion of a merge path to an internal node.  An example of this is given in
the previous section.

ca + - +

a

b

c

b

+

+

+

+

-

-

A
B

C

a a bb c

A

B

+ - +++ -- +

Figure 7. Two impossible clause trees

What are the necessary conditions on these more general merge path insertions to ensure
that a proof ordering (derivation) exists?  First, no two merge paths A and B can end on
each other, for if they do then in proof ordering the endpoints of A must both be leaves of
some clause tree, with one endpoint of B not yet created.  And yet at a different time the
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endpoints of B must both exist with one endpoint of A not yet created.  Since this is
clearly impossible, no such derivation can exist.  An example is shown in the upper part of
Figure 7.

Moreover, if there are two merge paths A and B such that A ends on B then a third merge
path C cannot be chosen if it happens that B ends on C and C ends on A.  Again the reason
is that no derivation exists that can produce the merge path A before B, B before C and C
before A.  This impossible situation is illustrated in the lower part of Figure 7.  Other
conceivable situations involving more competing merge paths are also to be avoided.

The following definitions capture the notion that one merge path must be chosen before
another in any derivation.  The subsequent result shows what paths must be avoided and
what paths can be chosen.

Definition 11. Precedes relation on paths
For two paths A and B in a tree T, A �  B , read A precedes B, if and only if the head of A
is an internal node, other than the head or tail, of the path B.

Definition 12. Legal paths
A set M of paths in a tree T is legal if the �  relation on M can be extended to a partial
order � *.  A path P is legal in a clause tree T = <N,E,L,M> if M ∪ {P} is legal in T.

Theorem 5.  Let T = <N,E,L,M1> be a clause tree and let M2 be a set of n unifiable
merge paths such that the tail of each path in M2 is a different open leaf of T, and none
of the tails is the head or tail of a path in M = M1 ∪M2.  Let θ be a substitution that
makes all the unifiable merge paths in M2 into merge paths.  Then T' = <N,E,Lθ,M> is a
clause tree if and only if M is legal.  In particular, a unifiable merge path P, whose tail is
an open leaf and is not the head of a chosen merge path, can be chosen if and only if P is
legal in T.

Proof.  Assume M is legal, so there is a partial order � * on M.  Extend this partial order to
a total order on M.  Extend this total order on M to a total order on the atom nodes in N
by ordering the heads of the paths in the same order, placing the tail of each path
immediately before the head of the path, and placing all the other atom nodes before these
nodes.  Create clause trees corresponding to each of the clause nodes by Definition 1(a).
Perform a resolution by Definition 3(b) for each internal atom node and choose a merge
path by Definition 3(c) for each closed leaf  node, according to this total order of the atom
nodes.  The resolutions can always be done.  The merge paths can be chosen because all
the resolutions on the path have been done first, but the head is not resolved until later and
is still an open leaf.  Then T is a clause tree.

Conversely if T'  is a clause tree, it has a derivation. Order the merge paths of M according
to the order that they are inserted into M.  When a path is inserted, the head of the path
must be a leaf, so that it cannot be on another path that comes before it in this ordering.
Hence the relation �  is a subrelation of this total order, and so � * is a partial order.

�
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The two paths in the tree T8 in Figure 5 do not precede each other, so they form a trivial
partial order.  Thus it is easy to see that the set of merge paths is legal, and so by Theorem
5 the tree is a clause tree.  More generally, ME chooses a merge path from an open leaf to
an ancestor of that leaf.

Definition 13. Ancestor path
An ancestor path in a rooted tree is a path from a leaf to one of its ancestors.

Theorem 6. In any rooted tree, a set of ancestor paths is always legal.

Proof.  Order the paths by the depth of the head in the tree, from deepest to shallowest.
Two paths with heads at equal depth are not comparable.  This is clearly a partial order.
Then if the head of path A falls on an internal node of path B, the head of A must be
deeper than the head of B, in which case A precedes B in the order.  Thus this partial order
extends the precedes relation, as required.

�

The result of this theorem is that the ME tree-building procedure in Section 3.1 builds
clause trees by Theorem 5, and so is sound by Corollary 4.

3.3 SL Resolution
The selected literal (SL) procedure was independently developed by Kowalski and
Kuehner [16], Loveland [20] and Reiter[25].  It is similar to the ME procedure, but in
addition to the ME reduction operation that merges the current node to its ancestor, SL
has an additional operation called basic factoring that merges the current node to some left
sibling of some ancestor.  An SL-derivation of the example in Section 3.1 is:

Step # Chain SL Operation Clause tree in Figure 8
1. ~q query R1
2. [~q]ab extension with {q,a,b} R2
3. [~q]a[b]a extension with {~b,a} R3
4. [~q]a[b] basic factoring R4
5. [~q]a truncation R4
6. [~q][a]b extension with {~a,b} R5
7. [~q][a][b]~a extension with {~a,~b} R6
8. [~q][a][b] ancestor resolution R7
9.

�
truncation (3×) R7

The corresponding clause tree for this proof is built as shown in Figure 8.
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Figure 8. An SL build ordering of clause trees

The clause tree is built from top to bottom, and from right to left.  Since neither of the two
merge paths precedes the other, they form a trivial partial order, so by Theorem 5, the tree
R7 is a closed clause tree.

As in the ME procedure, the extension operation corresponds to an input clause being
added to the clause tree, and the reduction operation corresponds to the insertion of a
merge path.  Ancestor resolution corresponds to the insertion of a merge path from an
open leaf to an ancestor, just as in ME.  Basic factoring corresponds to inserting a merge
path to a sibling of an ancestor, where that sibling is an open leaf.  In this case, the sibling
must be to the left of the ancestor.  We call such a path a left hook.
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Theorem 7.  In any rooted clause tree, any set of ancestor paths and left hooks, whose
heads are atom nodes, forms a legal set of paths.

Proof.  Order the paths by the locations of their heads, first inversely by depth as done in
the proof of Theorem 6, and secondarily within each level from right to left.  This order is
clearly a partial order.  Let A be a path that ends on an interior atom node of a path B.
There are two cases.
(i) B is an ancestor path.  As in the proof of Theorem 6, the head of A is deeper than the

head of B and so A precedes B in this partial order as needed.
(ii) B is a left hook.  Either the head of A is deeper than the head of B, or they are on the

same level.  If they are on the same level, the head of B must be to the left of the head
of A.

In either subcase A precedes B in the partial order. 
�

Thus the clause tree building procedure based on SL is sound by Corollary 4, Theorem 5
and Theorem 7.

Comparing ME and SL, one sees that if there were no left hooks, then the corresponding
clause trees would be identical.  Since SL finds all the merge paths that ME uses, but also
can use more merge paths, the smallest clause tree found by SL is at least as small as the
smallest clause tree found by ME.  Indeed the number of resolutions required by SL
cannot exceed the number required by ME in the propositional case.  But one can do
better than SL in this sense.

The truncation steps of the ME and SL procedures contain operations that truncate part of
the data structure, so that what remains may be safely used later in reduction and basic
factoring steps.  Hence useful information may be lost.  Procedures using clause trees do
not depend on truncation; they use the partial order on nodes to define which later
resolutions are legal.  Some of this information can be used by the procedure in the next
section.

3.4 Left paths and the GC Procedure
Shostak [29] developed the graph construction (GC) procedure.  It uses C-literals in
addition to the A-literals (ancestors) and B-literals (open siblings of ancestors) of ME and
SL.  An example from his paper (p. 60) is used to illustrate the GC procedure.  The
clauses are:

{~N, ~T}, {M, Q, N}, {L,~M}, {L, ~Q}, {~L, ~P}, {R, P, N}, {~R, ~L}, {T}

A GC derivation of the empty clause, starting with the clause {~N, ~T} is provided by
Shostak and is reproduced in Figure 9 along with the corresponding clause tree
construction.  Note that we use ~ to denote negation, [ ] to denote a framed A-literal, ( )
to denote a C-literal.  Except for these changes, the example is identical to Shostak's.  In
the extension steps we have placed the new literals in the tree in the same order that
Shostak has, and we have selected the left-most of these new literals as the site of further
extensions, which is also consistent with Shostak.  Selected literals are underlined.
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0) ~N ~T extension

1) ~T [~N] M Q extension

2) ~T [~N] Q [M] L extension

3) ~T [~N] Q [M] [L] ~P extension

4) ~T [~N] Q [M] [L] [~P] R N extension

5) ~T [~N] Q [M] [L] [~P] R reduction
using A-
literal

6) ~T [~N] Q [M] [L] [~P] [R] ~L
extension

7) ~T [~N] Q [M] [L] [~P] [R] reduction
using A-
literal

8) ~T [~N] Q [M] [L] (~R) (P) truncation
× 2

    ~T [~N] (~L) (~M) Q

9) ~T [~N] (~L) (~M) [Q] L extension

10) ~T [~N] (~L) (~M) [Q] reduction
using C-
literal

11) ~T [~N] (~L) (~Q) (~M) truncation
× 3

      (N) ~T

12) (N) [~T] extension

13) (T) (N) truncation
      

�
× 2
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Figure 9. The clause tree construction corresponding to the GC procedure
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GC allows a merge path to go from an open leaf to an ancestor, or to a node that is to the
left in the tree.  Reduction with an A-literal corresponds to creating a merge path to an
ancestor node, which we have already called an ancestor path.  Reduction with a C-literal
corresponds to creating a merge path to some other node that is to the left of the leaf in
the tree.  We call such paths left paths.

Although Shostak says that GC has no merging operation [29,p. 60], he does allow
ancestor paths and left paths.  What apparently corresponds in GC to SL merges to open
left siblings (basic factoring) are merges to the right siblings of ancestors, what we call
right hooks.  However the left hooks allowed by SL all correspond to left paths, and are
all found by GC, albeit at a different time.  A left hook is found by GC after the subtree
below the head of the path has already been constructed; it is found by SL before the
subtree is constructed.  Thus GC's left path operation is a merging operation that finds the
same merges as SL's basic factoring operation.  But GC finds left paths other than left
hooks, so the smallest GC proof will always be at least as small as any SL proof, just as
SL was compared to ME in the previous section.

Both ME and SL prune the search when a legal tautology path is found.  ME only looks at
ancestor paths; SL considers both ancestor paths and left hooks.  GC could also prune
when a tautology path is found, either an ancestor path or a left path, but this is not
mentioned by Shostak[29].  We call the clause tree version of GC with this extension the
ALP procedure, and discuss it in Section 7.  Again ALP is superior to SL which is
superior to ME in the amount of pruning that can be done using tautologies.

These three procedures above leave open the question of whether using right hooks as
well as left paths and ancestor paths improves the procedure.  We call this the AllPaths
procedure (Section 7), and it is the subject of ongoing investigation [27].

4. Visibility and Support
Merge paths cannot be chosen from an open leaf to every internal node of a clause tree.
For example if the root of the tree in Figure 9 had had a rightmost child labeled M, the
path from that node to the M in the tree could not have been added legally to the set of
merge paths.  The new path would be in contention with the ancestor path to N.  In fact,
none of the literals in the subtree under N can be reached legally by a merge path from a
new rightmost child of the root.  However in an altered example, other children can be
reached.  For example Figure 10 shows a clause tree constructed by GC on a set of
clauses that is similar to Shostak's example, but allows a child, 3, of the root to be merged
to a new internal node, 9.
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Figure 10. Alteration of Shostak's example

Thus sometimes we can insert a merge path and sometimes we cannot, which leads to the
next definition.

Definition 14. Visibility
A node u, which is not the tail of a merge path in M, is visible from a node v in a clause
tree T=<N,E,L,M> if P = path(v,u) is a legal path in T.  If u is an atom node and the
head edge in P is labeled positively (negatively) then the positive (negative) side of u is
said to be visible from v.  If t is the tail of a chosen merge path path(t,h) then we say that
the positive (negative) side of t is visible from v if the positive (negative) side of h is
visible from v.  We also say that v sees the positive (negative) side of u.  Otherwise u is
invisible from v.  If a is the label of u and the positive (negative) side of u is visible then
a (~a) is a visible literal.  A merge set N1 is visible from another merge set N2 if the head
node of N1 is visible from the head node of N2. By convention a node cannot see itself.

Note that although we originally intended that visibility apply to atom nodes with the same
label, we also wish it to apply to any pair of nodes, including clause nodes in some cases.
This definition makes merge connected nodes almost equivalent under the visibility
relation.  The only exception is that the head is visible from the tail, but the tail is not
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visible from the head.  For the example in Figure 10 node 10 is visible from all other nodes
except node 1.

The following theorem shows that visibility is the property that can be used to decide
which merge paths can legally be added to a clause tree.  This is important for algorithms
that build clause trees, as in Section 7.

Theorem 8.  A merge path P=path(t,h) in a clause tree T can be chosen if and only if
(1) t is an open leaf,
(2) t is not the head of a chosen merge path,
(3) h is not the tail of a chosen merge path, and
(4) h is visible from t.

Proof. Assume P can be chosen.  By Definition 3(b), the tail t must be a leaf and it cannot
be the head or tail of any chosen merge path.  Also the head h cannot be the tail of a
chosen merge path.  By Theorem 5, P is legal which implies h is visible from t.
Conversely, since h is not the tail of a merge path and h is visible from t, then P is a legal
path in T.  By Theorem 5, P can be chosen. 

