Extending the Regular Restriction of Resolution to Non-Linear
Subdeductions

Bruce Spencer and J. D. Horton
University of New Brunswick
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
bspencer@unb.ca, jdh@unb.ca, http://www.cs.unb.ca

Abstract

A binary resolution proof, represented as a binary tree,
is irregular if some atom is resolved away and reap-
pears on the same branch. We develop an algorithm,
linear in the size of the tree, which detects whether
reordering the resolutions in a given proof will gen-
erate an irregular proof. If so, the given proof is not
minimal. A deduction system that keeps only minimal
proofs retains completeness. We report on an initial
implementation.

Introduction!

The regular restriction of resolution (Tseitin 1969)
states that a resolution step resolving on a given literal
should not be used to deduce a clause containing that
literal. That is, both steps should not be in the same
branch (or linear subdeduction) of the proof tree. We
extend this restriction so that it applies steps to that
are not on one branch, but can be made linear by rotat-
ing edges of the tree, as long as those rotations do not
weaken the proof. If a proof cannot be made irregular
by rotations, we call it minimal.

The first section below presents the regular restric-
tion on binary resolution trees. Following that, mini-
mal binary resolution trees are introduced. It is impor-
tant to decide quickly if a given binary resolution tree
is minimal. In the next section we give an algorithm
that requires a linear number of set operations, and so
is effectively linear in the size of the tree. Next, we re-
port on our theorem prover that makes use of this and
other restrictions, and give some preliminary timings.

Note that in this paper we consider resolution only
on literals and not on formulae.

Binary Resolution Trees
We use standard definitions (Chang & TLee 1973) for

atom, literal, substitution, unifier and most general
unifier. In the following a clause is an unordered dis-

! Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

junction of literals?. The clause ¢1 V ...V ¢y, sub-
sumes the clause d; V ...V d,, if there exists a substi-
tution # such that for every i = 1,..., m there exists
Jj=1,...,nsuch that ¢;f = d;. The resolvent of two
clauses C V a; and C3 V —ag is (Cy V C3)0 where 6 is
a unifier of a; and as. An atom a occurs in a clause
C' if either a or —a is one of the disjuncts of the clause.
The merge operation on a clause C'V a; V a; produces
C'V ay. The resolution operation is usually defined as
the combination of building a resolvent followed by as
much merging as possible. A factoring operation on
a clause C'Va; Vaz produces (C'Vay)f, where 6 unifies
ap and as.

A binary resolution derivation is commonly repre-
sented by a binary tree, drawn with its root at the
bottom. Each edge joins a parent node, drawn above
the edge, to a child node, drawn below it. The an-
cestors (descendants) of a node are defined by the
reflexive, transitive closure of the parent (child) rela-
tion.

Definition 1 A binary resolution tree on a set S
of input clauses is a labeled binary tree. Each node N
in the tree is labeled by clause, called a clause label
denoted cl(N). Each node either has two parents and
then its clause label 1s the resolvent of their clause la-
bels after zero or more merges, or has no parents and
ts labeled by an nput clause from S. In the case of a
resolution, the substitution is applied to all labels in the
tree. The clause label of the root of the binary resolu-
tion tree is called the result of the tree. A binary res-
olution tree 1s closed if its result is the empty clause,
0. For an internal (non-leaf) node, we define two more
labels that are produced by the resolution between the
parents. The atom label of an internal node N is the
atom of the literals resolved upon, denoted al(N). The
merge label, written ml(N), is the set of literals that
were merged as part of this resolution.

For the binary resolution tree in Figure 1 S =
{=a,=b,—g,aVbV—c,evV-d,aVd,—aVbV—e, eV fVg}.

2We do not use set notation because we do not want
multiple occurrences of a literal to collapse to a single literal
automatically.

No ald Mo —albl-e

N

N; abld-e

N

N; d:blc-e

N

Nz ebcCflg

\

N, calbOfOg{b} M; -a

M; c~d

M. elflg

M; albl-c

Ns a:bOfCg Ms -b \/
Ne b:flg Ms -g
N; gf

Figure 1: Part of a binary resolution tree.

N, ard M; ch-d

\/ \ /

N, dalc Ms alblhc
\/
N3=N,' c:alb:{a} Mi -a
N/

Ns ab Ms -b

\/

N(3.=N7v bD
Figure 2: Surgery: Operation 3 on Figure 1.

