Avoiding Duplicate Proofs with the Foothold
Refinement

Bruce Spencer
Faculty of Computer Science
University of New Brunswick

P. O. Box 4400
Fredericton, New Brunswick, Canada
E3B 5A3

bspencer@Qunb.ca

Abstract

Wos has identified the problem of recomputing redundant information in the
general setting of automated reasoning. We consider this problem in the
setting of logic programming where we are given a formula and a goal and
asked to find the instances of the goal that follow from the formula. We can
use a proof procedure to find the result. The procedure exhibits redundancy
when it finds two results such that one either duplicates or is more specific
than the other.

We introduce the foothold format, a refinement of linear resolution that
admits fewer duplicate proofs than Loveland’s popular MESON format. The
duplicates arise when reasoning by cases. It leads to proof procedures that
compute fewer duplicate substitutions. In some of our examples all duplica-
tion is eliminated. The foothold refinement depends on a simple condition
that can be checked quickly, and can detect redundancy before the proof
is completely generated. This is important from a practical point of view,
since the earlier redundancy is detected, the more unnecessary work can be
avoided. For some examples the speedup is exponential. We show that the
elimination of redundancy also applies to SLI resolution, a procedure for
processing disjunctive logic programs.

1 Introduction

Wos [11] asks

What strategy can be employed to deter a reasoning program
from deducing a clause already retained, or from deducing a
clause that is a proper instance of a clause already retained?

We consider the setting of first order logic without equality where we are
given a goal literal and a set of clauses and we wish to know which instances
of the literal follow from the clauses. To do this we use a proof procedure
to compute substitutions for the variables in the literal. Prolog is a special
case of this setting where all the clauses are Horn. A redundant substitution
duplicates or is an instance of another substitution.

This paper presents the foothold format for linear resolution proofs that
admits fewer duplicate proofs than MESON(3], a well-known proof format.
The duplication we avoid arises in MESON when reasoning is done by cases.
Reasoning by cases is required to handle clauses with more than one positive
disjunct, clauses that do not fall into the Horn subset. Thus this type of
duplication does not arise in Prolog, but it does arise in non-Horn extensions
to Prolog, such as PTTP [10].

For readers familiar with Model Elimination (ME)[3], we avoid the dupli-
cation that can arise when the reduction operation is applied. Given an ME
proof that includes a reduction between a goal and its complementary an-
cestor through a sequence of intervening ancestors, there must exist another
ME proof which is identical except that the intervening ancestors are the
complements of those from the first proof and these ancestors appear in re-
verse order (Lemma 2). To avoid the duplicate, we apply numerical labels to
literals in each clause according to an arbitrary fixed initial ordering. Then
a simple numerical condition based on these labels is imposed on the ME
reduction operation. The condition allows only one of these two reductions
to succeed. Thus one proof is avoided. By selecting the right arbitrary initial
ordering we will accept the first proof and reject the second.

This paper builds upon the original presentation of the foothold format|§]
with a more precise definition and more rigorous proofs. Since the original
foothold paper we have proposed a different restriction on ME reduction[9].
Plaisted’s positive refinement seems related [6], and other restrictions of res-
olution that avoid searching have been proposed [7].

2

2 Background: The MESON Proof Format

In this section we introduce negated ancestor proof graphs, which is a new
definition for Loveland’s MESON proof format. The new definition makes it
convenient to add the foothold condition which eliminates certain redundant
proofs.

2.1 Negated Ancestor Proof Graphs

Linear resolution [1, 3] can be used in the setting of first order logic to
generate the instances for a goal literal by building a proof of the goal from
the clauses, and applying the resulting substitutions to the goal. We consider
one form of linear resolution, based on Loveland’s MESON format, and we
introduce a new definition of this format. Given a goal and a set of clauses
we show that the goal follows from the clauses if and only if there is a proof
graph of the goal that is built from (some of) the clauses.
We begin with two preliminary definitions.

Definition 1 If g is a literal then let § be the complement of g. That is, the
overbar function adds the — connective if it is not present in ¢, and removes
it if it is.

Definition 2 For a clause gy V ... V g, there are n contrapositive rules
as follows:

Vi=1,...,n
g <~ g1 - Gis1 Giy1 -+ Gn

Informally, to construct a negated ancestor proof graph of a goal g, be-
gin by constructing a node that contains g. This node will be the root of
the graph. Given a partial negated ancestor proof graph, and a goal node
containing the literal 2 (initially A is g) there are two ways to complete the
graph. Case a is to find a node already in the graph containing » which is
connected to this node by tree edges, and introduce a back edge from the
goal node to this ancestor. Case b is to find a contrapositive rule with A on
the left hand side, make a new node for each member of the right hand side,
and introduce a tree edge from the goal node to each new node. Recursively
prove each new node.

—b —a

Figure 1: Negated Ancestor Proof Graphs

For example, consider the clauses

p VvV —a
p V —b
a V b

and the goal p. The contrapositive rules are

péa —a+ p
peb b+ —p
a+—-b bé< —a

There are two negated ancestor proof graphs of p, as shown in Figure 1. As
in the conventional presentation of trees, the root is at the top, child nodes
are lower than parent nodes, and tree edges have no arrows. Our back edges
point upward.

Now we can formally present negated ancestor proof graphs. The def-
inition depends on an auxilliary definition, NA1 proof graphs, which differ
from negated ancestor proof graphs in that they have an additional set of
ancestors that may be used to satisfy some goals.

Definition 3 Let P be a set of propositional clauses, and ¢ a literal.

