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Abstract. A given binary resolution proof, represented as a binary tree, is said
to be minimal if the resolutions cannot be reordered to generate an irregular proof.
Minimality extends Tseitin’s regularity restriction and still retains completeness. A
linear time algorithm is introduced to decide whether a given proof is minimal. This
algorithm can be used by a deduction system that avoids redundancy by retaining
only minimal proofs, and thus lessens its reliance on subsumption, a more general
but more expensive technique.

Any irregular binary resolution tree is made strictly smaller by an operation
called Surgery, which runs in time linear in the size of the tree. After surgery the
result proved by the new tree is non-strictly more general than the original result,
and has fewer violations of the regular restriction. Furthermore any non-minimal
tree can be made irregular in linear time by an operation called Splay. Thus a
combination of splaying and surgery efficiently reduces a non-minimal tree to a
minimal one.

Finally, a close correspondence between clause trees, recently introduced by the
authors, and binary resolution trees is established. In that sense this work provides
the first linear time algorithms that detect minimality and perform surgery on clause
trees.

1. Introduction

The regular restriction [15] of binary resolution states that a resolution
step resolving on a given literal should not be used to deduce a clause
containing that literal. In other words, that resolution step should not
be an ancestor of such a clause in the binary derivation tree. We ex-
tend this restriction so that it applies also when a reordering of the
resolutions brings such a clause below that step. We use rotations of
edges in the binary tree to reorder the resolution steps, and require
that the rotations neither weaken what is proved nor increase the size
of the tree. If a binary resolution proof cannot be made irregular by
such rotations, we call it minimal.

This extension of regularity depends on sequences of rotations, and
thus appears to be expensive to compute. However we characterize it
with a condition that can be checked efficiently by examining the static
tree. The condition is stated in terms of history paths in the binary
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resolution tree. Each history path tells the story of a given literal. The
tail of the history path is a leaf of the tree and it tells where the literal
was introduced in an input clause. The history path is said to close
at the node where its literal is resolved away. When one history path
closes at a node that occurs in another history path, and the two paths
are disjoint, we say the first history path directly precedes the other.
The precedes relation on history paths is the reflexive transitive closure
of directly precedes. See Section 2 for examples of these definitions.
History paths and the precedes relation are basic in our understanding
of how binary resolution trees behave when rotations are performed. We
provide simple conditions on history paths that characterize when one
node can be rotated below another (we say it is visible from the other)
and when one node cannot be rotated from below another (we then say
it supports the other.) By examining the history paths in a static tree,
we can decide much about what can and cannot be accomplished by
sequences of rotations.

In particular, we can say whether rotations can convert a regular
tree to an irregular one. A theorem prover can use this ability to
screen the proofs it builds, and retain only the minimal ones. Since
every clause with a non-minimal proof is subsumed by some clause
with a minimal proof, this theorem prover uses minimality to lessen its
reliance on subsumption. The running time of full subsumption grows
with the number of retained clauses, which may become very large,
while detecting minimality depends linearly on the size of each proof
tree, which is typically much smaller.

Instead of using minimality simply as a filter, a theorem prover can
convert a non-minimal proof to a minimal one, using operations defined
in this paper. Consider the branch of an irregular derivation tree that
makes it irregular. This branch contains the node where some given
literal is resolved and, further down, contains a clause in which that
literal occurs for a second time. Why resolve the literal away, only to
have it reappear later? We can remove the resolution, and reconstruct
the branch as closely as possible to the original, with this literal ap-
pearing additionally in some of the clauses. If the second occurrence
of the literal is resolved away in the original tree, then we resolve
both occurrences away in the constructed tree. The constructed tree
is smaller and the result it proves is at least as general as the original
one. We call this operation Surgery, and define a second operation,
Splay, which rearranges a non-minimal tree so that it is irregular. Both
operations run in time linear in the size of the tree. A combination of
both operations will eventually reduce any non-minimal tree to some
non-unique minimal one.