The labels of a node N are displayed as al(N) : ¢/(N) :
ml(N). If the merge label is empty, it is not shown.
The node N4 has atom label ¢, clause label aVbV fVyg
and merge label {b}. The order between the parents
of a node is not defined.

Definition 2 (Regular) A binary resolution tree T
1s regular if there does not exist a node N of T and a
descendant M of N, such that al(N) occurs in cl(M).

Operation 3 (Surgery on irregular trees)

Suppose Ny and N; are internal nodes in T such
that al(N1) = a occurs in cl(N;), that N, is the
root of T', and for 0 < ¢ < n, N; is one parent of
Niy1, and M; 1is the other. Assume without loss
of generality that a occurs in the clause label of no
node in (No,...,N;j_1). Let Ny be the parent of Ny
chosen so that the occurrence of a in cl(Ny) agrees in
sign with the occurrence in cl(N;). Construct T' by
constructing the path (Ni,..., N}) of not necessarily
distinct nodes as follows. Let N{ = Ny, and consider
all ancestors of Ng to be in T'. For i = 2,...,n
let N} be Ni_, if al(N;) does not occur in cl(N{_,).
Otherwise define a new node N} and make it the child
of N/_y and M;_y. Consider M;_1 and all of its
ancestors as nodes of T'. Let the clause label, atom
label and merge label of N] be defined by the resolution
on al(N;) so that all merges that can be done at N}

NSNS
\/ N/

Figure 3: A binary tree rotation

are done. Note that a new merge ts done at N]{.

Figure 2 shows the effect of this operation on Fig-
ure 1. Surgery is performed between N; and N4, and
Mg, My and Mg are not needed in T".

Lemma 4 Suppose T s an irregular binary resolution
tree on a set S of clauses and suppose T" is constructed
by Operation 3. Then T’ is also a binary resolution
tree on S, T is smaller than T and the result of T’
subsumes the result of T'.

Proof. Each leaf in 7" has the same label as a leaf in
T and therefore 7" is defined on S. Also, each inter-
nal node is defined by a resolution of its parents, so 7"
is a binary resolution tree. Note that c/(N7) = cl(Np)
subsumes ¢l(N1)Va because ¢l(N7) contains all the lit-
erals in ¢l(Ng) except a. By a simple induction ¢l/(N})
subsumes ¢/(N;) V a for i = 2,...,n. Since there is
only one occurrence of @ in ¢/(N;) and that is resolved
upon when creating ¢/(N;,,) we know that a is not
in c/(Njyy). Thus cl(N;,,) subsumes c/(Njt1). Then
cl(N]) subsumes ¢l(N;) for i = j+1,...,n, so the re-
sult of 7" subsumes that of 7". Since Mj is not in 7"
and since all other nodes in 7" are taken at most once
from T, it follows that 7" has fewer nodes than 7". O

Theorem 5 (Completeness (Tseitin 1969)) If S
s unsatisfiable there exists a closed regular binary res-
olution tree on S. Furthermore the smallest closed bi-
nary resolution tree is regular.

Proof. If S is unsatisfiable, there exists a closed binary
resolution tree (Robinson 1965). If it is irregular, apply
Operation 3 repeatedly until it is regular. This process
must terminate since the tree is smaller at each step. If
the smallest closed binary resolution tree is not regular,
surgery can be applied to it, making a smaller closed
tree. O

Minimal Binary Resolution Trees

A rotation of an edge in a binary tree is a common op-
eration, for example with AVL trees (Adelson-Velskii
& Landis 1962). Before we apply it to binary reso-
lution trees, we review the operation on binary trees.
Given the binary tree fragment on the left of Figure 3,
a rotation is the reassignment of edges so that the tree
on the right of Figure 3 is produced. The parent C
of E becomes the child of F and the parent B of C
becomes the parent of F. If some node has E for a

parent, that node will now use C' instead of E for this
parent.

Operation 6 Suppose Tis a binary resolution tree
with an edge (C, E) between internal nodes such that
C' is the parent of E and C has two parents A and
B. Further, suppose al(E) occurs in cl(B) but not in
ml(C). Then the result of a rotation on this edge is
the binary resolution tree T' defined by resolving cl(B)
and cl(D) on al(F) giving cl(E) in T' and then resolv-
ing cl(E) with cl(A) on al(C) giving cl(C) in T'. Any
merges in T of literals in cl(A) and ¢l(B) are done in
T" at C. Likewise merges between cl(A) and cl(D) are
done at C in T', and merges between cl(B) and cl(D)
are done at E in T'. This defines the merge label and
refines the clause label of E and C inT'. Furthermore,
the child of E in T is the child of C in T".