�

Lemma 9.   A path P is illegal in a clause tree <N,E,L,M> only if there is a path R in M
such that the head of R is an interior point of P, and the directions of R and P disagree
on their common edges, of which at least one must exist.

Proof.  Assume that M ∪ {P} is not a legal set of paths.  Then there is a sequence of
paths in M ∪{P}, P1, P2, ...,Pn such that P1 �  P2 �  ... �  Pn �  P1.  We may assume that n is
as small as possible, and that one of these paths must be P, since M is legal.  Without loss
of generality we can let P = P1.  Thus Pn �  P so that the head of Pn, call it v, is an interior
node of P.  If Pn disagrees in direction with P at v, then R=Pn and we are done.
Otherwise Pn agrees in direction with P.  Consider the tree separated at v by splitting v
into two nodes, each attached to one of its incident edges.  The tree falls into two
components, one of which, call it A, contains the tail of P, and the other of which, call it B,
contains the head of P.  Pn is entirely within A, so the head of Pn-1 is in A.  But the head of
P=P1 is in B.  Let Pi be the smallest i such that the head of Pi is in A.  Then since the head
of Pi-1 is in B, Pi must contain v.  But then Pi �  Pi+1 �  ... �  Pn �  Pi, which contradicts the
legality of M. 

�

Lemma 9 implies that if a path does not run over the head of any other path in the
opposite direction, then that path can be added to the set of paths so that the set of paths
remains legal.  Thus it is easy to see that any set of ancestor paths is legal as all paths point
up, as was already shown by Theorem 6.  Also if one has a set of ancestor paths and left
hooks, then any ancestor path or left hook from an open leaf is legal.  It follows easily that
ME and SL always construct legal sets of merge paths.  However a left path can run over
the head of an ancestor path, and then it may or may not be legal.
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Figure 11. n3 is a support of n

The visibility relation is useful because it reveals what new merge paths can be added to a
clause tree (Theorem 8).  The related concept of support is also useful, since it reveals
dependency of (the proof for) one atom node on other nodes.  Consider an interior atom
node n in a closed clause tree T.  Suppose that no chosen merge path includes n as an
interior node.  Then if n is split into two nodes n1 and n2, each of degree one, T splits into
two clause trees T1 and T2.  This operation is the reverse of the resolution step of
Definition 3 (b).  Without loss of generality we may assume that n1 is in T1 and that cl(T1)
= {a}.  Then n2 is in T2 and cl(T2) = {~a}.  However there may be merge paths that
include n as an interior node.  Suppose there were a single chosen merge path P, shown in
Figure 11 with head and tail labeled by literal b, which has n as an interior atom node.  For
the sake of argument suppose that P is oriented so that the edge at n labeled ‘+’ precedes
the edge labeled ‘−’ at n.  Then if we split T at n as before, the tail of P is in T1 and its
head is in T2.  The part of P in T2 can be discarded, and T2 still is a proof of {~a}.  But if
the part of P in T1 is discarded, then cl(T1) = {a,b}, because the tail of P has become an
open leaf.  Thus the proof of {a} from T1 requires that the subtree that is at the head of P
be copied at the tail of P.  This subtree supports the proof of {a}, and this is the intuition
behind our use of the term support.  This subtree itself may require support from another
chosen merge path, which in turn gives indirect support to the proof.

In the development of algorithms, we have found that it is more useful to work with nodes
instead of literals.  Rather than applying this terminology to the literals, we apply it to the
nodes instead.  Thus in some sense the node n is given support by the head of P.  This
discussion leads to the following definition.

Definition 15. Support
In a clause tree, an atom node v supports an atom node u (also u is supported by v and v
is a support of u) if there is a sequence of chosen merge paths P1, ... ,Pk, such that P1 �
... �  Pk, v is the head of Pk, and u is an interior node of P1.  We also say that v is a near
support  of u if the path from u to v contains no other support of u.  Also, v is a far
support of u if there is no support w of u for which the path from u to w contains v.
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In a rooted tree, supports can be ancestors (ancestor supports), to the left (left supports),
to the right, or descendants.

The following theorem relates support and visibility, by showing that a node's near
supports also serve to hide it from the view of nodes beyond the support.

Theorem 10.  In a clause tree T, an atom node h that is not the tail of any merge path is
visible from an atom node t if and only if there is no near support node of h on the path
P=path(t,h).

Proof.  Suppose that there is a near support node of h on P.  Then there is a sequence
<P1,...,Pk> of chosen merge paths such that P1 �  ... �  Pk, h is on P1 and the head of Pk is
on P. Then P �  P1 �  ... �  Pk �  P.  Hence P is illegal and h is not visible from t.

Conversely, assume that h is not visible from t.  Then either h is the tail of a merge path or
P is illegal in T.  But h is not the tail of a merge path so P is illegal in T.  Thus there is a
sequence <Q1,...,Qj> of chosen merge paths such that P �  Q1 �  ... �  Qj �  P.  Thus h
occurs on Q1, so the head of Qj is a support node of  h that occurs on P.  Hence there
must be a near support node of h that occurs on P. 

�

Lemma 11.  If v is a support of u, then v is visible from u.

Proof. Let P1 �  ... �  Pk be chosen merge paths such that u is an interior node of P1 and v
is the head of Pk.  Let P = path(u,v).  Suppose P is not legal.  Then there is a sequence Q1,
..., Qn   of chosen merge paths such that P �  Q1 �  ... �  Qn �  P. Thus v is an interior node
of Q1, so Pk �  Q1. (See Figure 12.)  Let h be the head of Qn.  Since Qn �  P, h is an interior
node of P.  Since the union of paths P1,...,Pn must be connected, and includes both u and
v, P is a subset of this union.  Hence h is on some Pi, and so Pi � ... �  Pk �  Q1 �  ... �  Qn �
Pi, a contradiction since these are all chosen merge paths.  Thus P must be legal, and v is
visible from u. 

�
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Figure 12. Merge paths that form an illegal set

Lemma 12.  If w is an ancestor support of a left support of an atom node u, then w is an
ancestor of u.

Proof.  Let u have left support v and let v have ancestor support w.  If w were not an
ancestor of u, then the unique path P from u to v must go up to the nearest common
ancestor of u and v, then down through w to v.  (See Figure 13.)  Consider the sequence
of chosen paths P1, ..., Pk such that v is on P1, P1 �  ... �  Pk and w is the head of Pk.  Then
P �  P1 �  ... �  Pk, which is impossible, as v is visible from u by Lemma 11.  Hence w must
be an ancestor of u. 
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Figure 13. An impossible ancestor support of a left support
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5. Path Reversal, Ordered Clause Sets and Foothold Scores

When a merge path is created, it does not matter in a fundamental sense in which direction
the path is oriented.  We define the operation of reversing a path A in a clause tree
whereby the whole subtree that is attached to the head of A is

 removed and reattached at the tail of A.  Selected merge paths that use parts of the path A
have to be redefined, but the details are not hard.  This operation allows us to consider
entire families of clause trees as equivalent.  It also allows us to define restrictions on
clause trees, including the foothold score restriction and the ordered clause set restriction.

Operation 1 Path Reversal  Let T = <N,E,L,M> be a clause tree, and let A = path(t,h)
be a chosen merge path in M.  Let u be the node adjacent to h in A.  The operation of
reversing the path A in T, illustrated in Figure 14, modifies T to obtain T' =
<N,E',L',M'>  in the following way:
1. If there is an edge {v,h} in E such that v does not occur on A, then the new set of

edges is E' = (E − {v,h}) ∪ {v,t}.  L' is identical to L except that the new edge {v,t} is
labeled by L' with the same sign as {v,h} is labeled by L.  In case there is no such
edge, E'=E and L'=L.

2. Define the reversal of A,  AR = path(h,t).
3. Let {B1 ,...,Bn} be the set of chosen paths in M that contain the edge {u,h}.  For each

Bi = path(ti,hi) define the path Bi' as path(ti,hi) if hi ≠ h and path(ti, t) otherwise.  Note
that the edge set of Bi' is the symmetric difference of the edge sets of Bi and A, with the
edge {v,t} replacing the edge {v,h}.  We denote Bi' by Bi ⊕ A, abusing notation
slightly.

4. Let {C1 , ... ,Cm} be the set of chosen paths in M whose head edge is {v, h}.  For each
Ci = path(ti,h) define Ci'= path(ti, t), with just the head edge replaced by {v, t}.

5. Let M'=M − {A} ∪ {AR} − {B1,...,Bn} ∪ {B'1,...,B'n} − {C1,..., Cm} ∪ {C1',..., Cm'}.

+ +

B

A

+ +

B' =B ⊕ A

A

_

_
R

t

t

h

h

u v

uv

C

C'
Figure 14. Before and after path reversal

Lemma 13. Let T' = <N,E',L',M'> be obtained by the path reversal of the chosen path A
in T = <N,E,L,M>.  Then the following statements are true:
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(a) T' is a clause tree, and cl(T) = cl(T').
(b) T can be obtained by reversing AR in T'.
(c) Two atom nodes are merge connected in T if and only if they are merge connected in

T'.  Thus a set of nodes is a merge set of T if and only if it is a merge set of T'.
(d) If a and b are atom nodes in N and {a,b} ≠ {t,h}, a is visible from b in T if and only

if a is visible from b in T'.  Moreover, the same side of a is visible from b.  The only
difference in the visibility relations of T and T' is that h is visible from t in T and not
in T', but t is visible from h in T' and not in T.

(e) The visibility relation between merge sets is unaffected by path reversal.

Proof.
(a) Let h, t, u, v, A, Bi and Cj be defined as in Operation 1 (Path Reversal).  Consider any

order of the internal atom nodes of T which correspond to a derivation of T, as in the
proof of Theorem 5.  Order the internal atom nodes of T' in the same way, except that
the position of h and t in the ordering of T are interchanged in the ordering of T'.
Consider any chosen path P' in M' that corresponds to a chosen path P = path(x,y) in
M.  We must show that every internal node of P' must occur before x and y in the
ordering.

If P does not have h as a node, then P'=P.  Then all internal atom nodes of P occur
before x and y in the ordering for T, so all internal atom nodes of P' occur before x and
y in the ordering for T'.  This same argument works if P = Ci.  If P = Bi then note that
the internal atom node set of P' is the symmetric difference of the internal atom node
set of P and the internal atom node set of A, with t replacing h.  Since every internal
node of A occurs before h in the ordering of T, every internal node of A occurs before t
in the ordering of T'.  As h either is y or occurs before y in the ordering of T, t is either
y or occurs before y in the ordering of T'.  Hence all internal atom nodes of P' occur
before y.  Thus the ordering of T' corresponds to a derivation of T', and T' is a clause
tree.

Note that cl(T) = cl(T'), since the open leaves of T are the open leaves of T', except
possibly for h if h is a leaf.  But in this case it would be replaced by t which is
associated with the same literal.

(b)  Let T'' = (N, E'', L'', M'') be obtained by reversing AR in T'.  It can easily be seen that
E''= E, L'' = L and M'' = M.

(c) Assume that c and d are merge connected atom nodes of T.
(i) If c=d, then they (it) are still merge connected in T'.
(ii) Assume that path(c,d) is a chosen merge path of T.  There are three subcases to

consider.  If path(c,d) = A = path(t,h), then path(h,t) = path(d,c) is a chosen merge
path in T'.  If d=h and c≠t, then path(c,t) and path(d,t) = path(h,t) are chosen merge
paths of T'.  Otherwise path(c,d) is a chosen merge path of T'.  In any case, c and d
are merge connected in T'.
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(iii)  Assume that path(c,w) and path(d,w) are chosen merge paths of T.  If one of these
paths is A, then without loss of generality let c=t and w=h.  Then path(d,t) =
path(d,c) is a chosen merge path of T'.  If w=h and neither c nor d is t, then path
(c,t) and path(d,t) are both chosen merge paths of T'.  Otherwise path(c,w) and
path(d,w) are chosen merge paths of T'.

Conversely, assume that c and d are merge connected in T'.  Then T is the result of
reversing AR in T' by (b).  By the above argument, c and d are merge connected in T.

(d)The proof that the visibility relation on the atom nodes is essentially unchanged
between T and T' is similar to the above argument in (a) for the merge paths remaining
legal, and is omitted.

(e)We must show that the head node h1 of a merge set N1 can see the head node h2 of a
merge set N2 in T if and only if the head node h1' of N1 can see head node h2' of N2  in
T'.  By (d) the only difference in the visibility relation is between the head and tail of a
path.  Since neither h1 nor h2 is the tail of any path, the visibility relation between head
nodes is unchanged. 

�

The fundamental purpose of a clause tree T is to show that cl(T) can be derived from the
clauses corresponding to the clause nodes of the tree.  Lemma 13 shows that the same
derivations can be found regardless of the direction chosen to create a merge path.  Thus a
procedure can specify which way a merge path is oriented, without affecting completeness
of the procedure.

Definition 16. Reversal equivalent
Two clause trees are reversal equivalent if one can be obtained from the other by a series
of path reversal operations.