3.1 An NA1 proof graph of a node G containing the ancestor path A is a
directed graph (V,E). E = T U B, where T is the set of tree edges,
B is the set of back edges, T and B are disjoint and (V,T) is a tree.
Each node in V contains a single literal. A is a sequence of nodes that
represents a path of tree edges, which are the ancestors of G.! Let g be
the literal in G. One of the two following conditions must be met:

1@ is not the root of the NA1 graph; rather, the first member of A is.

4

(case a) There exists a node N in A such that N contains the literal g
and there exists a back edge (G, N) from G to N in the NA1
proof graph.

(case b) There exists a contrapositive rule g < ¢; ... g, from some clause
in P and for each ¢ = 1,...,n there exists a node G, containing
gi, a tree edge (G, G;) and an NA1 proof graph of G; containing
the ancestor path (A4, G).

3.2 A negated ancestor proof graph of ¢ is an NA1 proof graph of G
that contains the empty ancestor path.

To illustrate the definition we start with one of the proof graphs in Fig-
ure 1. We show it again, with labels on the nodes.

N1(D)
AN

N2 (o)

We will illustrate the definition by showing how this graph satisfies the
conditions. It is a negative ancestor proof graph of p if it is an NA1 proof
graph of N1 with the empty ancestor path. So we check N1 against Defini-
tion 3.1 with the ancestor path A set to (). Case a cannot hold since there
is no member of A, so we try case b. Choosing the rule p + a, we note that
there is a node N2 containing a, and a tree edge to from N1 to N2. If we can
satisfy ourselves that there is an NA1 proof of N2 containing the ancestor
path (N1) we will be done. Apply Definition 3.1 again. Case b applies, with
the rule a <~ —b, and there is a node N3 containing —b and a tree edge from
N2 to N3. We now must check that there is an NA1 proof of N3 with the
ancestor path (N1, N2). Again case b of the definition applies and, using the
clause =b < —p we see that there is a node N4, which contains —p and a tree

5

edge from N3 to N4. Finally we ask if there is an NA1 proof graph of N4
containing the ancestor path (N1, N2, N3). This time case a applies since
there the node N1 in A contains p which is the complement of —p. Therefore
we are satisfied that there is an NA1 proof graph of N4, which allows us to
conclude there i1s an NA1 proof graph of N3, and so forth for N2 and N1.
We conclude that this is a negated ancestor proof graph of p.

The part of the MESON format we have extracted preserves the impor-
tant properties of soundness and completeness.

Theorem 1 Let P be a consistent set of propositional clauses, and ¢ a
literal. P |= g if and only if there exists a negative ancestor proof graph of ¢
using clauses in P.

Proofs for the theorems in this paper are found in Appendix A.

2.2 First Order Proofs

We will assume that the reader is familiar with first order logic, as presented
in, for example [1].

Suppose we are given a set P of clauses and a literal ¢ and we want
to find the instances of ¢ that follow from P. Procedures that build first
order MESON proofs can also build substitutions for the variables in g. For
example if P = {g(a)} then the proof of g(z) returns the substitution z :=
a. There may also exist indefinite instances of the goal, as defined by a
disjunctive set of substitutions. For example if P = {g(a) V ¢g(b)} then the
proof of g(z) should return = := a V x := b. Green [2] provides a method for
computing disjunctive answers. Stickel [10] describes how disjunctive answers
can be computed within the MESON format:

Indefinite answers can be obtained by solving the query with its
negation included among the axioms, and examining the proof to
find the query’s instantiations.

Completeness of the MESON format extends from the propositional case
to the first order case [3]. To see why, recall Herbrand’s theorem which states:
a set of clauses is unsatisfiable if and only if there is a finite unsatisfiable set
of ground instances of these clauses. If P |= g then PU{g} is unsatisfiable, so
there is an unsatisfiable set P’ U{q,,...,q,} where P’ is made up of ground

instances of clauses of P, and each g; is a ground instance of g. Therefore PU
{Gy,---,7,} E g1. Since ground literals may be treated as propositions, and
since the propositional MESON format is complete there is a propositional
MESON proof of ¢g; from P'U{g,,...,§,}. A lifting argument can now be
made to show that from the propositional proof, the appropriate first order
proof can be constructed which produces the disjunction of substitutions.

3 Foothold Proof Graphs

In this section we present foothold proof graphs, a refinement of negated
ancestor proof graphs that eliminates some redundant proofs, but retains
completeness. The basic idea is to break up the symmetry in duplicate
negated ancestor proofs. In Figure 1, the duplication is due to the symmetry
of the two contrapositive rules of a V b, namely a < —b and b + —a. In a
foothold proof we assign labels from the set {-1,0,+1} to the literals on the
right hand side of the contrapositive rules. For this example the symmetry
is broken by assigning the label (+1) to =b in a ¢ —b, and the label (—1) to
—a in b + —a.

To build the labeled contrapositive rules for a general clause, first separate
the positive literals from the negative literals. Here positive and negative
refer to the sign of the literal in the original clause. Put all of the literals of
each type into an ordered sequence. Any ordering will do. For each p; from
the positive literals, build a contrapositive rule as follows. Put p; on the left
hand side. On the right hand side put the complements of the other literals
in the clause. To each positive literal that appears before p; in the ordered
sequence assign the label (+1), and to each positive literal that appears after
p; assign (—1). To each negative literal assign (0). Also, build a rule for
each negative literal n; as follows. Assign (41) to each negative literal that
appears before n;, assign (—1) to each negative literal that appears after n;
and assign (0) to each positive literal.