A rotation changes the order of two resolutions. It
also changes the clause labels and merge labels of C'
and E, but not their atom labels. Since the substitu-
tions arising from a resolution are applied to all labels
in the tree, the instances of atoms are not changed by
a rotation. A rotation may introduce tautologies or
duplication to clause labels of internal nodes. For in-
stance, if al(C) occurs in ¢/(D) then cl(E) in T will
be tautological or contain a duplicate literal. However
the clause label of the root is not changed.

Definition 7 A binary resolution tree T' is minimal
if no sequence of rotations of edges generates a tree T'
that is irreqular.

Theorem 8 If a binary resolution tree T' on S s non-
minimal, there exists a minimal binary resolution tree
T’ on S which is smaller than T and the result of T'
subsumes the result of T'.

Proof. If T'is not minimal, apply Operation 6 and Op-
eration 3 so that a regular tree is produced. If this tree
is minimal then let 77 be this tree. Otherwise repeat
from the beginning until 7" is defined. This process
must terminate because the tree is getting smaller at
each application of Operation 3. Also the old result is
subsumed by the new result at each step. O

Thus a smallest binary resolution tree is minimal.
Goerdt has shown (Goerdt 1993) that a smallest regu-
lar binary resolution directed acyclic graph (DAG) may
be exponentially larger than an irregular binary reso-
lution DAG. Thus in some cases regularity, and hence
minimality, will slow a theorem prover. However, there
are also cases where minimality reduces the search.

Checking Minimality
Determining whether a given binary resolution tree is
minimal seems to be labourious, since the straightfor-
ward application of the definition, as is done in the
proof of Theorem 8, checks every possible sequence of
rotations, and there can be exponentially many. In
this section we define the notion visibility for binary
resolution trees, first defined for clause trees (Horton

& Spencer 1997). We also give a linear algorithm for
deciding whether two minimal binary resolution trees
can be combined to give a minimal tree.

Definition 9 (History Path) A history path P
for an atom a wn a binary resolution tree T is a se-
quence (N, ..., Np) of nodes such that Ny is a leaf,
each N; is the parent of Niyq1 fori=1,...,n—1 and
a occurs in the clause label of each node. The head of
P is N,. We say that P closes at Npy1 if N, is the
parent of Npy1 and a = al(Npy1).

For example in Figure 1, (My, N2, N3) is a history
path for ¢ which closes at N4. Note that if there are
multiple occurences of a in the clause label of some
node N;, they are on separate history paths. Also a
rotation does not change the nodes at which history
paths close, although any node on the path, except
the leaf, may be changed. Thus a history path P is
identified by its leaf and its closing node, so after a
rotation P’, the image of P, is the path with the same
leaf and closing node as P.

Definition 10 (Precedes) A history path P di-
rectly precedes a history path @ if P and Q) have
no nodes in common, and P closes at some node in
Q. We write P < Q. Moreover we say P precedes
@, and write P <* @ if there is a sequence of history
paths (P1,...,Py) with P = Py and Q = Py and P;
directly precedes P41 fori=1,... k—1.

The relation precedes is the reflexive and transitive
closure of directly precedes. In particular a history
path precedes itself, even though it does not directly
precede itself. Also note that precedes defines a partial
order on the set of history paths.

In most cases a rotation does not change the pre-
cedes relation on history paths.

Lemma 11 Let the history path P precede the history
path @ in the binary resolution tree T, P # () and sup-
pose that P, Q)" and T" are the images of P,Q and T
respectively after a rotation of the edge C'E as in Defi-
nition 6. Further suppose that the head of @ is not C'.
Then P! precedes @' in T".

Proof. Let M be the node at which P closes, and N
be the head of). Note that M must be an ancestor
of N, and consider the path path(M, N) with tail M
and head N. There exist paths P;,..., P, such that
P =P < ... < P, = @ and these paths close at
distinct nodes on path(M, N). Thus for a given node
on this path there is a unique ¢,1 < ¢ < n such that
the node is on P;. We consider where the edge C'F
occurs in relation to path(M, N).

(Case 1) If neither C nor E is on path(M, N) then
the rotation has not affected this path and P’ precedes
Q inT" asinT.