Reversal equivalence is an equivalence relation.  Figure 15 shows four reversal equivalent
clause trees from the clauses {~a}, {a, ~b, ~c}, {a, b}, and {~b, c}.  In general, if there
are n merge paths with distinct heads in a clause tree then there are 2n different reversal
equivalent clause trees.
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Figure 15. Four reversal equivalent clause trees

If multiple path reversals are to be done, the order in which the path reversals are done is
not important unless there are two chosen paths that have the same head.

Theorem 14.  Given a clause tree T = <N,E,L,M> and a subset S of M such that no two
paths of S have the same head.  Then for any ordering of the elements of S, reversing all
paths of S in that order results in the same clause tree.

Proof.  Select two orderings of the elements of S, and consider the two edge sets that
result from reversing the paths in these orders.  Since each reversal changes exactly one
edge, and since no two reversals affect the same edge, the two edge sets must be identical.
Each merge path still connects the same tail to the same head.  Since the underlying edge
sets are trees, the path connecting a pair of nodes is unique, so the merge paths in the
resulting trees must be identical. 

�
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The situation when the set of paths being reversed includes paths with the same head is
not quite as simple.  The important thing is where the subtree attached to the head of the
paths ends up being attached at the end of the path reversals.  It ends up at the tail of the
last path reversed, at one of the nodes that are merge connected to the original head.  But
this is dependent on the order in which the paths with the same head are reversed.  If two
paths share a head then reversal of the first path followed by the reversal of (the image of)
the second amounts to a reversal of the second.  See Figure 16.  In fact, looking at this
diagram one sees that under the two different operations, the roles of the two paths have
been exchanged.  That is the image of P1 after reversing P1 and then reversing P'2, is the
same path as the image of P2 after reversing P2.

T T '1

h

S

h

Reverse P

P '1

P1

t1
P '2

P2

h

t1
t2

t2

t2t 1

1

Reverse P 2
Reverse P' 2

P ''1
P ''2

T '' = T '12 2

S

S

Figure 16. Reversing two paths with the same head

5.1 The Ordered Clause Set Restriction
The Ordered Clause set (OC) restriction[30], [31] depends upon path reversal to decrease
the search space needed for any ME-type top down procedure.  These papers specifically
develop OC for ME and SLI [19] proof procedures, but it can be applied to SL and GC as
well.  In all of these procedures some merge paths are ancestor paths.  If such a path is
reversed, a different proof arises.  But one needs to allow only one of these two proofs.
Initially, the input clauses are assigned an arbitrary total order.  The OC restriction
chooses one of the two ancestor merge paths by comparing the clauses at the head and
tail.  The clause node adjacent to the head of any ancestor path is required to precede the
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clause node adjacent to the tail (or they could be the same clause in the case of first order
clauses [36]).

For example in Figure 17, an ordered unsatisfiable set of clauses is presented and two
closed clause trees are shown.  In the first, the ordered clause set restriction is obeyed
since the clause by the head of the path is earlier than the clause by the tail.  However the
second clause tree is not accepted.
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Figure 17. An illustration of the ordered clause set restriction

Not only does the OC condition reduce the search space, it can be detected early enough
in the procedure to prevent much redundant work.  It also prevents multiple redundant
proofs from being found when more than one proof is required.  This gives a significant
improvement to the ME procedure in terms of both the number of inferences and amount
of time required.  Although merge paths other than ancestor paths are built by the SL and
ALP procedures, the ordered clause set restriction is applied only to ancestor paths.  The
right hooks of SL are oriented left to right, and the left paths of ALP are oriented from
right to left, so their reversal would disrupt the structure of the clause tree constructed by
the procedures.

The top down procedures discussed in this paper (Section 7.2) when applied to problems
in propositional logic can use the ordered clause set restriction with a strict inequality
because the clauses at the head and tail of a merge path cannot be the same in these
algorithms without causing tautology or unchosen merge ancestor paths (Lemma 21).  But
the first order logic case in general is more complicated.  One wants to be able to choose
one direction over the other in all ancestor merge paths, so that the direction is acceptable
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in all paths simultaneously.  Paths may arise such that the first and last clause node are
different instances of the same clause.  Thus not all ancestor paths are ordered by the
ordered clause set restriction.  See Section 7.5 for more discussion about this.  The next
section offers another way to orient paths that does not suffer from this problem.

5.2 Foothold Scores
Spencer [32] has a different method of orienting merge paths, the foothold refinement.
The idea is to give each ordered pair of edges at a clause node, a score of +1, 0 or –1.
The score of a path is the total of the scores of each such pair of edges along the path.  If
the path is reversed, the score gets multiplied by –1.  If the number of clause nodes on the
path with non-zero score is odd, then the total must be positive or negative.  By accepting
only paths that have a positive total score, the proper  paths, one always gets only one
representative chosen from each equivalence class of reversal equivalent clause trees
(Theorem 16).

Definition 17. Foothold scores
Let T = <N,E,L,M> be a clause tree and let P be a chosen merge path in T.  For each
clause node n in N, assume that the literals of the clause with same sign are totally
ordered. Literals with different signs are not compared.  Let us call such an ordering a
sign-ordering of n, and say T is a sign-ordered clause tree.  Define the score of n in P to
be in the sign ordered clause tree T:

 0 if the incoming and outgoing edge at n of P differ;
+1 if the incoming edge at n in P precedes the outgoing edge; and
–1 if the outgoing edge at n in P precedes the incoming edge.

P is said to be proper if the sum of the scores of all the clause nodes is positive;
otherwise P is said to be improper.  T is said to be a representative clause tree if all of its
chosen merge paths are proper.

Any merge path starts and ends with edges of the same sign, and hence must have an even
number of internal nodes at which the sign changes.  The number of internal nodes of the
path in all is odd, so there must be an odd number of internal nodes at which the sign does
not change.  But the sign changes at all the atom nodes, so all the nodes at which the sign
does not change are clause nodes, and there must be an odd number of them.  Since the
score is +1 or –1 at these nodes and 0 elsewhere, the total score of the path must be odd,
and hence either positive or negative.  Note also the sign of the score changes at a node if
the path runs the other way.  Thus the total score of a path gets multiplied by –1 if the
path is reversed.  Hence either the path or its reversal is proper, but not both.

Lemma 15.  Consider three paths, path(a,b), path(b,c), and path(c,a) in a sign-ordered
clause tree such that a clause node n is common to the three paths.  Let the score of n in
each of the paths be i, j and k respectively.  Then |i+j+k| =1.

Proof.  If the signs on the three edges on the paths are all the same, then the literals of the
three edges are all comparable in the sign-ordering.  Without loss of generality, we can
assume that the literal on the edge towards a is the first literal in the sign-ordering.  Then
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i = +1 and k = –1.  Thus |i+j+k| = |j| = 1.  See Figure 18.  If the signs on the three edges
are not all the same, one sign differs from the other two.  Then two of i, j and k are 0, and
the third value is +1 or –1.  Hence |i+j+k| = 1. 
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Figure 18. Scores around a sign ordered clause node

Theorem 16.  Every sign-ordered clause tree is reversal equivalent to a unique
representative clause tree with the same sign-ordering.

Proof.  Let T = <N,E,L,M> be a sign-ordered clause tree.  First we show that T is
reversal equivalent to a representative clause tree.  Order all the chosen merge paths by
some total order consistent with the �  relation.  Consider each of these paths in turn
according to this ordering and reverse the path if it is not proper.  Since the path reversal
of a chosen merge path P = path(t,h) affects only the total score of a path which includes
h, any path that must precede P, which is already proper, will remain proper.  Paths that
include h as an internal node are processed later and it does not matter at the time P is
processed whether they are proper or not.  The one case that is left is if another path P' =
path (t',h) has the same head, from the same side, and has already been processed.  We
show that if P is improper and is reversed, and if P' is proper, then the path corresponding
to P' in the resulting clause tree, P* = path(t',t), is proper.  (See Figure 16 for an
illustration of how P* arises from P'.)  This fact is proved in [32], in the proof of theorem
3, but we include a proof here for completeness.  Let n be the node common to P, P' and
P*.  Let x be the total of the scores of the nodes common to P and P', excluding n; let y be
the total of the score of the nodes on PR and P*, excluding n.  Let –z be the total of the
score on the nodes common to P' and P*.  Let i, j and k be the scores of n on P, on the
reversal of P' and on P* respectively.  Note that x, y and z are computed by traversing
away from n.  See Figure 19. Then

– y + i + x  ≤ –1 P improper
y – i – x ≥ 1 PR proper

– z – j + x  ≥ 1 P' proper
y – z – i – j  ≥ 2 add

y – z + k  ≥ 2 + i + j + k add i+j+k
≥ 1 by Lemma 15
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Hence P* is proper.  Thus each reversal does not change any path already processed from
being proper.  Hence the resulting clause tree is representative.
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n

Figure 19. If P' and PR are proper then P* is proper.

The remainder of the theorem requires that two reversal equivalent representative clause
trees, that have the same sign-ordering, be identical.  Suppose T and T' are two such
clause trees that are not identical but that have the minimal number of chosen merge paths.
T and T' cannot be mergeless if they are reversal equivalent but not identical.  There is an
ordering <a1, a2, ... ak> of the atom nodes of T that is an extension of the �  ordering of
the nodes of  T, as defined in the proof of Theorem 5. There is an extension of the �
ordering of the atom nodes <a1', a2', ... ak'> of T' such that for i = 1, ... , k, ai and ai' are
merge connected, since the two clause trees are reversal equivalent.  Now consider the
first head ai' of a chosen merge path that occurs in this ordering in T.  Suppose that ai and
ai' are different nodes.  Then ai' is the head of the corresponding path in T'.  Also
path(ai',ai) is a chosen merge path in T while path(ai,ai') is a chosen merge path of T'.
Since the nodes on these paths must occur before ai in the ordering, they cannot be the
heads of any chosen merge paths, nor can they be the tails of chosen merge paths.  Hence
these two paths are the reversal of each other.  But then one of these paths is not proper, a
contradiction of our assumptions.  Thus we can assume that ai = ai'.  The set of chosen
merge paths with ai as head now must be the same in T and T'.  Removing these paths
from the set of merge paths leaves two clause trees that are identical, by our assumption
above.  Hence T and T' are identical.

�

The foothold score restriction can be applied to any clause tree.  In particular, one can
reject any non-representative clause tree, i.e. one that contains an improper path.  In a
bottom-up procedure, this detects redundant clauses which otherwise would be detected
only by a subsumption check.
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6. Tautology Paths, Surgery and Minimal Clause Trees
Most proof procedures based on resolution do not allow two-literal tautologies like
{a,~a} to be produced as a subclause.  Such tautologies cannot help in the production of a
proof by resolution.  This does not prevent the procedure from being complete because
whenever there is a proof using a tautology, some other proof that does not have such a
tautology is produced by the procedure instead.  Clause trees can be used to demonstrate
this.

If a clause tree has either a legal tautology path or an unchosen legal merge path, then
parts of the clause tree can be removed without adding any more open leaves.  In fact,
open leaves may be removed.  We call this operation clause tree surgery, and note that
clause trees to which surgery cannot be applied form an important class of clause trees.

Definition 18. Minimal clause tree
A clause tree T = <N,E,L,M> is minimal if it has no legal tautology paths and no legal
merge paths not in M.

Conceptually, minimality means that one cannot reorder the resolutions in the clause tree
and create a smaller clause tree that subsumes the original clause.  That is, there is no
smaller proof of the same result using a subset of the original resolution steps.

We start with an informal discussion of the various types of surgery on clause trees, and
give a more formal unified presentation Operation 2.  Let T = <N,E,L,M> be a clause tree
which has a tautology or merge path P = path(t,h) which is legal in T but which is not in
M.  We consider the case of P a unifiable path later.  For the sake of the following
discussion, we assume that the path goes from left to right.  Thus h and t divide T up into
three subtrees, the tail subtree A which is to the left of t, the head subtree C which is to
the right of h, and the middle subtree B which includes all the interior nodes of P, to the
left of h and to the right of t.  See Figure 20.

t h

P

A C

B

Figure 20. Identifying the areas for tree surgery

If P is a merge path, then we can perform the following steps, called tail surgery at P.
1) Reverse any chosen merge path which has t as an interior node and whose head is in

the near support of t and is in subtree A.  Repeat until no chosen merge path which
has t as an interior node has its head in A.

2) Remove from M all the chosen merge paths that have their tails in A.
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3) Replace any chosen merge path Q that has t as its head by P⊕Q, where ⊕ is defined
in Operation 1

4) Remove the resulting subtree A from the clause tree, leaving t as an open leaf.
5) Add P to the set of chosen paths in M, making t a closed leaf.

An example is given in Figure 21.
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Figure 21. Tail surgery on path(t,h)

If P is a tautology path, then we can do what we call tautology surgery at P.  There are
two cases to consider.  First we assume that t is not visible from h.  In this case there must
be a support u of t on the path P.  Let P1,...,Pk be a minimal sequence of chosen paths such
that t is on P1, P1 � ... �  Pk, and u is the head of Pk.  (By a minimal sequence, we mean that
no subsequence has this property.)