The first section below presents the regular restriction on binary
resolution trees. In that section we introduce the surgery operation for
irregular binary resolution trees. Then minimal binary resolution trees
are introduced. This section also discusses rotations and the set of rota-
tion equivalent trees, which is all of the trees that can be generated from
a given tree by a sequence of these rotations. In the following section, we
discuss the “precedes” relation of history paths, and use that to define
the “holds” relation on nodes. We then relate holds and visibility by
showing that if the nearest common descendant of two given nodes
holds one of them, then that one is not seen by the other, i.e. it cannot
be rotated below the other. Based on this condition, we give an efficient
algorithm for deciding visibility. We show how a theorem prover can
be restricted to retain only minimal proofs and disregard non-minimal
ones, decreasing the number of proofs that must be considered. Then
we show the splay operation for efficiently converting a non-minimal
proof into an irregular one, so that surgery can further convert it to a
minimal one. Thus another theorem prover can efficiently convert its
non-minimal results to minimal ones if desired. In the next section we
use history paths to characterize support: the condition where one node
in a binary resolution tree must be a descendant of another after any
sequence of rotations.

Both minimality and surgery were first developed for clause trees [5].
The clause tree is a tool for developing ideas in automated reasoning,
and the binary resolution tree is an efficient, compact data structure
to implement clause trees. In the second last section we show the close
relationship between binary resolution trees and clause trees. Thus, this
paper provides the first efficient algorithm for surgery in clause trees.
We close with some remarks on the relation between clause trees and
binary resolution trees, and related work.

This paper is an extension of [14].

2. Binary Resolution Trees

We use standard definitions [2] for atom, literal, substitution, unifier
and most general unifier. In the following a clause is an unordered
disjunction of literals. We do not use set notation because we do not
want multiple occurrences of a literal to collapse to a single literal
automatically. Thus our clauses can be viewed as multisets. An atom
a occurs in a clause C if either @ or —a is one of the disjuncts of the
clause. The clause C' subsumes the clause D if there exists a substitution
6 such that C8 C D (as sets, not as multisets). A variable renaming
substitution is one in which every replacement of a variable maps to



another variable, and no two variables map to the same variable. Two
clauses C and D are equal up to variable renaming if there exists a
variable renaming substitution @ such that C6 = D (as multisets).
Two clauses are standardized apart if no variable occurs in both. Given
two parent clauses C1 Va1 V...Va, and CyV—by V...V -b, which are
standardized apart (a variable renaming substitution may be required)
their resolvent is the clause (C}V ()8 where 6 is a most general unifier
of {ay,...,am,b1,...,b,}. The atom resolved upon is a16, and the set
of resolved literals is {ay, ..., @m, b1, ..., —by,}.

It is convenient to define a mapping p of literals for the resolution
operation. This is used later to define history paths.

DEFINITION 1. (Resolution mapping). For each resolution operation
we define the resolution mapping p from each occurrence of a literal c
in each parent clause either to the atom resolved upon if ¢ is a resolved
literal, or otherwise to the occurrence of cf in the resolvent.

Our presentation follows Robinson’s definition of resolution [12],
which does not use factoring as a separate operation on a clause. Factor-
ing consists of applying a substitution that unifies two of its literals with
the same sign and then removing one of these literals. This operation
is not needed in binary resolution trees, since if a clause contains two
identical or unifiable literals, both can be resolved upon whenever the
clause is used in a resolution. By allowing several literals to be resolved
on, instead of merging them before the resolution, we have just one
type of internal node in our binary resolution tree, instead of two. (De
Nivelle uses resolution nodes and factorization nodes [3].) Moreover, an
implementation is free to merge or factor literals if desired. Factoring
may be seen as an optimization if the factored clause can be used in
several resolution steps, since the factoring is done only once.

A binary resolution derivation is commonly represented by a binary
tree, drawn with its root at the bottom. Each edge joins a parent node,
drawn above the edge, to a child node, drawn below it. The ancestors
(descendants) of a node are defined by the reflexive, transitive closure of
the parent (child) relation. The proper ancestors (proper descendants)
of a node are those ancestors (descendants) not equal to the node itself.
If T"and H are nodes in a tree then path(T, H) is the unique path from
T to H. Here, T is called the tail and H the head.

DEFINITION 2. A binary resolution tree on a set S of input clauses
is a labeled binary tree. Fach node N in the tree is labeled by a clause
label, denoted cl(N). Each node either has two parents and then its
clause label is the result of a resolution operation on the clause labels of
the parents, or has no parents and is labeled by an instance of an input
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Figure 1. An irregular binary resolution tree.

clause from S. In the case of a resolution, the atom resolved upon is
used as another label of the node: the atom label, denoted al(N). Any
substitution generated by resolution is applied to all labels of the tree.
The clause label of the root of the binary resolution tree is called the
result of the tree, result(T). A binary resolution tree is closed if its
result is the empty clause, O.