(Case 2) Suppose C'is on path(M, N). Recall that
we have eliminated the case where N = C, so F is
also on path(M,N). Let P; be the history path on
which C occurs. If the head of P; 1s C' and P; contains

Figure 4: Cases of Lemma 11

A, then the rotation is impossible, since no history
path through A may close at E. The subcases are
illustrated in Figure 4, where the ground symbol (three
lines) indicates the edge between the head of a path
and where the path closes.

(2a) Suppose the head of P; is C and P; contains B.
Then P;y; contains D and E, and after the rotation
Py, contains D, E,C and closes below C. Thus P/ <
P{,,. Also P <* P; and P/, <* P, since these paths
have not changed. Thus P{ <* P!.

(2b) The head of P; is below C' and P; contains A. If
M = C or M is an ancestor of B then after the rotation
P <* P/_, and P! < P! because these parts of the tree
have not changed. Also P/_, < P/ since P/_, closes at
C' and is disjoint from P/. Thus P <* P.. On the
other hand if M is an ancestor of A the one change to
path(M, N) is that P/ is one edge shorter than P;, but
no head of any P; is different, so P; <* P,.

(2¢) The head of P; is below C' and P; contains B.
If M = C or M is an ancestor of A then after the
rotation P} <* P/_; and P/ < P} because these parts
of the tree have not changed. Also P/_; < P/. Thus
P{ <* P!. On the other hand if M is an ancestor of B
then no head of any P; is different, so P, <* P,.

(Case 3) Suppose C is not on path(M,N) but F is.
Let P; be the history path on which E occurs. Note
that the rotation has not changed the heads of history
paths below F, so P/ <* P!. Thus we need only show
that P/ <* P/.

(3a) If D is on P; then after the rotation, D, E and
C' are on P/. Since the heads of history paths below E
have not changed, P{ < P/.

(3b) If D is on P;_; while A, C and FE are on P; then
after the rotation the heads of history paths above D
have not changed so P/ <* P/_;. There must be a
history path R with head B closing at C'. After the
rotation its head is F, so P <* R’ < P/.

(3¢) If D is on P;_y while B, C and FE are on P; then
after the rotation the heads of history paths above D
have not changed so P/ <* P/_;. Also P|_; < P/. O

Definition 12 (Hold) An unordered pair {P,Q} of
history paths holds an internal node M of a binary
resolution tree if there exist history paths Py and
such that Py <* P,Q1 <" Q and M 1is the first node
that occurs on both P, and)1, that is, the parent of M
does not occur on both. A node N holds M if history
paths P and @) hold M and they both close at N.

Definition 13 (Visible) In a given binary resolution
tree with internal nodes N and M, we say that M is
visible from N, and that N can see M, if there exists
a sequence of rotations such that M s a descendant of
N. Otherwise M 1s inuvisible from N.

Theorem 14 The nearest common descendant of M
and N holds M if and only if M 1is invisible from N.

Proof. We show that if the nearest common descen-
dant of M and N holds M, then after a rotation,
the nearest common descendant of M and N holds

M . Note that the nearest common descendant may be
changed by the rotation. Thus M can never be a de-
scendant of N for if it were then the nearest common
descendant would be M, and a node cannot hold itself.

Let F be the nearest common descendant of N and
M | and let the rotated edge C'E, and nodes A, B and
D adjacent to it, be as defined in Operation 6. Let
P and @) hold M and close at F', while P <* P and
@1 <* @Q are the paths for which M is the highest
common node. Consider the case where F' # FE, so
that after the rotation F' is still the nearest common
descendant of M and N. By Lemma 11, P{ <* P’ and
Q) <* @'. Suppose M # E. Then after the rotation,
M is still the first common node on P and @, so F
holds M. Now suppose that M = E. Without loss of
generality assume that P; contains C' and (); contains
D. If P; contains B then after the rotation, P; and

{ still hold E, so F holds M. If P; contains A then
consider the path R containing B and closing at C'.
After the rotation, R’ < P/, so that R’ and @} hold
FE, so again F holds M.