1) Reverse the merge paths P1, ..., Pk.
2) Perform tail surgery at P', the path joining t to h in the new clause tree.
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The order in which the paths are reversed does not matter by Theorem 14, for none of
these paths can have the same head by minimality.  Thus we can consider the reversals
being done in order P1,...,Pk.  Each path reversal puts t onto the next path, so that
immediately before the last path reversal, t is on Pk.  When Pk is reversed, P is replaced by
P⊕Pk.  Thus the sign of the edge incident with the tail of P changes, so that P becomes a
merge path instead of a tautology path.
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Figure 22. Tautology surgery where t is not visible from h

The last case to be considered is that in which T is a tautology path and the tail t is visible
from the head h.  We call the following operation internal surgery at P.

1) For every node n in B which is a near support node of h or t and which can see both h
and t, select a path Q =path(u,n) such that u sees the same side of n that t sees
(Lemma 11), and reverse Q.

2) Remove all chosen merge paths that have tails in the middle subtree B.
3) Not needed.
4) Remove the middle subtree B from T.
5) Identify the two nodes t and h.

If some chosen path is affected by the removal operation in step (4), then it must have
contained all of P as a subgraph.  The parts of this path that were in the head subtree and
the tail subtree are put back together when t and h are identified.
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Figure 23. Internal surgery

It is worth pointing out that surgery at a merge path P may generate a very different result
than surgery at PR, the reversal of P.  For example in Figure 24, the clause of the result of
surgery at P is {c}, whereas the clause of the result of surgery at PR is {a}.

a ab c+ _+ ++ _
a ab c+ _+ ++ _

a ab c+ _+ ++ _

a ab+ _+ +

P

PR

surgery at P

surgery at P R

Figure 24. Surgery at P and PR

The three different surgery operations can all be given in a single definition.  The numbers
on the steps in Operation 2 correspond to the numbers on the steps in Figure 21 thru
Figure 23.

Operation 2 Clause Tree Surgery
Let P = path(t,h) be a legal path in a clause tree T = <N,E,L M>, unifiable by the
substitution θ.  Neither t nor h can be the tail of a chosen merge path.  Let V be the set of
nodes, excluding t, that can see the side of t complimentary to the sign of the head edge
of P, but cannot see that side of h.  The operation of surgery at P on T produces TP =
<NP,EP,LP,MP> by the following sequence of steps:
1. Let n be an atom node in V that supports t or that supports h if h is in V.  Consider a

chosen merge path whose tail is not in V with head n that comes from the t side of n.
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Reverse this path.  Repeat for all such atom nodes in V.  This step produces a clause
tree T' = <N,E',L',M'>.

2. For each chosen merge path in M' that has its tail in V, remove it from M' to leave a
set of chosen merge paths M'' = M' − {Q | Q in M' and tail of Q is in V}.  These
include all the paths that were reversed in step (1).

3. For each chosen merge path Q = path(s,t) in M'', replace it with Q'=path(s,h) to form
M''' = {Q | Q is in M'' and t is not the head of Q} ∪ {path(s,h) | path(s,t) is in M''}.

4. Remove from E' all edges incident to a node in V−{h} to obtain EP, and let NP = N −
(V−{h}).

5. (a) Tail Surgery If h is not in V, then add P to the set of chosen paths MP = M'''∪{P}.
(b) Internal Surgery If h is in V, then identify the node h with t in the graph <NP,EP>,
and delete all other nodes of V from any path of M''' in which t and h occur.  Let MP

be the resulting set of merge paths.
6. Define LP to be Lθ, restricted to NP ∪ EP.
 
It is worth pointing out that while the tail of a chosen merge path cannot be seen by the
head of that path, it is possible for the tail of an unchosen path to be seen from the head.
Thus in Operation 2 it is possible that h is in V, since P is unchosen.

We must show that the above step (1) can be performed; that is, for each node n in V
which is a support node of t (or of h if  h is in V which can be handled in the same way),
there is a chosen merge path Q = path(w,n) with w not in V.  Note that support nodes of t
in V are precisely the near support nodes on the same side of t as the nodes in V.  Since n
is a support node of t, there are paths Pi = path(ti,hi) for i=1,...,k, such that t is an interior
node of P1, P1 �  ... �  Pk-1 �  Pk and n = hk.  If k=1, then P1 is a possible choice for Q.
Otherwise, since hk-1 is on Pk and is a support node of t, hk-1 must make t invisible from
either tk or hk.  But hk is in V and so t is visible from hk.  Hence t is invisible from tk which
implies tk is not in V.  Therefore Pk is a possible choice for Q.

The above operation of surgery may produce different outcomes depending on the
selection of paths in step (1), so strictly speaking it is not a well defined operation.
However if a different set of paths were selected in an alternate application of the surgery,
the result is a clause tree that is reversal equivalent to the result of the original application
(Theorem 18 below).  In fact if one starts with reversal equivalent trees, one ends up with
clause trees that are reversal equivalent up to isomorphism (Theorem 19 below).  Thus the
operation of surgery is well defined for the equivalence classes of the relation between
clause trees TA and TB characterized as: TA is isomorphic to a clause tree that is reversal
equivalent to TB.

Theorem 17.  The application of surgery on a clause tree T at a path P results in a
clause tree.

Proof.  We use the symbols given in the definition of Operation 2.  Assume without loss
of generality that the head edge of P is positive.  Then V is the set of nodes from which t is
visible negatively.  Since t is not the head or tail of any path reversed in step (1), we are
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assured  by Lemma 13 (d) that the set of nodes from which t is visible negatively at the
end of step (1) is still V.

We show that <NP,EP> is a tree.  This is clear if V is empty since N = NP and E = EP.
Assume V is not empty.  Consider the nodes of T' adjacent to nodes in V, but not in V.  Of
course t is adjacent to a node in V.  If h is in V, and h is not a leaf, then the clause node
beyond h, call it v, is a second such node.  See Figure 23 for an example.  Let n ≠ h be in
V such that n is adjacent to a node u ≠ t and u is not in V.  Then the path from u to t must
be illegal while the path from n to t is legal, for otherwise u is in V.  By Theorem 10, there
must be a support node of t on  path(u,t) but not on path(n,t).  The only possible such
node is n itself, with u further from t than n.  Thus n is a support node for t, and there
must be a chosen merge path with head n and tail outside V that gets reversed in step (1).
See Figure 25.  But this reversal makes n a closed leaf, so u does not exist in T'.  Hence
only t and possibly v can be nodes of T' outside of V and adjacent to nodes in V.

t un

V

Figure 25. In T', showing u cannot be adjacent to a node in V

Consider any node m of T' which is not deleted in step (4).  Thus m is in NP.  The path
joining m to t in T' cannot include any nodes of V unless the path goes thru v, and includes
h, and so includes all of P.  In this latter case, h is in V so h and t get identified in step
(5b).  Thus all nodes in NP are connected to t by a path, so  <NP,EP> is connected.  If t
and h are identified, no cycle is created because the other nodes on P are deleted.  Thus
the underlying graph <NP,EP> is a tree.

It is not difficult to see that <NP,EP,LP,φ> is a mergeless clause tree.  Consider the clause
node c in NP.  We must show that the set of associated literals of the edges incident with c
is an instance of the clause LP(c) = L(c).  For every atom node in V, except possibly h, its
neighbouring clause nodes are also in V and hence are deleted as well.  In the exceptional
case, h is in V but its neighbouring clause node v is not in V.  When h is identified with t,
and the edge {t,v} is created.  The labels given by LP to h and t are identical so the
associated literals incident with v remain the same.  All of these elementary clause tree are
combined by Definition 1(b), using the substitution Lθ which ensures that the atom nodes
are labeled identically.  The whole of <NP,EP,Lθ,φ> can be built up because <NP,EP> is a
tree.

We must still show that MP, the remaining chosen merge paths, is a legal set of merge
paths.  Let Q be in MP.  Then the tail of Q was not in V.  Nor can the head of Q have been
in V, because that would imply that the head of Q was a support of t or h.  But then a
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merge path of T with the same head as Q and the same sign would have been reversed,
making this node a tail of a chosen merge path at the same time as it is the head of a merge
path.  This contradicts the definition of a legal set of merge paths.  Q could still have had
some nodes in V, by starting outside of V, entering V, and then leaving V.  Because the
only possible entry points to V are h and the node in V adjacent to t, Q must have included
both t and h.  Thus Q must have included P as a subpath.  Then all the internal nodes of P
are deleted in step (4), breaking Q into two pieces, but then in step (5) t and h are
identified, and Q is made into a single path again.  Hence each object in MP is a path, and
the head and tail of each are the head and tail of a merge path in M'.  Thus each path is a
merge path.  That MP is a legal set of paths follows because the precedes relation on MP is
a subrelation of the precedes relation of M', and hence extends to a partial order.

�

The following theorem points out that the choice of a path on which to perform surgery
determines the resulting clause tree, up to path reversal.

Theorem 18.  In any two applications of clause tree surgery at a path P in a clause tree
T, the resulting clause trees are reversal equivalent.

Proof. We use the terminology used in Operation 2.  Let n be a near support node of t in
V.  The only non-deterministic step in clause tree surgery is the selection of paths to
reverse in step (1).  Suppose the two applications of surgery differ only by the selection of
Q1 = path(t1,n) and Q2 = path(t2,n).  The only difference at the end of step (1) is the path
reversal of Q1⊕Q2 = path(t1,t2).  See Figure 26.  Both t1 and t2 are outside V, and so
path(t1,t2) is not deleted in step (2).  Also, t1 and t2  are not deleted in step (4).  Reversing
path(t1,t2) does not change the tail of any other chosen merge path and hence has no
impact on whether the tails of chosen merge paths are in V.  Hence the paths that are
deleted in step (2) of surgery are the same regardless of whether Q1 or Q2 is reversed.
Thus the one edge change caused by the reversal of path(t1,t2) is the only difference
between the edge sets at the end of the surgery operations.  Now consider the effect of the
two surgery operations on a member Q of M that is not removed in step (2).  It is not
possible for the head of Q to be t1 or t2.  Thus the head and tail of Q are unchanged by the
path reversals in step (1).  Hence the corresponding  paths resulting from Q must differ (if
at all) by precisely the effect of reversing path(t1,t2), even though it is possible that the
paths Q and path(t1,t2) may have pieces deleted out of its middle.  Therefore the final
clause trees differ only by the path reversal of path(t1,t2).

If the two surgery operations differ by more than one selection in step (1), we can prove
that the resulting clause trees are reversal equivalent  by using induction on the number of
near support nodes of t nodes at which different paths are selected. 

�
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Figure 26. Different results of different applications of surgery

Theorem 19.  Let T and T* be reversal equivalent clause trees, and let P = path(t,h) be a
unifiable path in T upon which surgery can be performed.  Let the node t* be the head
node of the merge set of t in T*.  Similarly let the node h* be the head node of the merge
set of h in T*.  Then the result of surgery at P on T, and the result of surgery at P* on T*
are reversal equivalent, up to isomorphism.

Proof.  First we consider applying surgery to two clause trees that differ by a single path
reversal.  Let T = <N,E,L,M>, P = path(t,h) and V be as in Operation 2.  Assume without
loss of generality that the head edge of P is positive.  Let Q = path(x,y) be a chosen merge
path of M.  Let T* be the result of reversing Q in T.  Consider the differences between
surgery at P in T, and surgery at P* in T*.  Without loss of generality we assume as far as
possible that the two different surgeries choose the same paths to reverse in step (1).  By
Lemma 13 (d), the set V for each surgery is the same.  We have several cases to consider,
depending on where x and y are relative to t, h and V.  We start with {x,y} disjoint from
{t,h}, so P* = path(t,h).  If x and y are both not in V, we use the same argument as used
Theorem 18 in the situation where a different path is chosen to be reversed in step (1).
Then the results of the two surgeries are reversal equivalent.

If x and y are in V, then Q is removed in step (2) of surgery at P in T, and the reversal QR

of Q is removed in step (2) of surgery at P* in T*.  In step (4) the same nodes are
removed in both surgeries, and so are the same edges, except that the edge in T beyond
the head of P and the edge in T* beyond the head of P*, which are not in T* and T
respectively, are removed as well.  Thus in this case the resulting clause trees are identical.
If x is in V and y is not in V, then Q is removed in step (2) of surgery at P in T.  But in T*,
Q is reversed to obtain QR, with head x in V and tail y outside of V.  Then Q can be chosen
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to be reversed for x, which is now a support node for t in step (1).  Thus QR is reversed to
form Q again.  Hence at the end of step (1), the same clause tree is formed from both T
and T*.  A similar argument works if y is in V, x is not in V.

We are left with the case that {t,h} is not disjoint from {x,y}.  We know that neither t nor
h can be x, since x is the tail of a chosen merge path.  Let t = y. The case h = y is handled
similarly except working from T* to T.  There are two subcases, depending on whether x
is in V or not.