In the example the labeled contrapositive rules are

p—a® =g —p©

p b0 —b —|p(0)
a — —bF) b =gl

This labelling is based on the ordering b, a for the literals in the clause a V b.

Now, build the negated ancestor proof graph using these labeled contrapos-
itives. During the search for a negated ancestor, sum up the labels of all of
the literals encountered. If the sum is positive when we reach the negated
ancestor, then accept the proof. Otherwise reject it.

In the example the foothold proofs graphs are

p p
Lo b0

| |
Lp® L0

The first of them is accepted since the sum is 0 + 1 + 0 and the second is
rejected because the sum is 0 — 1 + 0.

The name “foothold” refers to an analogy between reaching the negated
ancestor and climbing a tree. If there are more positive labels than negative
labels, there is a foothold on which we can climb. If there are more negative
labels than positive ones, there is no foothold, so it is impossible to climb.

This simple idea can now be presented more formally.

3.1 Propositional Foothold Format

Definition 4 Let P be a set of propositional clauses.

4.1 The foothold rule set of P is the union over clauses C in P of the set
of foothold rules of C.

4.2 Let C be a propositional clause. Let (=ly,...=l,) be an ordered sequence
of the negative literals in C' and (r4,...r,) be an ordered sequence of
the positive literals. The foothold rules of C' with respect to these
orderings are

Vi=1,...,n
S PR (S Y A N e B
Vi=1,...,m

ri 4 —|r§+l) e ﬁrl(fll) —w“l(_;ll) (=1 l§°) G

4.3 The superscript (s) on each literal on the right hand side of a foothold
rule is called the foothold label. A foothold label written (%) is one

whose value we disregard (a “don’t care”).

Definition 5 Let P be a set of clauses, g a literal, and Fp be a foothold rule
set of P.

5.1 A labeled negated ancestor proof graph containing Fp is a negated
ancestor proof graph with an integer label assigned to each node and to
each back edge as follows:

(1) to the root, assign an unspecified label, ().

(2) to each child node G;, containing g¢; assign (/;) where the parent
node contains g, where the contrapositive rule chosen for g was g <
1y -3 0Giy- - 9n, and where the corresponding foothold rule is g +
ng), . ,gili ACN

(3) to each back edge (N,,, Ny) assign X7_,[; where Ny, ..., N, is the path
of tree edges such that N, and N; contain complementary literals,

and N; has the label (1;).

5.2 A foothold proof graph is a labeled negated ancestor graph such that
every back edge has a positive label.

Theorem 3 Let P be a consistent set of propositional clauses, and ¢ a
literal. Let Fp be a foothold rule set of P. P | ¢ if and only if there exists
a foothold proof graph of g from Fp.

3.2 First Order Foothold Proofs

Foothold labels can be assigned to first order clauses in exactly the same
way that they are assigned to propositional clauses. First order foothold
proofs are defined as first order negated ancestor proofs, with the additional
restriction that each backedge from a goal to its negated ancestor has a
positive foothold sum.

Completeness of first order foothold proofs is also preserved. The argu-
ment in Section 2.2 for the completeness of first order negated ancestor proofs
also applies to first order foothold proofs. The only property of propositional
negated ancestor proofs that was used in that proof was propositional com-
pleteness, a property shared by propositional foothold proofs. Since foothold

9

proofs are a special case of negated ancestor proofs, the same lifting lemma
may be applied to generate first order foothold proofs.

3.3 Restricting other Types of Proofs

The basic idea behind the foothold restriction is that it is not necessary to
apply ancestor resolution both to a chain of extensions built in one direction
and to that chain built in the other direction. We have found that this
idea can be applied to other proof methods that use extension and ancestor
resolution, such as SLI (or LUST)[4]. SLI refutations provide the procedural
interpretation for disjunctive logic programs.

We define SLI-FH derivations which are SLI derivations that adhere to the
foothold restriction. We refer the reader to the literature [4] for the definitions
of SLI derivation, t-clause, admissibility and minimality conditions.

Literals in the SLI-FH trees are assigned a foothold label when they
are introduced by t-extension. As with the foothold rules of Definition 4 the
foothold labels are either +1 or —1 according to some ordering of the literals.
We assume that the lexical order of the literals in the input clauses is used.
When literals become marked by * (i.e., they go from being B literals to A
literals) they retain their foothold labels. During t-ancestry foothold labels
on the path from L* to M are summed to compute the foothold condition.

Definition 6 An SLI-FH-derivation of a t-clause E from a set of ¢-clauses,
S, with top t-clause C' is a sequence of t-clauses D = (Ci,...,C,) such
that:

Cyis C,and C,, is F;

Ci41 1s obtained from C; by either t-extension, t-factoring, t-ancestry, or
t-truncation;

if Ci41 1s obtained from C; by t-extension or t-truncation, then C; satisfies
the admissibility condition;

if C;41 1s obtained from C; by t-extension, t-ancestry, or t-factoring, then
C; satisfies the minimality condition.

C'i+1 1s obtained from C; by t-eatension with input t-clause B; iff
(1) C;iis (e*ar1 LBy);

10

(2) Bjis (e*aaMBy);

(3) L and M are complementary and unify with mgu 6;

() CH—I is (5* a19 (LO* Oé2(9 529) ﬁlﬂ),

(5) if M is positive then all positive literals of o, are assigned a foothold
label of +1 and all of the positive literals of 3,6 are assigned a foothold
label of —1. If M is negative then all negative literals of ayf are

assigned a foothold label of +1 and all of the negative literals of 3,6
are assigned a foothold label of —1.