Now suppose that F = E. Consider the case where
M 1is an ancestor of C'and N is an ancestor of D. Since
no history path can contain A and C' and close at F,
M # C. For the same reason, P and () contain B and
close at F. If M is an ancestor of A then the paths
that directly precede P and) close at C' and hold
M. Thus C holds M. After the rotation the nearest
common descendant of M and N is C', and C still holds
M. Otherwise if M is an ancestor of B then after the
rotation the nearest common descendant of M and N
is F/ and F still holds M. Finally consider the case
where M is an ancestor of D. If N is an ancestor of
B then after the rotation, F still holds M and is still
the nearest common descendant of N and M. If N is
C or is an ancestor of A, then consider path R with
head at B which closes at C'. After the rotation, the
nearest common descendant of M and N is C', while
R’ directly precedes both P’ and @’. Thus C holds M
after the rotation. O

Note that the proof of the converse of Theorem 14,
which was omitted for lack of space, constructs a se-
quence of rotations so that a non-minimal tree becomes
irregular, thus allowing surgery to be applied. We leave
the implementation of surgery to future work. Now we
turn our attention to a theorem prover that keeps only
minimal binary resolution trees.

Definition 15 Let T be a binary resolution tree. Then
al(T) = {al(N)|N is a node of T'}is called the set of
atoms of T'. A subbrt of T' is a binary resolution tree
rooted at some node other than the root of T'. For a
subbrt T' of T, vis(T") = {al(N)|N is visible from the
root of T'} is called the set of visible atoms of T".

Theorem 16 Let binary resolution tree T' consist of a
root node R and two subbrt’s Ty and T. T is minimal

if and only if

1. Ty and Ty are minimal;

2. no atom in cl(R) is in al(Ty) Ual(Ts);
3. al(Ty) Nwis(Tz) = ¢; and
4. al(Te) Nwis(Ty) = ¢.

Proof. Assume that 7" is minimal. If 77 or 75 were
not minimal, then there would be a sequence of edge-
rotations which would make the subbrt irregular. The
same sequence performed on 7" would make T irregular
as well. Hence the first condition is true. If the second
condition were false, then T" would be irregular imme-
diately. Assume that the third condition is false. Then
there are two nodes, N € T} and M € T, whose atom
labels are the same, and M 1is visible from R. Hence
M can be rotated below R, and so below N, making
T irregular. The fourth condition is symmetric.

Conversely, assume that 7' is not minimal. Then
there is a sequence of rotations that create an irregu-
lar tree 7. Node N has a descendant A7 in 7" such
that al(N) occurs in ¢l(My). Since the rotations do
not change ¢l/(R), if al(N) occurs in the result of 7",
it occurs in ¢/(R) and then T violates the second con-
dition. Thus al(N) does not occur in ¢/(R) so there is
a descendant M of N in T such that al(N) = al(M).
If M and N are in T; then T; violates the first con-
dition. Assume M and N are in different 7;. Since
M has been rotated below N, M is visible from N in
T, and by Theorem 14 M is not held by the nearest
common descendant R of M and N. Thus M 1s visible
from R. Therefore al(M) is in vis(T;) while al(N) is
in al(T3-;). O

Since our theorem prover keeps only minimal binary
resolution trees, the first condition is already satisfied
for any newly constructed binary resolution tree. It is
easy to check that the new result does not contain an
atom in al(7Ty) U al(T2). What is left is to find is an
easy way to calculate those atoms which are visible in a
subbrt. This condition for this is given by Theorem 14,
and computed by Procedure 17.

The idea in Procedure 17 is that a node is visible
in a subbrt if and only if it is not held by paths that
close at the root. So we need to calculate for each
node N in T; the history paths Py going through N
that precede history paths that close at the root. If
some of these paths go through one parent of N, and
some go through the other, then N is held by the root;
otherwise N is visible from the root. We use sets of
atoms to represent history paths. Thus the history
paths going through a parent N of the root and closing
at the root R are represented by Py = {al(R)}. As
we go from a node N to its parent A, to calculate the
paths through A, we first remove any paths that do not
go through A. This can be determined by intersecting
the atoms of Py with the atoms of the clause label of
A. Then we add al(N) to P, if there is some path
in Py that does not go through A, because then that
path precedes paths in Pp, and thus precedes paths
that close at the root.

Procedure 17 (Visibility) Given a node N in a bi-
nary resolution tree and Py a set of atoms representing
history paths that precede history paths that close at the
root of the tree, vis(N, Py) returns the atoms at and
above N wisible from the root.