Let x not be in V, so the head edge of Q is positive.  Reversing Q then interchanges the
role of x and y, so path(t*,h*) = path(x,h).  In both surgeries, the same paths are removed
from M, since the location of the tails of other chosen merge paths are not affected by the
path reversal of Q.  Any chosen merge path(s,t) that remains after step (2) of surgery on T
is replaced by path(s,h) in step (3).  In T* path(s,t) = path(s,y) gets replaced by path(s,x)
= path(s,t*), which in turn gets replaced by path(s,h) in step (3) of surgery on T*.  Thus
all chosen merge paths at the end of step (3) have the same heads and tails in each of the
two surgery operations.  The set of nodes from which x is visible negatively remains V, so
the same nodes are removed in both surgeries is step (4).  The edge beyond the head of Q,
if it exists,  joins t = y to a node u in V.  This u is removed in the surgery on P in T.
Similarly the edge {x,u} in T*, which replaces the edge {t,u} in T, is removed in the
surgery on T*.  Since the node and edge sets are the same, and each corresponding merge
path has the same head and tail, the merges paths are the same.  Thus the resulting clause
trees are identical.

Let x be in V, then Q is removed in step (2) of surgery in T.  But in T*, t* = x.  Now the
nodes from which t* is visible negatively is V* = (V∪{y})−{x}.  In step (4) the same
nodes are removed in the two different surgeries, except that x and y interchange roles: y
is kept and x discarded in surgery on T; x is kept and y discarded in surgery on T*.  The
same edges get removed in step (2) as well, except that if u exists then the edge {y,u} in T
replaced by the edge {x,u} in T*.  Exactly the same paths are removed in step (2) in both
cases.  The resulting clause trees are isomorphic, with the node x replacing the node y and
otherwise the mapping being the identity.  This is the only case in which an isomorphism is
required.  In all other cases only path reversals are needed.

If two clause trees T and T* differ by several path reversals, it follows by induction that
the result of surgery on corresponding paths results in clause trees that are isomorphic to
reversal equivalent trees. 

�

The importance of surgery, and the importance of minimal clause trees, come from the
following theorem.

Theorem 20.  Let T be a clause tree on a set S of clauses.  If T is not minimal, then there
is a minimal clause tree T' on S such that cl(T') ⊆ cl(T).
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Proof:  Since T is not minimal, there is a legal tautology or unchosen merge path P in T.
Then either tail surgery or internal surgery can be performed on P without a substitution
on the variables.  Since surgery does not affect clause nodes unless they are completely
removed, the resulting clause tree is still from S.  The surgery can only remove open
leaves, never insert them so that the corresponding clause can only get smaller, not larger.
If the resulting tree is still not minimal, then surgery can be repeated until the resulting
clause tree is minimal. 

�

Thus non-minimal clause trees are redundant, if one has all the minimal clause trees.
Hence it is desirable that a procedure to construct clause trees be able to prune the search
whenever the clause tree being constructed becomes non-minimal.

The surgery operations are not reversible like path reversal is.  One cannot know what
was removed.  However tail surgery does allow a one-sided inverse operation which can
be reversed by surgery.

Operation 3  Supplanting a path
Let P be a chosen merge path with head h and tail t in a clause tree T.  The path P is
supplanted by its head subtree when the following are done:
1)  Make a copy C of the head subtree of P.
2)  Attach C to T using t in place of h.
3)  Remove P from the set of chosen merge paths.
4)  For any chosen merge path with a tail in the subtree at h, add a chosen merge path

from the copy of the tail in C to either the copy of the head if the head is in the
subtree, or to the head itself if it is not in the subtree.

For example, the subtree in Figure 27, a copy C of the subtree T1 supplants the path P.
That the result of a supplanting a path is a clause tree, and that tail surgery by P inverts the
operation, is omitted.

T
1

P

t

h h

T
1

Supplant P

t

C

Figure 27. Supplanting a path P by its head subtree T1
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7. Top down Procedures for Building Clause Trees
In this section we develop the top down procedures ME, SL, ALP, MinALP and AllPaths
for building rooted clause trees and explore some of their properties.  We begin by
describing the general setting, give intuitive descriptions of the procedures, followed by
pseudocode, and then proofs of completeness of some of the procedures.

Each procedure starts with a satisfiable set S of input clauses (axioms), and another clause
C, the negation of the theorem to be proved.  C is also added to the set of input clauses if
the clauses are not propositional.  Each procedure assumes that elementary clause trees
from the clauses of S and from C are available.  The clause tree from C is used as the top
clause.  One open atom node in the clause tree is deterministically selected as the current
node by a computation rule R.  Thus R determines whether the search is depth-first, left-
to-right, and so on.  We usually select R as depth-first, and either left-to-right or right-to-
left.  Some of the procedures require that R be depth-first, because this guarantees that
certain atoms nodes are visible without having to explicitly check.  All of these procedures
contain one or more non-deterministic steps, such as selecting which input clause to
resolve against the current atom node. This causes the search to branch.  This non-
determinism may be implemented by (chronological) backtracking search, or with a
parallel computation.  If failure results at any point then the current branch of the search is
terminated.  The procedure ultimately fails if all nondeterministic steps end in failure.

7.1 Visible Lists in the ALP Procedures
Procedures in the ALP family all use Ancestor paths and Left Paths.  This family (so far)
consists of ALP, MinALP for minimal ALP, ALPOC and MinALPOC.  The last two use
the Ordered Clause set restriction on ancestor paths.

All of these procedures build trees top down, left to right.  At any given step of the
procedure, an open leaf is being considered.  It has a sequence of ancestors a1, a2, ... ,an-1.
None of the nodes to the left of an are open whereas all nodes to the right are open leaves
and are the children of ancestors.  See Figure 28.
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Figure 28. Portions of the clause tree as it is built

Some overhead work is required for the ALP procedures to guarantee that the set of
chosen ancestor and left merge paths is legal.  In contrast, the set of merge paths chosen
by the ME and SL procedures is necessarily legal, so this overhead is not required.  To
determine whether a left path is legal, a list called the visible list is maintained, consisting
of the literals that are visible from the current node.  A node n in the left portion of a
clause tree is visible from the current node if and only if the path from the current node
does not pass over a near support node of n.  The support nodes of n that could appear on
this path are ancestor support nodes.  Of course if any support node occurs on this path
then a near support node must occur on it.  Since the tree is rooted, it is sufficient to know
the level of the near ancestor support node of n; this is called the support level of n.  See
Figure 29.  When the subtree beneath n is closed, the support level of n is calculated from
the ancestor support lists of the atom node grandchildren of n excluding the level of n
itself, by taking the maximum of the levels of the ancestor supports of these grandchildren.
A subtle point: it is not sufficient to consider only the support levels of the grandchildren
of n.  For instance, if the support level of one grandchild is the level of n then its next
nearest ancestor support could be the support level of n.

The visible list is maintained by two operations.  Recall that atom nodes are selected depth
first.  When the subtree below an atom node n is closed, the support level of n is
calculated and a pair consisting of this level and the literal corresponding to n's upper edge
is inserted into the list.  When the newly selected atom is at a level less than (above) the
previously selected atom node, all of the entries in the visible list associated with the levels
greater than the newly selected atom node are removed.  This method of keeping track of
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visible nodes is analogous to Shostak's method of keeping a pointer into the chain for the
C-literals [29].  It is also analogous to the enforced folding up procedure of [17] in
connection tableaux.

n

Support
Level of n

Illegal Left Path
to n

Path to near
ancestor
support of n

Figure 29. Illustration of support level

To implement the ordered clause set restriction, whenever an ancestor merge path is
detected, the clause numbers of the neighboring clauses must be compared, and rejected if
the deeper clause has a smaller number than that of the ancestor node.

The ALPOC algorithm has been implemented [33] by adding it to Stickel's PTTP
procedure [34].  These two operations for maintaining the visible list are relatively
inexpensive.  However, using a visible list adds some expense since, as each node is
selected, the visible list must be searched for tautology paths and left paths.  The overhead
of ALP over PTTP slows it down by factor of 2 to 4 per inference[33].  This agrees with
the factor of 3 mentioned in [17].

The ALPOC system frequently improves upon PTTP, especially when left paths give rise
to a shorter proof so that the number of levels of search is decreased.  Because the
iterative deepening search strategy is not forced to look as far, the number of inferences is
decreased dramatically in these examples.  For instance on the TPTP[38] problem
GRP008-1, PTTP required 9,061,115 inferences to find a proof within 12 levels of search
(12 extension steps) [34], but our implementation of ALPOC required only 1,260,198
inferences to find a proof after 10 levels of search [33].  When we compared on the same
computer the version of PTTP that compiles to Prolog[35] to our modified version of the
same program to build ALPOC proofs on the TPTP problem RNG001-3, we found that
PTTP required 131,224 inferences and 14.284 seconds to find a proof at level 18, but
ALPOC required 6,230 inferences and 1.90 seconds to find a proof at level 14.  For
SYN001-1.005, the PTTP that compiles to Prolog found a proof after 26,790,196
inferences, and ALPOC found a proof after 465 inferences.
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7.2 Finding Minimal Clause Trees
ALPOC is the tightest top down procedure yet mentioned, but still it can generate proofs
that are non-minimal, hence redundant.  In fact the example in Figure 30 shows a problem
for which it generates a non-minimal clause tree.  All ancestor paths and left paths are
handled by ALP and ALPOC.  But as this figure shows, not all right paths are.
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Figure 30. A non-minimal ALP tree, the minimal tree found by surgery
and the MinALP tree

All three procedures ME, SL and GC can construct the clause tree on the left of
Figure 30.  However there is a legal, unchosen merge path between the nodes that are
labeled with c. If the merge path between the nodes labeled a were reversed, then a legal
tautology path would be created between the nodes labeled c.  Thus adding the ordered
clause set restriction to these algorithms does not eliminate this non-minimal proof.

We construct a procedure MinALP which avoids these non-minimal proofs, by detecting
such missed paths as in Figure 30.  Let t be the tail and h be the head of an unchosen
merge or tautology path P in a clause tree produced by ALP on a set of propositional
clauses.  If h is an ancestor of t, then when t was the current node in the ALP procedure,
the path P would have been discovered.  Hence this is not possible.  Similarly if h is a
descendant of t, the ALP procedure would have discovered the reverse of P when h was
the current node.  Also if h is to the left of t, then when t was the current node P would
have been handled.  Thus we can assume that h is to the right of t.  Therefore MinALP is
ALP with this additional step: reject the tree if after the subtree below h is closed, h can be
seen by a node t to its left that is labeled by the same atom as h.
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To check this additional condition, MinALP needs to keep track of more information than
ALP.  Besides the three data structures required by ALP (the list of ancestors of the
current node, the list of nodes visible from the current node and the list of ancestor
supports of the current node) MinALP also needs to maintain two more data structures:
the invisible list of nodes that the current node cannot see, and the near left supports of
the current node.  The operations on these data structures are not difficult to implement.
A node is added to the invisible list when it is removed from the ALP visible list.  Once on
the invisible list, it stays on the invisible list.  When calculating the near left supports of the
current node, one must consider not only the heads of left paths on which the current node
occurs, but also the heads of left paths on which those heads occur, and so on.  However
the ancestor supports of these left supports are not needed, since by Lemma 12, an
ancestor support of a left support is an ancestor, and therefore is already maintained in the
ALP ancestor support list.

The search for this path P = path(t,h) can begin as soon as the subtree below h is closed
because then all of the supports of h are known.  Consider as candidates for t all the nodes
on the invisible list with the same label as h.  Eliminate from this set any t whose ancestor
list does not include the near ancestor support of h, because if this support of h is on the
path from t to h then it makes P illegal.  Next for each left support d of h, eliminate any t
that has d in its ancestor list, since these supports are on the path from t to h and so make
P illegal.  If any candidate remains, then the clause tree so far is non-minimal. Conversely,
if no candidate remains then the tree is minimal and the procedure proceeds.  Thus
MinALP builds only minimal clause trees.

In [12] we asked whether MinALP was complete, but we know now it is not.  Even if
P is legal when the subtree below h is complete, it may become illegal by a left path
chosen later in the construction. In Figure 31 the bad path P is legal before P2 is chosen
and so MinALP would have stopped.  After choosing P2, the set {P, P1, P2} is illegal, and
the tree in Figure 31 is minimal, although it would not be found by MinALP.  One could
amend MinALP so that it rejects a tree if any remaining candidate bad path P is legal now
and can never become illegal; otherwise it proceeds.  It is guaranteed that P can never
become illegal if no left path yet to be chosen can go over the nearest ancestor support of
h and stop on P.   This, in turn, is guaranteed in any of at least two ways: if the nearest
ancestor support of h is h itself, or if there are no open leaves to the right of all ancestors
of the nearest ancestor support of h, which is typically when the proof is nearly complete.
Unfortunately, this amended MinALP does not necessarily generate only minimal clause
trees, because a left path that could have made a candidate bad path illegal, may never
actually be chosen.
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Figure 31. Candidate bad path P made illegal by P2

7.3 Pseudocode for the Clause Tree Procedures
Procedure 1 corresponds to the weak Model Elimination procedure [21].  This procedure
is illustrated in Figure 5 and described in Section 3.1.  In that section R selects the right-
most open atom node.  Such an R is always depth-first.  However, R does not need to be
depth-first for this procedure (Theorem 6).

Procedure 1 Weak Model Elimination with clause trees
Initially T is the clause tree from the top clause C.
1. [Start] Let the current atom node g = R(T) be the rightmost open node.
2. [Tautology] If a tautology path to an ancestor of g exists, fail.
3. [Merge] If a merge path to an ancestor of g exists then choose this path and go to

Continue.  If a unifiable merge path to an ancestor of g exists, then non-
deterministically either go to Extension or do the following: find the most general
unifier θ of the label of g and the label of the head of the path, apply θ to the label of
all atom nodes in T, choose this path and go to Continue.