For the binary resolution tree in Figure 1, S = {aVd,—~aVbV—e,cV
—d,eV fVg,aVbV—ec,=h,—aV h,—b,—g}. The labels of a node N are
displayed beside the name of the node and separated by a colon, e.g.
the node N4 has atom label ¢, and clause label a VbV bV fV g. The
order between the parents of a node is not defined.

If instead of labelling the internal nodes by atoms, one labels each
edge with the complement of the literal resolved upon, a binary resolu-
tion tree would become an upside down semantic tree, and the leaves of
the binary resolution tree would become failure nodes of the semantic
tree.
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Figure 2. Surgery on Figure 1.

Using the resolution mapping p for each resolution operation in the
tree, we can trace what happens to a literal from its occurrence in the
clause label of some leaf, down through the tree until it is resolved
away. Clearly if all literals are eventually mapped to the atom label
of some internal node, the clause label of the root is empty. In this
case by soundness of resolution, the clause labels of the leaves form an
unsatisfiable set. Thus we are primarily concerned about tracing the
“history” of a literal starting from its appearance in a leaf.

DEFINITION 3. (History Path). Let the nodes (Ny,..., N,) occur in
a binary resolution tree T such that Ny is a leaf whose clause label
contains a literal a, and for each 1 = 1,...,n, N;_1 is a parent of N;.
Let p; be the resolution mapping from the parents of N; to N;. Also let
pi...p2p1a occur in cl(N;), so that a is not resolved away at any Nj.
Suppose Ny, either is the root of T, or has a child N such that p,, ...p1a
is mapped by the resolution at N to the atom resolved upon at N. Then
P = (Ny,...,N,) is a history path for a. The history path is said to
close at N if N exists. The node N, is the head, the leaf Ny is the
tail and a is the literal of P, written head(P),tail(P) and literal(P),
respectively.

For example in Figure 1, (M, Ng, N3) is a history path for ¢ which
closes at N4. The two history paths for b in Figure 1, corresponding to
the two occurrences of b, are (M3, N4, N5) and (My, N1, Na, N3, N4, N5).
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Both of these close at Ng. The only history path that does not close is
the one for f, which is (May, N3, N4, N5, Ng, N7).

DEFINITION 4. (Regular). A binary resolution tree T is regular if
there does not exist a node N of T and a descendant M of N, such
that al(N) occurs in cl(M).

The tree in Figure 1 is irregular because al(N7) is ¢ and a occurs
in ¢l(Ny). Irregular trees are never necessary. Why resolve away the
a twice? One could choose to leave out the resolution at Ny, leaving
the a in the clause, do the other resolutions as necessary (not all will
be necessary) and later resolve a away, as was done at N5. Operation
Surgery makes this idea more formal.

A new binary resolution tree 7" is constructed from 7" in which M,
and all of its ancestors, and possibly other M; are removed. However
all leaves of 1" are also leaves of 7. Thus every history path in 7’
has a corresponding history path in T. The converse cannot be true,
since the history paths of T' through My do not exist in 7. A new
sequence (N7, N5, ... N}) is defined in which either N/ = N/_,, (i.e.,
M; is removed) or N/ corresponds to N; in T.

OPERATION 1. (Surgery on irregular trees). LetT be an irreqular bi-
nary resolution tree with a = al(Ny), (N1, Ny, ..., N,,) being the path
of nodes from Ny to the root Ny, and with N;, 1 < j < n, being the
first node in this path whose clause label contains a. Let N;_1 and M;_q
be the parents of N; fori=1,...,n. Let Ny and My be the parents of
Ny, so that a occurs in the clause label of Ny with the same sign as in

cl(Nj).

procedure Surgery (7, Ny)
Let N{ = Ny and let all ancestors of Ny be in T”. (Mp and all of its
ancestors are removed.) Let N be the node at which some history
path P, for a in Nj closes, if k exists.
for:=2,...,ndo
if there is a history path in 7" containing N/_, for which the corre-
sponding history path in T closes at N; then
Put M,;_; and all its ancestors into T”.
Define N/ as a new node in 7’ which is the child of N/_, and
M;_q.
Let the resolution at N/ be defined so that the history paths of
T! that close at N/ correspond to history paths of 7" that close at
N;.
if i = k, then



Let the history path corresponding to P, also close at N;. (That
is, the same literals as far as possible are resolved at N/ as at
N; with one possible addition.)
endif
else
There is no history path containing N/_; which corresponds to a
path that closes at NV;.
Let N/ = N!_,. (M;_; and all of its ancestors are removed.)
endif
endfor

Note that if the occurrence of @ in NV; is never resolved away, i.e. its
history path continues to the root, then the two literals corresponding
to @ may occur in the root of 7”. However, they are both at least as
general as a.