If (N is a leaf) return ¢;
Let A and B be the parents of N, chosen so that Py N
atom(cl(B)) # ¢
Pa = PNatom(cl(A));
Pp = PNatom(cl(B));
If (Pa#¢)
//N is held
return vis(A, P4 U{al(N)})Uvis(B, Pp U{al(N)});
else (Pa = ¢)
//N is not held, so it is visible
return {al(N)} Uwvis(A, {al(N)}) Uvis(B, Pg);

Procedure 17 runs in a number of intersection calls
which is proportional to the number of nodes in the
tree. With hashing, these operations can in principle
be performed in time proportional to the size of the
clauses. Hence vis is a linear time algorithm, which is
as fast as one could expect.

Implementations of BRTs

We have implemented a prototype theorem prover
for propositional logic. Tt resembles OTTER(McCune
1994), but it retains only minimal binary resolution
trees (so that the recursive calls in Theorem 16 are not
needed), whereas the proofs built by OTTER corre-
spond to non-minimal trees in some cases. We have
combined the minimal restriction with an ordering re-
striction, different from those in (Kowalski & Hayes
1969), but our restriction has an additional feature: a
given minimal binary resolution tree will be found ex-
actly once. These two additional restrictions address
the problem of redundancy in this type of theorem
prover(Wos 1988). Finally we have defined a new type
of subsumption that retains completeness when com-
bined with the minimality restriction. Ordinary full
subsumption combined with minimality is not com-
plete.

We measured the number of clauses built by OT-
TER that were not tautologies, and the number of
binary resolution trees built by the prototype that
were minimal. The results are incomplete, but encour-
aging. For instance, OTTER accepts 10091 clauses
to refute SYN094-1.005 from TPTP (Sutcliffe, Sut-
tner, & Yemenis 1994), whereas the prototype allows
only 359 minimal binary resolution trees. OTTER
needs 35820 inferences for the four-pigeons problem,
MSC007-1.004, while the prototype needs 577. In a
minority of our experiments OTTER needed fewer in-
ferences because the more restricted search space of
the prototype did not contain the proof that OTTER
found. OTTER’s wins, so far, have not been as big.

Conclusion

The space of minimal binary resolution trees is inter-
esting for three reasons: (1) it is refutationally com-
plete, (2) it contains the smallest binary resolution
tree and (3) non-minimal (sub)trees can be identified
quickly. We define the novel notion of visibility be-
tween nodes in a binary resolution tree, and show that
it is useful. We present an efficient algorithm to deter-
mine minimality, which uses a number of set operations
that is linear in the size of the tree. We have imple-
mented a theorem prover using this restriction, and
it compares favorably to OTTER using binary resolu-
tion. We are continuing the implementation effort into
first order logic.

References
Adelson-Velskii, G. M., and Landis, E. M. 1962. An

algorithm for the organizaton of information. Sowviet

Math. Doklady 3:1259-1263.

Chang, C.-L., and Lee, R. C.-T. 1973. Symbolic
Logic and Mechanical Theorem Proving. New York
and London: Academic Press.

Goerdt, A. 1993. Regular resolution versus un-
restricted resolution. SIAM Journal on Computing
22:661-683.

Horton, J. D., and Spencer, B. 1997. Clause trees:
a tool for understanding and implementing resolu-
tion in automated reasoning. Artificial Intelligence
approximately 62 pages. Forthcoming 1997, avail-
able as http://www.cs.unb.ca/profs/bspencer/htm/
clause_trees/TR95-95.ps.

Kowalski, R., and Hayes, P. 1969. Semantic trees
in automated theorem proving. In Meltzer, B., and
Michie, D., eds., Machine Intelligence 4. American
Elsevier Publishing Company, Inc.

McCune, W. W. 1994. Otter 3.0 users guide. Tech-
nical Report ANL-94/6, Mathematics and Computer
Science Division, Argonne National Laboratories, Ar-
gonne, IL.

Robinson, J. A. 1965. A machine-oriented logic based
on the resolution principle. J. ACM 12:23-41.

Sutcliffe, G.; Suttner, C.; and Yemenis, T. 1994. The
TPTP problem library. In Kapur, D., ed., Automated
Deduction CADE-12, number 814 in Lecture Notes
in Artificial Intelligence, 252-266. Springer-Verlag,
Berlin.

Tseitin, G. S. 1969. On the complexity of deriva-
tion in propositional calculus. In Studies in Construc-
tive Mathematics, Seminars in Mathematics: Mathe-
maticheskii Institute, 115-125. Consultants Bureau.
Wos, L. 1988. Automated Reasoning : 33 Basic

Research Problems. FEnglewood Cliffs, New Jersey:
Prentice-Hall.