4. [Extension] If any elementary clause tree from S that has no variables in common with
T can be resolved with T at g, then nondeterministically select such a clause tree T1.
If none exist, fail.  Let θ be the most general unifier of the label of g and the label of
the selected atom in T1. Resolve T with T1, and then apply θ to the label of all the atom
nodes.  Go to Continue.
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5. [Continue] Now g is a closed node.  If there are no more open nodes, exit with
success.  Otherwise go to Start.

Procedure 2 corresponds to SL[16] and is described in Section 3.3.  An illustration of this
procedure where R selects the rightmost open atom node is given in Figure 8.  R does not
need to be depth-first here, but that is one way to ensure that the head of each left path
and right path is a sibling of an ancestor of its tail.  This condition guarantees that the
paths are legal, by Theorem 7.  There are other ways to guarantee this.  SLI maintains for
each open literal its potential factors in the set γ, the siblings of its ancestors.  Stickel [37]
notes that if two goals do not have a common provable instance then factoring them is a
waste of time.  This inefficiency can be avoided in Procedure 2 by selecting the head of a
hook as soon as the hook is chosen [28].

Changes between Procedure 2 and Procedure 1 are shown in boldface.  This convention
will be continued between successive procedures in this section to highlight the
development of the procedures.

Procedure 2 SL with clause trees
Initially T is the clause tree from the top clause C.
1. [Start] Let the current atom node g = R(T) be the rightmost open node.
2. [Tautology] If a tautology path to an ancestor of g or any open leaf exists, fail.
3. [Merge] If a merge path to an ancestor of g or any open leaf exists then choose this

path and go to Continue.  If a unifiable merge path to an ancestor of g or any open
leaf exists, then non-deterministically either go to Extension or do the following: find
the most general unifier θ of the label of g and the label of the head of the path, apply
θ to the label of all atom nodes in T, choose this path and go to Continue.

4. [Extension] If any elementary clause tree from S that has no variables in common with
T can be resolved with T at g, then nondeterministically select such a clause tree T1.
If none exist, fail.  Let θ be the most general unifier of the label of g and the label of
the selected atom in T1. Resolve T with T1, and then apply θ to the label of all the atom
nodes.  Go to Continue.

5. [Continue] Now g is a closed node.  If there are no more open nodes, exit with
success.  Otherwise go to Start.

Procedure 3, without using tautology paths to visible internal nodes in step 2, corresponds
to GC and is described in Section 3.4.  An illustration where R selects the leftmost open
atom node is given in Figure 9.  For Procedure 3 R should be depth-first because the
Ancestor Merge step does not check whether the ancestor path is legal.  If R were not
depth-first, this check would be needed, but then the algorithm would not always generate
ALP proofs as in Definition 19.  Furthermore, Letz et al.[17, prop 7.1] have shown that
this is not complete for arbitrary selection functions.

Procedure 3 ALP with clause trees
Initially T is the clause tree from the top clause C.
1. [Start] Let the current atom node g = R(T) be the leftmost open node.
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2. [Tautology] If a tautology path to an ancestor of g or any visible internal node exists,
fail.

3. [Merge] If a merge path to an ancestor of g or any visible internal node exists then
choose this path and go to Continue.  If a unifiable merge path to an ancestor of g or
any visible internal node exists, then non-deterministically either go to Extension or
do the following: find the most general unifier θ of the label of g and the label of the
head of this path, apply θ to the label of all atom nodes in T, choose this path and go
to Continue.

4. [Extension] If any elementary clause tree from S that has no variables in common with
T can be resolved with T at g, then nondeterministically select such a clause tree T1.
If none exist, fail.  Let θ be the most general unifier of the label of g and the label of
the selected atom in T1. Resolve T with T1, and then apply θ to the label of all the atom
nodes.  Go to Continue.

5. [Continue] Now g is a closed node.  If there are no more open nodes, exit with
success.  Otherwise go to Start.

Like Procedure 3, MinALP  should use a depth-first selection function R.  In MinALP this
is important also because the check for minimality in step 5 assumes that the subtree below
h has no open nodes.  We use a leftmost selection function R, although this can be relaxed
to allow any of the deepest open nodes to be selected first.

Procedure 4 MinALP with clause trees
Initially T is the clause tree from the top clause C.
1. [Start] Let the current atom node g = R(T) be the leftmost open node.
2. [Tautology] If a tautology path to an ancestor of g or any visible internal node exists,

fail.
3. [Merge] If a merge path to an ancestor of g or any visible internal node exists then

choose this path and go to Continue.  If a unifiable merge path to an ancestor of g or
any visible internal node exists, then non-deterministically either go to Extension or
do the following: find the most general unifier θ of the label of g and the label of the
head of this path, apply θ to the label of all atom nodes in T, choose this path and go
to Continue.

4. [Extension] If any elementary clause tree from S that has no variables in common with
T can be resolved with T at g, then nondeterministically select such a clause tree T1.
If none exist, fail.  Let θ be the most general unifier of the label of g and the label of
the selected atom in T1. Resolve T with T1, and then apply θ to the label of all the atom
nodes.  Go to Continue.

5. [Continue] Now g is a closed node.
For each ancestor h of g that has no open descendants do

if some internal atom node t with the same label as h can see h then
fail

endif
end for
If there are no more open nodes, exit with success.  Otherwise go to Start.
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The Ordered Clause set restriction can be implemented with any of Procedure 1,
Procedure 2, Procedure 3 and Procedure 4.  In Procedure 1, replace the Merge  step with
the following.  Here ≤ refers to the total order on the set of clauses.  In the other
procedures, the ancestor merge step is the following, but other merge steps are unaffected.

[Merge]
If a merge path to an ancestor of g exists then

if the head clause of the merge path ≤ the tail clause then
choose this path and go to Continue.

else
fail

endif
elseif a unifiable merge path to an ancestor of g exists then

if the head clause of the merge path ≤ the tail clause then
non-deterministically either go to Extension or do the following:
find the most general unifier θ of the label of g and the label of the
head of the path, apply θ to the label of all atom nodes in T,
choose this path and go to Continue.

else
go to Extension

endif
endif

The above procedures can be seen as special cases of a generic procedure, Procedure 5.
This procedure makes use of all visible internal nodes for merges and tautologies, and it
puts no restriction on its selection function.

Procedure 5 Generic procedure for clause trees

Initially T is the clause tree from the top clause C.
1. [Start] Let the current atom node g = R(T).  Let V be some nodes visible from g.
2. [Tautology] If a tautology path to any member of V exists, fail.
3. [Merge] If a merge path to any member of V exists then choose this path and go to

Continue.  If a unifiable merge path to any member of V exists, then non-
deterministically either go to Extension or do the following: find the most general
unifier θ of the label of g and the head of the path, apply θ to the label of all atom
nodes in T, choose this path and go to Continue.

4. [Extension] If any elementary clause tree from S that has no variables in common with
T can be resolved with T at g, then nondeterministically select such a clause tree T1.
If none exist, fail.  Let θ be the most general unifier of the label of g and the label of
the selected atom in T1. Resolve T with T1, and then apply θ to the label of all the atom
nodes.  Go to Continue.

5. [Continue] Now g is a closed node.  If there are no more open nodes, exit with
success.  Otherwise go to Start.
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The AllPaths procedure is Procedure 5 when R is a depth first, left to right selection
function and V is all visible nodes.  An AllPaths clause trees is one where all paths are
either left paths, right hooks or ancestor paths.  In addition it has the usual restrictions on
unchosen merge and tautology paths: no ancestor paths, right hooks or legal left paths are
tautology paths or unchosen merge paths.  A path between a node and a sibling of one of
its ancestors may be either a right hook or, reversed,  a left path.  This introduces some
redundancy in the definition so we add the restriction that the left paths in AllPaths trees
are not reversed right hooks.  It has recently been shown [11] that a closed AllPaths clause
tree on an unsatisfiable set of clauses must exist.  Hence the AllPaths procedure is
complete.  These clause trees are closely related to the folding up and folding down
operations on connection tableaux [17].  We are investigating procedures for effectively
building AllPaths clause trees.

All of these procedures can be improved somewhat by checking for tautology paths in the
extension step from the new open leaves.  This may expose tautology paths earlier, and so
prevent some work.  For readability, we have decided to present the searches for
tautology paths from the selected literal, and show them as separate steps.  In the
propositional case, a tautology check in the extension step can take the place of one from
the selected node.  However, in the first order case, both tautology checks may be needed.
The check from the selected node may find tautology paths that were only unifiable
tautology paths when the check was done in the extension step.  By the same reasoning,
tautology paths and unchosen merge paths can arise at any point in build ordering.
Detecting this and dealing with it is the subject of ongoing research [15] on the
disequality strategy.  See Section 9.1.

7.4 Completeness results
It is well known that ME and SL are complete.  GC and a procedure equivalent to ALP
have been shown to be complete [17, theorem 8.2].  We provide an alternative proof
which can easily be extended to the ALPOC procedure.  First, a structural definition for an
ALP clause tree is given which characterizes the type of clause tree that the ALP
procedure constructs.  Such a tree must exist if S is satisfiable and S ∪ {C} is
unsatisfiable.  We treat the propositional case, add the ordered clause set restriction, and
then lift to first order logic.

All procedures in this section are sound because they construct closed clause trees.  This is
guaranteed because every step in the construction is an extension with an elementary
clause tree from an input clause, or a merge path to a visible literal.

We start with the following lemma.

Lemma 21.  For propositional logic, in any closed clause tree produced by
ME(Procedure 1), SL(Procedure 2), ALP(Procedure 3), or MinALP(Procedure 4),or the
ordered clause set restriction of these, the top clause can only occur once, at the root.
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Proof.  Suppose not, that the top clause C also occurs elsewhere in the proof at a node n.
Consider the first edge on the path from the root to n.  Let a be the literal associated with
that edge.  Then a is in C.  Hence a must also be associated with an edge incident with n.
If a occurs below n, then a tautology path exists from there to the atom node of a adjacent
to the root.  But all these algorithms reject such a path and could not construct this clause
tree.  Thus a must be associated with the edge above n.  But then a path joining the two
atom nodes labeled a, one adjacent to n and one adjacent to the root, is a merge path.
This path would have been chosen by any of these algorithms, and n could never have
been extended onto the clause tree, a contradiction.

�

Definition 19. ALP clause tree
Given a set S of clauses, an ALP clause tree on S is a closed rooted clause tree on S that
meets the following conditions:
1. All chosen merge paths are either left paths or ancestor paths.
2. No ancestor paths are tautology paths or unchosen merge paths.
3. No legal left paths are tautology paths or unchosen merge paths.

Theorem 22. Any ALP clause tree on S ∪ {C} with top clause C is an instance of a
clause tree that can be constructed by the ALP procedure(Procedure 3).  Conversely for
propositional logic, the ALP procedure constructs only ALP clause trees on S ∪ {C}.

Proof. Assume we have an ALP clause tree on S ∪ {C}.  Consider each atom node n in
the tree.  Assume without loss of generality that the depth first selection function R selects
nodes from left to right.  As an induction hypothesis we assume that the clause tree
consisting of the nodes to the left and above n are constructed by the ALP procedure.
When n is selected, the tree is not rejected by step 2 of Procedure 3 since there are no left
tautology or ancestor tautology paths in the clause tree.  If the atom node is the tail of a
merge path, the procedure would find and choose the merge path in step 3.  Otherwise the
procedure would nondeterministically choose a clause containing a unifiable
complementary literal to extend the tree.  In particular it could choose the clause labeling
the clause node immediately below the current atom node.

Conversely, the procedure only looks for left paths and ancestor paths.  Any left path or
ancestor path is considered when the tail is the current node.  If a legal tautology path is
detected, the clause tree is rejected, so the resulting clause trees can have no such
tautology paths.  Similarly any such legal merge path is detected and chosen, so the
resulting clause tree cannot have an unchosen merge left or ancestor path when the tail is
the current node.  Since all of the atoms are propositional, no unifiable merge (tautology)
path can become a merge (tautology) path later in the construction.

�

The converse of Theorem 22 does not necessarily hold in the case of first order logic.  The
tree generated by ALP may not satisfy condition 2 or condition 3 of Definition 19.
Suppose an ancestor merge path P in the tree is not chosen in the non-deterministic part of
the Ancestor Merge step, because when the tail t of P was the selected node, the head of P
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was not identical to t.  Subsequent substitutions applied to the labels may make t and h
identical, but the algorithm does not check for this.

Theorem 23.  Completeness of Propositional ALP. Given S, a satisfiable set of
propositional clauses, and C, a propositional clause such that S ∪ {C} is unsatisfiable,
there exists an ALP clause tree with the clause node labeled C as its root.

Proof. We use induction on the number of atoms in the set of atoms in S ∪ {C}.  Let this
set be the singleton set {a}.  Then either S = {{a}} and C = {~a} or S = {{~a}} and C =
{a}.  In either case, there is an ALP clause tree with one atom node labeled a and two
clause nodes of degree one.