Figure 2 shows the effect of surgery on Figure 1. Surgery is performed
at Ny, using Ny as Nj and k = 5. My, My and Mg are not needed in 7T".
By insisting that both occurrences of a are closed at the same node,
we ensure that T’ does not have a in its result when T does not. Thus
N{ closes both history paths for a from N{ and Ms.

THEOREM 1. LetT be an irreqgular binary resolution tree on a set S
of clauses and let T' be constructed by Operation Surgery on T. Then
T is also a binary resolution tree on S, T' is smaller than T and the
result of T' subsumes the result of T.

Proof. We use the following lemma: If clauses C'; and C resolve to give
Rq, and if clause 'y subsumes (7 then either the resolution of Cy and
(' is not possible and Cy subsumes Ry, or it is possible and its result,
Ry, subsumes R;. This assumes that all literals from C' resolved in the
first resolution are also resolved in the second, and furthermore that
literals from C'y are resolved in the second resolution if they correspond
(in the subsumption) to literals from C resolved in the first resolution.

Each leaf in 7’ has the same label as a leaf in T and therefore T’
is defined on S. Also, each internal node is defined by a resolution of
its parents, so T is a binary resolution tree. Note that c/(N{) = ¢l(No)
subsumes c/(N7) V a because ¢/(Ny) contains all the literals in ¢l(No)
except possibly a. Using repeated applications of the lemma, it follows
that c/(N;) subsumes ¢/(N;) Va for i =2,...,n. Also c/(N}) subsumes
cl(N;) since a occurs in ¢l(N;). Then ¢l(N]) subsumes cl(N;) for ¢ =
j+1,...,n,so the result of 7" subsumes that of 7. Since My is not in
T’ and since all other nodes in T’ are taken at most once from T, it
follows that 7’ has fewer nodes than 7. O
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Figure 3. A binary tree rotation

THEOREM 2. (Completeness [15]). If S is unsatisfiable there exists
a closed regular binary resolution tree on S. Furthermore the smallest
closed binary resolution tree is reqular.

Proof. If S is unsatisfiable, there exists a closed binary resolution tree
[12]. If it is irregular, apply Operation Surgery repeatedly until it is
regular. This process must terminate since the tree is smaller at each
step.

If the smallest closed binary resolution tree is not regular, surgery
can be applied to it, making a smaller closed tree. O

3. Minimal Binary Resolution Trees

A rotation of an edge in a binary tree is a common operation in
computer science, for example with AVL trees [1]. Before we apply
it to binary resolution trees, we review the operation on binary trees.
Given the binary tree fragment on the left of Figure 3, a rotation is
the reassignment of edges so that the tree on the right of Figure 3 is
produced. The parent C of E becomes the child of F and the parent B
of C' becomes the parent of F. If E has a child in T, then C' takes that
child in 7”. In other words, the edges (B,C), (C,FE) and (E, F) if F
exists, are replaced by the edges (B, F), (F,C) and (C, F) if necessary.

OPERATION 2. (Edge Rotation). Let T be a binary resolution tree
with an edge (C, F) between internal nodes such that C' is the parent
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of E and C has two parents A and B. Further, suppose that no history
path through A closes at E. Then the result of a rotation on this edge
is the binary resolution tree T' defined by resolving cl(B) and cl(D) on
al(E) giving cl(E) in T’ and then resolving cl(E) with cl(A) on al(C')
giving cl(C) in T'. Any history path closed at C' in T is closed at C in
T'; similarly any history path closed at E in T is closed at E in T'.
Also, the child of E in T, if it exists, is the child of C' in T".

A rotation may introduce tautologies to clause labels of internal
nodes. For instance, if al(C') occurs in ¢/(D) in T, then ¢/(E) in T’ may
be tautological. However the clause label of the root is not changed up
to variable renaming (Corollary 4). We prove a slightly more general
result first, which is also used later.