Ci11 1s obtained from C; by t-factoring ift
(1) Ciis (an L ag M az) or C;is (a1 M ay L a3);

(2) L and M have the same sign and unify with mgu 6;
(3) Lisin ya (i.e., L is in a higher level of the tree);
(4)

4) Cip1 is (a1 0 LO* oz a3f) when C; is (ay L ay M a3), or Ciyq is
(16 28 LO* a36) when C; is (an M ay L ag).

Ci11 1s obtained from C; by t-ancestry ift
(1) C;is (an(L*ag(asMay)as)ag);
(2) L and M are complementary and unify with mgu 6;

(3) o is the sum of the foothold labels on the A-literals on the path from
L* to M including that on M but not including the foothold label on
L*, and ¢ > 0;

(4) Cz'—}-l is (ale(LO* a29(a39 0549)0/59)&6(9).

Ci11 1s obtained from C; by t-truncation iff either
Ciis (a(L*)B) and Cj4q is (af)

or
C; is (¢*) and Ci4q is O.

Definition 7 An SLI-FH refutation from the set of t-clauses S with top
t-clause C' is an SLI-derivation of the null clause O from the top t-clause C.

For example, given the clauses (from [4])

11

(1) (e7p(f(X)) —~q(X) —r(X)),
(2) (e"p(f(X)) q(X)),
(3) (e7r(X))
and the goal clause
(e"=p(f(a))
the following is an SLI-FH refutation:
(e*=p(f(a))) goal clause
(e*(—p(f(a))* ~q(a) —r(a)) t-extension with (1)
(e*(=p(f(a))* (=q(a)* p(f(a))FV) =r(a))) t-extension with (2)
(e*(—=p(f(a))* (mg(a)*) —r(a))) t-ancestry where o = +1
(e*(—p(f(a))* —r(a))) t-truncation
(e*(=p(f(a))* (=r(a)*))) t-extension with (3)
(e*(=p(f(a))*)) t-truncation
(%) t-truncation

O

t-truncation

However, the following sequence of t-clauses cannot be extended to com-
plete an SLI-FH refutation since p(f(a)) cannot be eliminated:

(e*=p(f(a))) goal clause
(e*(—p(f(a)) qla))) t-extension with (2)
(e*(=p(f(a))" (q(a)* Y p(f(a)) =r(a)*V))) t-extension with (1)

Elimination by t-ancestry is blocked because of the foothold condition
with 0 = —1, and neither t-extension nor ¢-factoring applies. If we ignore the
foothold condition, we can apply t-ancestry, and then complete the redundant

SLI proof:

12

(e*=p(f(a))) goal clause
(e*g—'pg Ea))* q(a)=1)) t-extension with (2)

f

(e*(=p(f(a))* (q(a)* =Y p(f(a)) =r(a)FV))) t-extension with (1)
(e*(=p(f(a))* (q(a)*=1)) =r(a))) t-ancestry where o is ignored
(e*(=p(f(a))* =r(a))) t-truncation

(e*(=p(f(a))* (=r(a)))) t-extension with (3)
(e*(=p(f(a))*)) t-truncation

£%) t-truncation

U t-truncation

4 Evaluation

4.1 How easily can foothold proofs be computed?

Like the MESON format, the foothold format leads to proof procedures that
are simple to implement. Appendix B contains a Prolog procedure for com-
puting foothold proofs. Any theorem prover that is based on the MESON
format, such as PTTP [10] can easily be converted to the foothold format.

Procedures that compute MESON proofs can take advantage of an im-
portant pruning rule. If a goal is encountered that is the exact duplicate of
a goal in the ancestor sequence, then this branch of the tree can be ignored
and no success is reported. There is no reason to pursue a proof of this goal,
because this condition arises when the procedure has entered a loop. Proce-
dures that compute foothold proofs can take advantage of the same pruning
rule, for the same reason. The Prolog procedure in the appendix implements
this pruning rule.

4.2 When should the foothold format be used?

The foothold format should be used whenever one is reasoning with clauses
that extend beyond the Horn subset and the objective of the search is to find
more than one result. If the objective of the search is to find a single solution,
or to show that a set of clauses is unsatisfiable, then foothold proof procedures
are not necessarily better or worse than MESON proof procedures.

13

—p+D)
AN s,
b c —a ‘
| \ | —a+D)
—|p(1) _‘Cl(+1) —|p ‘
-p

Figure 2: The Foothold restriction does not preserve minimum proofs

If the objective is to find a proof with minimum height, where the height of
a proof is the maximuin size of the ancestor set, then the foothold refinement
should not be used. The shortest negated ancestor proof may be rejected by
the foothold condition, while a longer proof, composed of the same clauses
in a different arrangement, meets the condition. In Figure 2 the proof on
the left is a negated ancestor proof graph, but not a foothold proof graph
because of the label on =p. The proof on the right is the smallest negated
ancestor proof graph for the orderings chosen in the foothold rules.

Proof height is an important consideration for “iterative deepening” proof
methods, such as the PTTP [10]. By restricting the search to a preset limit,
and iteratively increasing this limit, depth first search strategies can be pre-
vented from running down infinite paths. They will find each proof up to
that limit. Thus depth first search achieves the completeness of breadth-first
search, without also requiring exponential space.

The iterative deepening strategy can be used with the foothold refine-
ment. Because the minimum height proof may be eliminated, the searcher
may be forced to look deeper to generate the same number of distinct proofs.
In Section 4.5 we discuss how the reduction in search space helps offset the
cost of the additional depth.