Let there be n distinct atoms in S ∪{C}, and let the leftmost literal of C be the atom a.
Let S1 = {X − {~a} | X ∈ S and a ∉ X}.  Suppose there exists a model of S1.  By extending
this model so that it maps a to true, we have constructed a model of  S ∪ {C}, a
contradiction.  Therefore S1 is unsatisfiable.

Define S2 = S ∩ S1.  S2 ⊆ S so it is satisfiable.  Let S1 − S2 = {C1, ..., Cn}.  Then find the
smallest i such that S2 ∪ {C1,..., Ci} is unsatisfiable.  Let S3 = S2 ∪ {C1,..., Ci-1}.  By
induction there exists an ALP clause tree on S3 ∪ {Ci} with top clause Ci.  For each clause
node corresponding to some Cj in this tree attach a new atom node labeled a with an edge
labeled −.  Consider the new atom node added to the top clause node and make it the new
root.  Now all clause nodes in this tree correspond to clauses in S.  Choose merge paths
from these new open leaves to the new root.  Name the resulting tree T1.  See Figure 32.

Consider the clause tree that results when T1 is resolved with an elementary clause tree for
the singleton atom clause {a}.  Let V be the set of literals visible from the root of this tree.
Note that a is in V.  Let S4 = {X – V | X ∈ S and X ∩ {x | ~x ∈ V} = φ}.

Suppose S4 is unsatisfiable.  Then there is a closed clause tree T' on S4.  For each clause
node in S4 labeled by a clause not in S, attach atom nodes labeled with atoms from V as
appropriate to restore it to being a clause from S.  Then the clause of this new tree is C' ⊆
V.  Thus S |= C' and so S |= V.  Construct an elementary clause tree for V, resolve it with
T1 at a and choose merge paths as necessary from V into T1 so that no open leaves remain.
This tree ensures that S ∪ {V} is unsatisfiable, and since S |= V, it follows that S is
unsatisfiable, a contradiction.  Therefore S4 is satisfiable.

Let C'' = C − V.  If  C'' is empty then T1 can be resolved with C on a and all literals in C
other than a  can be merged with left paths to visible literals in T1.  The result is a closed
clause tree.  Otherwise C'' is not empty.  Suppose there is a model of S4 ∪ {C''}.  Extend
it to a model that maps a and all literals in V to false.  Thus this model satisfies any clause
in S − S4.  It also satisfies C since C'' ⊆ C.  Therefore S ∪ {C} is satisfied by it,
contradiction.  Therefore S4 ∪ {C''} is unsatisfiable.
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By induction there exists an ALP clause tree on S4 with top clause C''.  For each clause
node in the tree labeled by a clause not in S, attach new atom nodes labeled with atoms
from V as appropriate to restore it to being a clause in S ∪ {C}.  Choose left (hook)
merge paths from each atom node labeled a to the atom node labeled a in the top clause.
Let T2 be the name of this new clause tree.  See Figure 32.

Now resolve T1 and T2 at the atom node labeled a and choose left merge paths as
necessary from T2 to the visible nodes in T1 to close all open leaves in T2.  The result is a
closed clause tree.  It is also satisfies condition 1 of Definition 19 because all paths are
either provided by induction or are ancestor paths or left paths.  Condition 2 is satisfied
because all new ancestor merge paths merge the atom a in T1, which only occurs as leaves
of T1.  Also no tautology ancestor paths are introduced to T1 because the literal a does not
occur in T1 (because all occurrences are negative). Condition 3 is satisfied because the
construction of T2  eliminates all literals complementary to those in V, so no tautology
paths can occur.  Furthermore all merge paths from T2 to T1 are chosen. 

�
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Figure 32. The construction of an ALP tree from T1 and T2

Definition 20. ALPOC clause tree
Consider an ordered set of clauses S=<C1, ... ,Cn>.  An ALPOC clause tree on S is an
ALP clause tree in which each ancestor chosen merge path satisfies the ordered clause
set restriction.  That is, if the tail clause is Ci. and the head clause is Cj, then j≥i.

Theorem 24. ALPOC is complete for propositional logic.

Proof.  The proof requires just a slight addition to the proof of Theorem 23.  The same
induction works, with ALP clause tree replaced by ALPOC clause tree.  The only extra
requirement is that the ancestor chosen merge paths satisfy the ordered clause set
restriction.  This can be accomplished by ordering the clauses that are vying for top clause
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of T1 (clauses added to S3) in the reverse order to that required for the ordered clause set
restriction.  Then the top clause precedes any clause which contains the literal a in the rest
of T1, and so the chosen ancestor clauses with the top clause as head clause automatically
satisfy the ordered clause set restriction.  As this is the only way that ancestor paths are
chosen other than recursively, the ordered clause set restriction is satisfied.

�

In the propositional case, a stronger version of the ordered clause set restriction can be
used: for each ancestor path if the tail clause Ci and the head clause is Cj then j>i.  To
justify this, it suffices to apply Theorem 23 to each clause tree T1 built by induction.  The
top clause cannot appear elsewhere in the clause tree, so j≠i.  This stronger restriction can
also be applied in the first order logic case, when the head and tail clauses of a path are
identical instances of the same clause.  The proof of Theorem 23 suffices here.

Theorem 25.  ALP and ALPOC are complete for first order logic.

Proof.  Let S be a satisfiable set of clauses and let C be a clause such that S∪{C} is
unsatisfiable.  We shall show there is a closed ALPOC tree on S∪{C} with top clause C.
There is a closed clause tree T on S∪{C}.  Construct the one-to-one mapping ψ from
distinct instances of atoms in T to new and distinct propositional atoms.  Apply ψ to the
atom labels of T and the resulting clause tree T' is based on the set of propositional clauses
S'∪C', where each clause of S' is derived from a clause of S and C' = {C1, ... ,Cn} are the
clauses derived from C in the same manner.  S'∪C' is unsatisfiable, because cl(T') = φ.
Suppose S' is unsatisfiable.  Then a closed clause tree on S' exists.  By applying the inverse
of ψ to it, one finds a closed clause tree on S.  Thus S is unsatisfiable, which contradicts
the hypothesis.  Therefore S' is satisfiable.  Select the minimum i such that S'' = S' ∪ {C1,
..., Ci-1} is satisfiable, but S'' ∪ {Ci} is unsatisfiable.  By completeness of the ALPOC
procedure there is a tree T* on S''∪{Ci} with Ci as the top clause. By applying the inverse
of ψ to T*, a closed ALPOC clause tree on S ∪ {C} is constructed with C as its top
clause.

Since any ALPOC tree is also an ALP tree, ALP is complete. 
�

Note that the proof of the Theorem 25 allows some unifiable merge paths to remain
unchosen.  There can be a legal left or ancestor unifiable merge path, which is not a merge
path in T*.  However no other instance of C can exist in T* that is identical to the top
clause (Lemma 21).

7.5 Three Counterexamples
For any proof format, it is important to ask whether all smallest proofs are eliminated,
since many proof procedures use the size of the proof as an important criteria to guide
their search.  For example, PTTP[34] and SETHEO[18] use iterative deepening.  The
following two theorems show that ALP may increase the size of proofs and that ALPOC
may increase them more.



61

Theorem 26. A smallest ALP clause tree on a set of clauses may not be a smallest clause
tree.

Proof.  An example is given by the following, where the first clause is the top clause and
the literals within a clause are ordered from left to right:

{a0, a1}
{~a0, a1}
{~a1, b}
{~b, ~a0}
{~b, a0}

See Figure 33.
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Figure 33. A smallest proof and a smallest ALP proof

It is known that both the foothold score restriction and the ordered clause set restriction
can increase the size of ME proofs; that is, the smallest MEOC proof may be larger than
the smallest ME proof.  Because left paths can be used to shrink the size of proofs, it may
seem that a smallest ALP proof is the same size as a smallest ALPOC proof.  However,
this is not the case.
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Theorem 27.  A smallest ALPOC clause tree may be larger than a smallest ALP clause
tree.

Proof. An example is given by these clauses, where the first clause is the top clause.
1.{~q}
2.{q, a0, a1}
3.{~a0, a1}
4.{~a1, b, q}
5.{~b, ~a0}
6.{~b, a0}

See Figure 34.
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Figure 34. A smallest ALP proof and a smallest ALPOC proof

Section 5.1 points out that for first order logic, the ordered clause set restriction fails to
orient all ancestor paths.  An ancestor path whose head clause is the same as its tail clause
can be used in either direction.  Here we discuss a generalization of the ordered clause set
restriction: orient all paths lexicographically and include all the clauses, and also all the
literals, on the path.  Since a merge path cannot be perfectly symmetric, all merge paths
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are oriented by such a scheme.  Unfortunately it is not possible to orient all paths at the
same time by this scheme.  In the example, given in Figure 35, there are three merge paths,
all oriented by this more general ordered clause set restriction.  We may choose any one of
the three leaves to be the head of these paths so that two of the paths become ancestor
paths.  But no matter which leaf we choose, one of the two chosen paths is oriented
incorrectly.

1 2 3 2 14+

+

6521+

Figure 35. This clause tree cannot obey the more general ordered clause set restriction

8. Mergeless Clause Trees
The concepts of unit resolution, input resolution, and resolution on relative Horn set of
clauses are known to be equivalent in a broad sense [6],[21].  This section is dedicated to
proving these equivalences by proving each of them is equivalent to the concept of
mergeless clause trees.

First recall the following definitions (see [21]).  Let S be a set of clauses.  A unit
refutation of S is a resolution proof of φ from S in which one parent of each resolution is a
unit clause, consisting of a single literal.  An input refutation of S is a resolution proof of
the empty clause from S in which one parent of each resolution is the result of the previous
resolution (linearity) and the other is a factor of an input clause.  S is a relative Horn set
of clauses if there is a set of literals (a setting) H, closed under substitution, in which no
pair of complementary literals occur, and every clause of S contains at most one literal not
from H.
Theorem 28.  Let S be a set of clauses.  The following statements about S are equivalent.
(a)  S has an input refutation.
(b)  S has a unit refutation.
(c)  The set of factors of S contains a relative Horn subset which is unsatisfiable.
(d)  There exists a mergeless closed clause tree on S.

Proof.  The first three statements are well known to be equivalent.  However we will
prove each is equivalent to the last statement, as examples of how easy it is to work with
clause trees.
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(a) implies (d).  Assume that S has an input refutation.  Build a clause tree using the same
steps as the refutation, but with the following modification.  Whenever two literals are
merged in the proof, instead of choosing a merge path to put in the tree, leave the two
merged literals as open leaves identically labeled.  When an input clause resolves on a
literal, attach a clause node corresponding to that clause to all open leaves that are labeled
with the literal being unified.  At each step of the proof, the clause tree corresponds to the
current clause in the proof, but with possibly many copies of each literal.  The final clause
tree is closed as the final clause is empty, and the clause tree is mergeless since no merge
paths are ever chosen.

(d) implies (a).  Assume that S admits a mergeless clause tree.  Order the atom nodes
using any tree search sequence as long as the next node is adjacent to a node that has
already been searched.  Depth first and breadth first search are both acceptable.  Perform
the resolutions in this order.  Each step resolves an input clause with the previous clause,
so the proof is immediately an input refutation.

(b) implies (d).  Assume that S has a unit refutation.  Mirror the refutation by building
clause trees using the same resolutions.  Since unit clauses correspond to clause trees with
a single open leaf, no clause tree generated by these resolutions can ever have two open
leaves that are adjacent to different clause nodes.  Thus if a merge is performed in the unit
refutation, the literals merged must have come from the same input clause, in which case
they could have been merged before being used in a resolution.  Thus the instance of the
input clause can be used in the construction of the clause tree, and no merge paths are
needed.  Thus the resulting closed clause tree is mergeless.

(d) implies (b).  Let T be a closed mergeless clause tree based on factors of S.  Number the
atom nodes of T from 1 to n, the number of atom nodes, starting at any atom node and
follow any tree search algorithm, as in the proof of (d) implies (a) above.  Consider the
resolution proof based on doing the corresponding resolutions in reverse order.  When any
atom node is processed, all resolutions on one side of the atom node will all have been
processed already, as they must all be numbered higher in the tree search sequence.  Thus
that one side always corresponds to a clause tree with a single open leaf.  Hence the
subtree on that side corresponds to a unit clause.  The proof is a unit refutation since each
resolution uses a unit clause, and the last clause that corresponds to T is empty.

(c) implies (d).  Assume that S is an unsatisfiable Horn set relative to a set H of literals.
We may assume that for any ground literal, either it or its complement is in H.  Since S is
unsatisfiable, there must be a closed clause tree T based on S.  Without loss of generality
we can assume that T is based on ground clauses, by substituting a constant for each
variable.  At least one of the clause nodes of T must correspond to a clause without a
literal in H, because otherwise all the nodes of T could be satisfied by setting all the literals
in H to be true.  Root T at this node.  All the edges adjacent to the root correspond to
literals that are not in H, hence the edges beyond the adjacent atom nodes correspond to
literals in H.  But these must be the only literals in their clauses that are in H, so the literals
corresponding to edges adjacent to them are not in H.  Continuing in this way, one sees



65

that a literal corresponding to the edge towards the root at any atom node is not in H,
whereas the literal corresponding to the edge away from the root at any atom node is in H.