14

4.3 How many proofs are avoided?

The amount of redundancy reduced depends on the clauses, but we are guar-
anteed that the foothold procedure will generate no more redundancy than
the negated ancestor procedure, since the foothold format is strictly more
specific than the negated ancestor format.

There are some examples where the foothold format still admits an ex-
ponential amount of redundancy, in the sense that more than one proof can
be built from the same set of clauses. In other words, given the clauses
used in the construction of some proof, other proofs can be built from the
same clauses. Redundancy in these examples is due to interaction between
features of the clauses, including the non-Horn feature. In the following ex-
ample different parts of the proof must use different subproofs to prove the
same literal. Redundancy arises because in yet another part of the proof the
same literal can be proved by any of the subproofs. There are II?_;:! foothold
proofs of p from the following:

pV-opr V...V -p,

pi VvV pip Voa Vi=1l...n—-1
pn VvV Ta
piVa Vi=1...n

There are some examples where the foothold procedure eliminates all
redundancy. Consider the following:

pV-opr V...V p,

p,'\/—wu Vi=1l...n
pi V by Vi=1...n
a,-\/b,- Vz:ln

For each n there is exactly one foothold proof of p from the above, but there
are 2" negated ancestor proofs. In the table in Figure 3 we compare the time
to calculate all proofs of p from this set of clauses for different values of n.
(All programs in this paper were written in Quintus Prolog, and run on a
VAX 8600. Times are reported in milliseconds.)

As reported in Figure 3 the time to build all 2" negated ancestor proofs
increases exponentially with n, but the time to build the only foothold proof
and to decide it is the only one, increases more slowly with n.

Value of | Foothold | Negated
n Ancestor
1 16 17
2 33 33
3 33 100
4 67 216
3 83 417
6 150 1033
7 184 2583
8 200 5483
9 300 12100

10 367 26400
30 3850 ~ 1010

Figure 3: Times (msec) to compute all proofs of each type

4.4 Why is so much time saved?

Time is saved because so much redundant searching is avoided. To illustrate
this, we compare a naive MESON proof procedure with and without the
foothold restriction.

For example, we are given the following clauses

gV pV sV i
pV a
pV b
aVb
sV...

and the query g. Suppose it is possible, but very expensive to prove s, and
it is impossible to prove t. If a naive MESON theorem prover pursues the
clauses in the order they are given and pursues the literals left to right, then
it will attempt to prove ¢ using the first clause. It will need to prove p, which
succeeds via reasoning by cases as shown in Section 2.1. Then it will prove
s incurring its associated high cost. But it will be unable to deal with the ¢

16

literal. Failure will cause backtracking and it will build the second proof of
p, reprove s, incurring the high cost a second time, and then fail at ¢ once
more.

The same theorem prover with the foothold restriction will proceed ex-
actly as above and build one proof of s, until the failure at ¢ occurs. It will
fail to find the second proof of p and so avoid building the expensive proof
of s again.

More savings arise when we complicate the example slightly. Let us insert
a new literal, say —p; between between —p and —s in the first clause, and
add the clauses

PV oTay
p Vooob
ay \% bl

Then the MESON proof procedure will build four proofs of s whereas the
prover with the foothold restriction, still, will only build one proof of s.

4.5 How much time is saved?

In Figure 4 we compare two procedures for producing proofs. We report
on the time to build all proofs and the number of proofs built. The procedure
NA builds all negated ancestor proofs; FH builds all negated ancestor proofs
that conform to the foothold condition.? If FH finds that a part of the
proof does not conform to the foothold condition then it does not continue
expanding that proof. The procedures are otherwise identical. They prune
branches with identical ancestors, and they prune the search after a height
of 10. We have run these programs on the tests suggested by Pelletier[5] that
do not include equality axioms.

Pelletier’s tests are unsatisfiable sets of clauses : we converted each set of

1
clauses into a problem of showing that a literal is entailed by a set of clauses
by introducing a new literal into the one clause in the set, and trying to show
that literal followed.

2Checking this condition adds an extra addition operation each time we search up the
ancestor path and an extra less than check if and when a complementary ancestor is found.
The extra costs for these operations are negligible.

17

Figure 4: Pelletier’s Problems: Times (in msec) and number of proofs

Time Count

Time Count FH 19 17 1

FH 1 16 1 NA 19 17 1
NA 1 17 1 FH 20 50 1
FH 2 33 1 NA 20 33 1
NA 2 33 1 FH 21 67 2
FH 3 17 1 NA 21 167 12
NA 3 0 1 FH 22 4800 207
FH 4 33 1 NA 22 50167 3782
NA 4 17 1 FH 23 167517 4620
FH 5 33 1 NA 23 1437117 97200
NA 5 33 1 FH 24 100 1
FH 6 34 1 NA 24 200 8
NA 6 17 1 FH 25 2583 5
FH 7 17 1 NA 25 4533 36
NA 7 17 1 FH 27 67 1
FH 8 17 1 NA 27 83 2
NA 8 0 1 FH 28 34 1
FH 9 50 1 NA 28 50 1
NA 9 50 4 FH 30 50 2
FH 11 33 1 NA 30 67 4
NA 11 33 1 FH 31 50 1
FH 12 766 1 NA 31 17 1
NA 12 222450 4096 FH 32 50 1
FH 13 17 1 NA 32 50 1
NA 13 33 1 FH 35 0 1
FH 14 50 1 NA 35 16 1
NA 14 50 4 FH 36 50 4
FH 15 17 1 NA 36 67 4
NA 15 33 1 FH 37 483 29
FH 16 0 1 NA 37 550 36
NA 16 17 1 FH 39 33 1
FH 17 67 1 NA 39 67 8
NA 17 67 2 FH 44 50 1
FH 18 33 1 NA 44 66 2
NA 18 16 1 FH 45 16683 16
18 || NA 45 1524550 9589