Now consider the chosen merge paths in T.  None of these merge paths can be ancestor
paths since the edge on the path closest to the root must correspond to a literal in H,
whereas the edge furthest from the root must not be in H.  Then these two literals cannot
be unified.  Thus all merge paths are either left paths or right paths.  Order the paths
totally, in reverse order to the precedes relation, with the added constraint that if two
paths are not comparable by the transitive closure of the precedes relation, then the path
with its head further from the root must come earlier in the order.  Thus the first path in
this order cannot have its head on any other chosen merge path, and there can be no path
below the head of the first path in the tree.  Supplant each of the paths in this order.
When a path is supplanted, there is no part of a path in the subtree at the head of the path
since such a path would have to be processed first.  After all the paths are processed, the
resulting clause tree is mergeless, and still closed.

(d) implies (c).  Assume that T is a closed mergeless clause tree on  S.  Without loss of
generality we can assume that T has no unifiable tautology paths, since if it did, the
tautology path could be removed by internal surgery.  Root T at any clause node. For each
atom node n consider the path P(n) from n to the root.  If P(n) passes over an atom node
m that is unifiable with n, then perform tail surgery at path(m,n).  It does not matter that T
is no longer mergeless.  For all other atom nodes other than the tail of merge paths, place
the literal corresponding to the edge above the atom node into a set H.  H cannot contain
two complementary unifiable literals.  If the path P joining the corresponding atom nodes
were an ancestor path, it would have been already turned into a merge path, whereas if it
were a left or right path, it would then have been a unifiable tautology path in the original
clause tree.  Note that every clause node in T now contains precisely one literal not from
H, except for the root which does not contain any.  Thus the set of clauses corresponding
to the clause nodes of T, which are a set of factors of S, form a Horn set relative to H, and
are unsatisfiable. 

�

Corollary 29.  If T is a closed mergeless clause tree from S then there is unit refutation
which, if the order of refutations is reversed, becomes an input refutation of S.

9. Future Work and Conclusions
This paper contains several references to ongoing work and raises questions for future
research.  These are collected and expanded in this section, along with a summary of the
contributions.

9.1 Open Problems and Future Work

Open Question 1. Completeness of ALPF (ALP with the foothold score restriction)
Let S be a satisfiable set of clauses and let C be a clause such that S ∪ {C} is
unsatisfiable.  There is a sign-ordered ALP clause tree on S with top clause C such that
all ancestor paths are proper.
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If Open Question 1 is true then ALPF is an improvement on ALPOC because it orients all
ancestor paths, including those with the same clause at the head and tail, which ALPOC
does not orient.

Open Question 2 Is there a complete, top-down procedure that will generate only
minimal clause trees, no two of which are reversal equivalent, and takes advantage of the
reduced search space?

We want to exclude from consideration those procedures that use a generate-and-test
approach to building only minimal clause trees.  For instance, one could propose the ALP
procedure followed by a test for minimality of the constructed tree.  Such a procedure
would require a large amount of additional searching of the constructed tree, without any
associated benefit of reducing the search to construct it.  Ideally only a small amount of
checking the constructed tree would be required to ensure it is minimal.

Open Question 3 Is there a polynomial p and a complete, top-down procedure that will
generate only (minimal) clause trees (no two of which are reversal equivalent) whose size
is p(n) where n is the size of a smallest clause tree on the set of input clauses?

Many implementations of theorem provers using clause tree and empirical investigations
are needed.  We have already developed a compiler based on PTTP to build ALPOC
clause trees.  We describe planned extensions to it, to use disequalities, and to build
AllPaths trees.  The experiments will use the TPTP problem library and a system we have
written to automatically run a large number of jobs in batch mode and to collect and
summarize the results [33].

It was reported in Section 7.4 that the ALP procedure on a set of first order clauses may
generate non-ALP clause trees that contain unchosen merge paths or tautology paths.
The check for these paths is done when the tail of the path is the current node, and at that
time the path may have been a unifiable merge or tautology path.  Since later substitutions
can convert unifiable paths into merge or tautology paths, we are required to check again
later if we want to avoid unchosen merge and tautology paths.  Hynes [15] has
implemented an ALP meta-interpreter in Prolog that creates a list of disequalities.  A
disequality is a pair of nodes, not labeled identically, at the head and tail of a unifiable
tautology path or an unchosen unifiable merge path.  The procedure maintains the list of
disequalities encountered so far in the tree, and adds to this list any new disequalities from
the current node.  Whenever a substitution is applied, the list of disequalities is checked
and if any pair now has identical labels, the tree is rejected.  The current implementation
applies only to ALP, and uses an iterative deepening search strategy and chronological
backtracking.  Preliminary experiments show that for some examples, up to 95% of the
inferences are avoided, and that the number of disequalities is commensurate with the size
of the tree.  Work is ongoing to compare the benefits with the overhead of building and
checking the disequality list.  These disequalities are similar but not identical to the
syntactic inequality constraints used in SETHEO[18].
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The AllPaths procedure, which builds clause trees with ancestor and left paths as well as
right hooks, has recently been shown to be complete.  Any implementation of it must
include some method preventing a left path from running over the head of an existing right
hook.  An existing AllPaths prototype for propositional logic [27] will be extended to a
compiler to Prolog, in the PTTP style, and its effectiveness will be measured against PTTP
and ALPOC.

We are using the flexible choice of selection functions offered by clause trees to improve
the performance of an SL clause tree procedure. Sharpe [28] has implemented a system
that replaces the usual depth-first selection function with one that selects the head of a left
hook as soon as the path is chosen.  We call this the head first selection function since it
chooses the head of a right hook before other open leaves.  Stickel points out that
factoring used in SL often increases the search space without a compensating decrease in
proof size, because the unified goals are over-instantiated and not usable in a proof[34].
By selecting the head of a left hook as the next provable goal, the system determines
immediately whether or not the two factored goals have a common provable instance.

Other future work on the compiler may incorporate the use of lemmas, caches and failure
caches [2][3].  Our intention is to produce one system that can generate different code
depending on what options are selected, including left paths, the ordered clause set
restriction, the foothold score restriction, disequalities, right hooks, AllPaths, head first
selection for right hooks and lemmas.

Minimal clause trees, with all chosen merge paths restricted to being oriented in only one
way, make progress towards defining a canonical form for binary resolution proofs.  In the
ALP family of procedures, non-ancestor chosen merge paths are forced to be left paths
rather than right, and ancestor chosen merge paths can be restricted by the ordered clause
set restriction or the foothold score restriction.  Thus finding an effective, complete
procedure for building minimal clause trees is an important question.

However in bottom up procedures, representative minimal clause trees are a canonical
form as all chosen merge paths are oriented.  By retaining only representative minimal
clause trees, we address the problem (#6) of redundancy posed by Wos[40].  Non-minimal
and non-representative clause trees are redundant, and we can detect this type of
redundancy by analysing the tree.  Other bottom up systems, such as OTTER use
subsumption to check for the same redundancy.  The cost of a subsumption check
increases with the number of retained clauses.  Thus the cost of producing a set of clause
trees that is not redundant should grow more slowly than the cost of producing such a set
of clauses with binary resolution.  Any bottom up resolution based procedure can be
turned into a procedure that produces only representative clause trees.  Once a non-
minimal clause tree is found, it can be made minimal by performing surgery, or the
procedure may choose to simply reject that clause tree.  The first strategy can be used
with a complete bottom up procedure, and will preserve completeness.  The second will



68

preserve completeness if the procedure produces some minimal clause tree.  Other
procedures are being investigated [13],[14].

The equality relation plays a special role in first order logic.  Paramodulation is one
technique for handling it.  Paramodulation inference can be implemented in clause trees
using paths to justify equality substitutions analogously to the way in which merge paths
justify factoring.

Another open question is how to extend clause trees to handle proofs that use formulas
other than just clauses, as done in [24].  Many propositional satisfiability problems can be
solved only with an exponential number of resolution steps [4][5].  Hence these problems
admit only exponentially large closed clause trees.  However, such problems can
sometimes be solved in polynomial time [4],[7],[39].  One method that allows the pigeon-
hole problem to be solved polynomially is to allow a single variable to replace a clause [9].
The negation of a clause is a conjunction, so that conjunctions can be dealt with.  How
such substitutions can be represented as clause trees, and when such substitutions should
be performed are two more open questions.

9.2 Summary and Conclusions
Clause trees offer new insights for implementing and understanding binary resolution.  The
distinction between binary resolution with clauses and binary resolution with clause trees
is rather small, from one point of view.  With clauses, two operations are always
performed together:  the complementary literals resolved upon are removed, and any
duplicate literals are merged together.  In this paper we have uncoupled these two, so that
a merge may be delayed until later, or some new literal may be merged with a literal
previously resolved upon.

Despite this being a subtle difference, there are several interesting advantages.  Often with
binary resolution on clauses, the result from one sequence of resolution steps gives a result
superior to that of the same steps done in a different order, because merge opportunities
are missed in the second sequence.  With clause trees, both sequences can give the
superior result because merges can be done as necessary to remove literals.  Thus one
clause tree really represents multiple different sequences of binary resolution steps and we
can dynamically choose among them to find the one with the best outcome.  The
interaction of merge paths in the clause tree provides the information from which we can
decide, quite easily, if a merge is legal.

While merge paths unify the concepts of reduction inference steps and (different forms of)
factorization inference steps in other frameworks, this does not prevent different kinds of
merge paths from being distinguished in implementations. In particular, ancestor merge
paths are used for ancestor resolution, merge paths that are hooks correspond to SL
factoring, and left paths perform Shostak's c-reductions.  Thus different types of merge
paths are treated differently in the procedures of Section 7.  From the viewpoint of proof
theory, this uniformity is an advantage because the arguments, such as those in Section 8,
are simplified.
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One important result here is that the precedes relation on the chosen merge paths must be
extendible to a partial order.  From this result it follows quickly that ME and SL are
sound.  It also leads to the new concepts of visibility and support.  With this deeper
understanding of the internal structure of binary resolution we developed the ALP
procedure which we soon realized was closely related to GC.

This paper introduces the minimal property of clause trees.  This is a strong property
which means, intuitively, that there does not exist a tautology clause, nor a missing merge
in any of the binary resolution derivations that this clause tree represents.  In other words,
the clause tree contains no unnecessary steps which would make the tree redundant.  For
every non-minimal clause tree, there is a minimal clause tree that subsumes it.  The
operation of surgery on clause trees removes the unnecessary steps, leaving a result that is
at least as general as the original tree.  Clause tree surgery can be applied on partial as well
as closed trees, and it can be applied successively until a minimal tree remains.  We know
of no other inference technique that, without rebuilding at least part of the proof, can
improve the result of a proof as much as surgery can.

The top down procedures of ME, SL, and GC are explained in a unified manner.  For
these procedures, it is always permissible to reverse ancestor paths, so that the head is
replaced by the tail.  The ordered clause set restriction and foothold score restriction take
advantage of this fact.  They force the path to be oriented in one of the two ways and so
cut down on the space that must be searched by these procedures.  This leads to inter alia
the ALPOC procedure.

Two new ideas in proof procedures are presented.  The ability to detect non-minimal
clause trees has lead to the development of a new restriction, and new top down
procedures, MinALP and MinALPOC, that use it.  A family of proof procedures is
introduced as Procedure 5, that can use any selection function, yet are tighter in that they
take full advantage of goals in the tree already proved.  This generalizes both SLI, which
has an unrestricted selection function but cannot use C-literals, and GC which must use a
depth first selection function.  A variant of Procedure 5 that uses depth first selection is
called AllPaths, and is known to be complete, although the proof is not included in this
paper.

Unit resolution, input resolution and resolution on relative Horn sets are each shown to be
identical to mergeless clause trees.  The arguments are compact, yet include a number of
known results.  We take this as evidence that clause trees improve our understanding of
resolution.

Two equivalent theorems [29] and [1, theorem 2] were proved in the 1970's that are
related to Theorem 5.  Instead of using merge paths, their graphs use simple cycles to
indicate a merge.  Both theorems state that a graph represents a sound proof if and only if
a certain type of cycle does not exist.  Such a cycle exists if and only if, in the
corresponding clause tree, the set of merge paths contains a circular set under the
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precedes relation.  That is, the precedes relation is not extendible to a partial order.  The
advantage of working with trees, rather than graphs is that trees are simpler structures.
For example, two nodes in the tree must be connected by a unique path.  Using clause
graphs Shostak developed the GC procedure, a significant improvement upon SL, in the
1970's.  But it was not until 1994 that the first professional implementation of it appeared
[17].  Letz et al. use the connection tableaux, which is a rooted tree structure, and the
folding up procedure.

Using rooted clause trees, we have extended many top down procedures and made them
tighter.  But they require all ancestor paths to be free of duplicate atoms, except for the
head and tail of chosen merge paths, while other paths are not so restricted.  Thus paths in
the tree are not treated identically.  This has the effect of making some clause trees larger
than necessary.  Unrooted clause trees may have more potential than rooted trees because
all paths can be treated in the same way. We believe strongly that the study of clause trees
will provide many opportunities for the development of faster automated reasoning
procedures.
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