Count at each height
4 5 6 7 8 9 10

3

FH 22 |1 14 17 23 29 35 41 47
NA 2214 73 165 298 467 672 913 1190
FH 232 10 108 276 516 828 1212 1668
NA 23 |8 82 1350 4716 9990 17208 26370 37476
FH 25 2 2 1

NA 25 3 9 10 6 4 2
FH 371 4 4 4 4 4 4 4
NA 37|11 5 3 3 3) 3 3
FH 45 9 7
NA 45 3 7 147 708 8722

Figure 5: Proof Heights for Selected Problems

We report on problems for which a proof can be found in a reasonable
amount of time. Some problems required sound unification, with the occur-
check. Because we used Prolog’s unification, these could not be run.

In these tests the foothold refinement is never significantly more expen-
sive than the negated ancestor procedure, and is more expensive only in
simple problems, such as 3 and 8, where the times are so small they have
little significance. On large meaningful problems, the foothold procedure is
strongly favoured. This suggests that for still larger problems the savings
will continue to be significant.

Figure 4 indicates that the foothold format is never significantly slower
than the negated ancestor format, and can be much faster.

Figure 5 reports the number of proofs of each height for some of the
more complex problems. In Problems 25 and 45 the minimum height proof
is rejected. Proofs are found after 1 and 2 more levels, respectively. In these
two examples the search spaces are especially reduced. This result suggests
the the search space reduction will compensate for the loss of the minimum
height proof.

The effect of the foothold restriction is very pronounced on problems
that are inherently redundant, such as the famous pigeon-hole problems. To
show that it is impossible to put 4 pigeons in 3 holes where no more that

19

one pigeon can occupy any hole, the NA procedure found all 20736 proofs
in 538,618 milliseconds. The FH procedure needed only 416 milliseonds to
discover that only one proof remained.

5 Conclusion

In settings where results are computed from proofs, such as first order logic,
duplicate proofs produce the same result. Time is wasted computing the du-
plicate proof and more time is wasted checking the result for redundancy. We
have presented the foothold format, a refinement of the MESON format that
admits fewer duplicate proofs. Procedures that compute these proofs can
detect redundancy before the entire proof is constructed. Empirical evidence
shows a simple foothold procedure is never significantly slower and some-
times much faster then the same procedure without the foothold refinement.
The savings are greater for more complex examples.

6 Acknowledgements

The author is grateful for assistance from Bell-Northern Research and NSERC
(OGP 0106290) and for helpful comments from the reviewers.

A Proofs

We provide this proof to demonstrate that the part of the MESON proof
format we have extracted has the important properties of soundness and
completeness.

Theorem 1 Let P be a consistent set of propositional clauses, and ¢ a
literal. P |= g if and only if there exists a negative ancestor proof graph of g
using clauses in P.

Proof Completeness (= by induction on the number of clauses in P)
We claim for all P, g and A if P is a consistent set of propositional clauses,
g is a literal, A is a sequence of nodes representing a path of tree edges?,

3Note that the tree edges for A do not necessarily come from this P.

20

B is the set of all literals whose complements appear in the nodes of A,
PUB E g, PU B is consistent, and G is a node containing g then there is
an NA1 proof graph of G containing the ancestor path A. If this claim is
true then by setting A to the empty sequence, B becomes {} and we have a
negative ancestor proof graph of g.

If P = {} then PUB |= g means g € B, so there is a node in A containing
g, which means there is an NA1 proof, using case a of Definition 3.1. Let
P have k 4+ 1 clauses. If ¢ € B then there is an NA1 proof, also by case
a. Otherwise we construct P’, a subset of P such that P’ U B U {g} is
inconsistent, and for all proper subsets P” of P', P U B U {g} is consistent.
(P’ can be obtained by exhaustively considering all possible subsets of P.)
Assume P’ does not contain a clause C' which mentions g. Then since P'U B
is consistent and g ¢ B, P'UBU{g} is consistent, which is false. Thus there
is a clause C' € P and without loss of generality assume C =gV g1 V...V gn.
If n = 0 then the NA1 proof graph of G consists of G and the ancestor path
A. Assume n > 0. Since P'\{C} is a proper subset of P, P'\{C}UBU{g} is
consistent. If there is a g; in C such that P'\{C}UBU{g}U{g;} is consistent,
then P'U BU{g} is consistent, which is false. Thus P'\{C}UBU{g} = ;
for all j. Then by induction, setting P in the claim to P'\ {C}, setting B to
BU{g}, and setting g to g, if we construct nodes G; containing g, then there
is an NA1 proof graph of each G; with ancestor path (A, G). These graphs
can be combined by constructing tree edges from G to each G; to form an
NAT1 proof of G containing the ancestor path A.

Soundness (< by induction on the height of the tree (V,T))

We claim that if there is an NA1 proof graph of some node G with respect
to the ancestor path A, then PU B £ g, where B is the set of literals whose
complements appear in A and g is the literal in G. If the claim is true then
by setting A to the empty path, B becomes {} and P | g.

Let the tree (V,T') in the NA1 graph have height 0. Then either there is a
back edge from G to a node in A so g € B, or there is a contrapositive rule g
with no right hand side so ¢ € P. In either case PU B |= g. Suppose the tree
has height k& + 1. If there is a back edge from G to a node in A then again
P U B [g. Otherwise there is a contrapositive rule g - ¢; ... gy, and for
all : = 1,...,n there is a node G; containing g; and an NA1 proof graph of
G, containing ancestor path (A, G). These smaller graphs contain trees with
height at most &, so by induction PUBU{g} = ¢;. Since P = g < g1 ...¢gn it
follows that PUBU{g} = g. Thus PUBU{g} is inconsistent so PUB |= g.1

21

g—or

- ——Q
=

=

a b

Figure 6: From G with a backedge (N,,, N1) to G’ with a back edge (N7, N})

The following lemma is used in the proof of Theorem 3. Essentially it
proves that if a proof graph has tree branches from k1, ..., h, where h, = by
then the branches can be “flipped” to produce another proof with branches
from h,,...,h;. For example, Lemma 2 defines the mapping from the first
to the second proof graph in Figure 1.

Lemma 2 Let G be a negative ancestor proof graph using clauses from P
that contains a path of tree edges represented by the sequence of nodes
Ni,...,N,, and a back edge (N,,Ny). For ¢ = 1,....n, let N; contain the
literal h;. Then there exists a negative ancestor proof graph G’ using clauses
from P, that contains a path of tree edges N/, ..., Ni, where N! contains h;,

and a back edge (N7, N}).

Proof Let Gy be the NA1 proof graph of Ny, the node containing hy;. We
shall construct G’ by replacing Gy in G with G/, an NA1 proof graph of N/,
the node containing B (See Figure 6.) Note that hy = h,, since there is a
back edge (N,, Ni). Let A be the ancestor path from the root of G to Nj.
We construct G/, by inductively constructing an NA1 proof graph of N/ with
ancestor path (A, N/, ..., N!), such that there is no back edge leading to any
one of N]_,,...,N]. (See Figure 7.)

The NA1 proof graph of N{ consists mostly of the long ancestor path
(A,N],...,Nj}). By case a, it contains a back edge (N}, N}), since N| con-

22

Figure 7: Constructing G/, from G,

23

tains A, and N! contains h;. There is no back edge leading to N/ since N/
has no descendants. To construct the NA1 proof graph of N; ; with ances-
tor path (A, N,..., N/,,), note that there is a clause in P from which the
contrapositive rule

h,’ — h,’+1a1,’ R O,

can be constructed, without loss of generality. Therefore the contrapositive
rule
hiv1 < hiaqi. .. apm;

can also be constructed. So we apply case b and construct for each j =
1,...,m anode L; containing aj;, a tree edge (Nj,, L;) and an NA1 proof
graph of L; with ancestor path (A4, N),...,N; ;). We have already con-
structed an NA1 proof graph of N/ with ancestor path (A, N},..., N/ ;) by
induction.

To construct the NA1 proof graph of L;, note that part of G; is an NAl
proof graph of L; with ancestor path (A, Ny,..., N;). (See Figure 7a.) Make
a copy of that graph, replacing the ancestor path (A, Ny,..., N;) with the
ancestor path (A, N;,..., N/). Any back edge (S,N,) for 1 < s < i in
the proof graph for L; must also be removed since its destination has been
removed. To construct a new proof graph for S note that by induction we
have already constructed a proof graph for N, a node which also contains

Iis. This graph has an ancestor path (A, N/,...,N/.,), but no back edges

to any of N/_,,...,N.. Make a copy of this graph, and in the copy give
the name S to N,. Since there were no back edges to N/ _,,..., N/, we can

replace the ancestor path in the new graph with (A, N;,..., N/, L;,...,5).
(See Figure 7b.) This completes the construction of the proof graph for L;.

To complete the induction we point out that there are no back edges to N/, ;.1

Theorem 3 Let P be a consistent set of propositional clauses, and ¢ a
literal. Let Fp be a foothold rule set of P. P |= ¢ if and only if there exists
a foothold proof graph of ¢ from Fp.

Proof (<) Since the foothold proof graph is a negative ancestor proof graph,
the result follows by Theorem 1.

(=) Let G be a negative ancestor proof graph of g from P, provided by
Theorem 1. According to Definition 5 label G with respect to Fp. If there are

24

no negative back edges then this is a foothold proof graph, and we are done.
Otherwise select a lowest node N that is the destination of some negative
back edge. We shall construct a labelled NA1 proof graph of N that has no
negative back edges leading to NV or to any descendant of N. By selecting
a new lowest node that is the destination of some negative back edge and
repeating the construction of an NA1 proof graph of it with no negative
back edges we can eliminate all negative back edges. This completes the
construction.

To construct the NA1 proof graph of N as claimed, let Ny = N and
select a back edge (N,, N;) with label & < 0. We know k = X7,I; where [
is assigned by the foothold rule

hi — h{al) .l

Apply Lemma 2 to (N,, Ni) to replace that back edge with (N7, N}) with
label k' = ¥7_,I! where I! is assigned by the foothold rule
) (x

i al).. al?)

Ei-l-l — E Qi
If h; and h;yq are both positive or both negative literals then in the ordering
chosen in Fp either h; comes before h;; 1, in which case [; = +1 and I} = —1,
or h; comes after h;;;, in which case I; = —1 and I[= +1. If one of k;
and h;;; is positive and the other is negative then I; = I} = 0. In either
case [; = —l; so k = —F'. Thus k' > 0. We have replaced a negative back
edge with a positive one. We claim that we have not negated any positive
backedge so that the number of positive backedges has strictly increased. By
continuing to select a negative back edge and apply Lemma 2, we strictly
increase the number of positive back edges. Since there is a finite maximum
number of back edges we can eliminate all negative back edges in a finite
number of steps.

It remains to show our claim that an application of Lemma 2 to a negative
back edge does not negate any positive back edge to Ny. Let (M,,, N1) be
a positive back edge, and let the path of tree edges from N; to M,, be
Ny,...,N;, My, ..., M,,, as in Figure 8a. Let X = E;:2lj, let Xy = X7_,.,0;,

let X3; be the sum of the labels of My to M,,, let & be the label of M;.
After the application of Lemma 2 to (Ny, N,) we have the graph shown in

N, N/
: :
| |
N; Ny
N(_l}_til-l) M1(k) N((/—li+1) Ml(k')
b
| I | |
| | | |
N, M, N/ M,
a b

Figure 8: The effect Lemma 2 on other back edges

26

8b, where k' is the new label for M.

Given X+Laa+Xy < 0

1t follows X+Lhnn+Xy < -1

SO X S —l,'_|_1 — XN —1
Given X+Ek+Xy > 0

it follows X > —k—Xy
Transitively —l1—Xy—1 > —k— Xy
SO Xy —Xy > l,’+1—}-1—k
Suppose Xuy—Xnv+kE < 0

Then XM—XN S —1—k/
Transitively —1-FK > Li1+1-k
SO E—kK -l > 2

Since k, k" and l;;1 are restricted to values in —1,0,+1 it follows that k& =
1,k' = —1 and l;;; = —1. Therefore in the clause in question the ordering
chosen to build the foothold rules put the literal in N; before the literal in
N;y1 since [;11 = —1. It put the literal in N;;; before the literal in M; since
k' = —1. And it put the literal in M; before the literal in N; since k = 1.
But this is absurd so the supposition that X — Xy + &' < 0 is false.l

B Computing Foothold Proofs in Prolog

% Propositional Foothold Proof Procedure
- op(250, fx, (7).
prove(QG) :- th_prove(labelled lditeral(G, _), []).

th_prove(labelled literal(G, -), Anc) :-
negate(G, Neg_G),
member(labelled literal(Neg G, _), Anc),

I, fail. % Cut is allowed when literals are propositions

th_prove(labelled literal(G, Label), Anc) :-

27

ancestor_search(G, Label, Total, Anc),
I, %Cut is allowed when literals are propositions
Total > 0.
th_prove(labelled literal(G, Label), Anc) :-
foothold_contrapositive_rule(G, Body),
negate(G, Neg_G),
th_prove_all(Body, [labelled literal(Neg_G, Label) | Anc]).

th_prove_all(]],).

th_proveall([G1 | G |, Anc) :-
th_prove(G1, Anc),
th_prove_all(G, Anc).

ancestor_search(Goal, S0, S0, [labelledliteral(Goal, Label) | Anc]).
ancestor_search(Goal, S0, S2, [labelled literal(G, Label) | Anc]) :-
S1is SO + Label,
ancestor_search(Goal, S1, S2, Anc).

negate(X, =X) - \+ X = —_.
negate(—=X, X).

References

1]

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press, New York and London,

1973.

C. Cordell Green. Theorem-proving by resolution as a basis for question-
answering systems. In Bernard Meltzer and Donald Michie, editors,
Machine Intelligence 4, pages 183-205. American Elsevier Publishing
Company, Inc., 1969.

Donald Loveland. Automated Theorem Proving: A Logical Basis. North
Holland, Amsterdam, 1978.

28

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Jack Minker and Arcot Rajasekar. A fixpoint semantics for disjunctive
logic programs. The Journal of Logic Programming, 9(1):45-74, July
1990.

Francis Jeffry Pelletier. Seventy-five problems for testing automated
theorem provers. Journal of Automated Reasoning, 2:191-216, 1986.

D. Plaisted. A sequent-style model elimination strategy and a positive
refinement. Journal of Automated Reasoning, 6:389-402, 1990.

Rolf Socher-Ambrosius. How to avoid the derivation of redundant
clauses in reasoning systems. Journal of Automated Reasoning, 9:77—

97, 1992.

Bruce Spencer. Avoiding duplicate proofs. In Saumya K. Debray and
Manuel Hermenegildo, editors, Proceedings of the North American Con-
ference on Logic Programming, pages 569-584. MIT Press, 1990.

Bruce Spencer. Linear resolution with ordered clauses. In Proceedings
of the Workshop on Disjunctive Logic Programming at the International
Symposium of Logic Programming, 1991. SanDiego, California.

Mark E. Stickel. A prolog technology theorem prover. Journal of Auto-
mated Reasoning, 4:353-380, 1989.

Larry Wos. Automated Reasoning : 33 Basic Research Problems.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

29

Contents

1

2

Introduction

Background: The MESON Proof Format
2.1 Negated Ancestor Proof Graphs
2.2 First Order Proofs

Foothold Proof Graphs

3.1 Propositional Foothold Format
3.2 First Order Foothold Proofs
3.3 Restricting other Types of Proofs

Evaluation

4.1 How easily can foothold proofs be computed?
4.2 When should the foothold format be used?
4.3 How many proofs are avoided?
4.4 Why is so much time saved?o
4.5 How much timeissaved?

Conclusion
Acknowledgements

Proofs

B Computing Foothold Proofs in Prolog

30

13
13
13
15
16
17

20

20

20

27