DEFINITION 5. Let Ty and Ty be two binary resolution trees defined
on the same set of input clauses. Then Ty and Ty resolve input literals
similarly if there is a one-to-one and onto mapping v from nodes in Ty
to those in Ty, such that:

1. If N is a leaf then v(N) is a leaf and both are labeled with the
same instance (up to variable renaming) of an input clause. Thus
there is a natural one to one correspondence, from literals in cl(N)
to those in cl(v(N)). Moreover this mapping of literals provides a
mapping from history paths in T1 to those in Ty, defined so that
they start from the same literal in the input clause, up to variable
renaming. We represent these other two mappings also with v. We
require for all history paths P in Ty that tail(v(P)) = v(tail(P))
and literal(v(P)) = literal(P) up to variable renaming.

2. For every history path P of Ty, P closes at a node N if and only
if v(P) closes at v(N).

Thus two binary resolution trees resolve input literals similarly if
they resolve the same input literals against each other, albeit in a
possibly different order.

LEMMA 3. If two binary resolution trees Ty and Ty resolve input
literals similarly, the result of T1 and the result of Ty are the same,
up to variable renaming.

Proof. Note that result(Ty) and result(Ty) are composed entirely of
literals from history paths that do not close, and since the same history
paths are closed in each, the same literals are not resolved away. Also
the composition of mgus in T} and that in 75 are unique up to variable
renaming, since given a node IV, the same literals are unified at N and
v(N), up to variable renaming. O
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Figure 4. From Figure 1 rotate (N4, N5), then (M, N5)

COROLLARY 4. Given a binary resolution tree T with an internal
node C' and its child E, Operation Edge Rotation generates a new

binary resolution tree and cl(C') = cl(E) up to variable renaming.

Proof. Observe that Operation Fdge Rotation produces a tree which

resolves input literals similarly. O

A rotation changes the order of two resolutions in the tree. Rotations
are invertible; after a rotation, no history path through D closes at
C', so another rotation at (F,C) can be done, which generates the
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original tree again. We say that two binary resolution trees are rotation
equivalent if one can be generated from the other by a sequence of
rotations. For instance, the first binary resolution tree in Figure 4 is
produced by rotating the edge (N4, N5) in Figure 1. The second tree
in Figure 4 is then produced by rotating the edge (M4, N5). Thus both
trees are rotation equivalent to Figure 1. Rotation equivalent is an
equivalence relation. It is not surprising that rotation equivalent binary
resolution trees must resolve input literals similarly, but the converse
is true as well.

THEOREM 5. Two binary resolution trees Ty and Ty are rotation
equivalent if and only if they resolve input literals similarly.

Proof. (<) Since one rotation of 7} creates a binary resolution tree
that resolves input literals similarly to it, so too does the sequence of
rotations creating T5.

(=) The converse is proved by induction on the number of internal
nodes. Suppose Ty and Ty resolve input literals similarly. Then they
must have the same number n of internal nodes since they have the
same number of leaves. If n = 0 or n = 1 then no rotation is possible
and the theorem holds. Let N be a node in 717 with parents L; and
Ly that are leaves. Then in Ty, v(N) has proper ancestors v(L1) and
v(Ly) which also are leaves, and v(N) closes only history paths with
tails ¥(L;) and v(Lg). We create T, by rotating edges of Ty so that
v(L1) and v(Ly) become parents of v(N), if this is not already the
case. Let C' be either parent of ¥(N) and let A and B be the parents
of C. If v(Ly) and v(Lg) are both ancestors of C' then neither is an
ancestor of the other parent of v(N). But v(N) must close a history
path from that other parent, contradiction. Thus the edge (C,v(N))
can be rotated, since not both A and B contain a history path closing
at v(N). This rotation reduces the total number of non-leaf ancestors
of v(N). After a finite number of such rotations, both parents of v(N)
are leaves. Call this tree T3.

Let T7 be Ty with leaves L; and Ly deleted, and let T be T3 with
leaves v(L1) and v(Lg) deleted. Then T§ and T resolve input literals
similarly since T and T3 resolve input literals similarly. By induction
Ty and Ty are rotation equivalent. The sequence of rotations to convert
Tt to Ty will also convert Ty to T3 which is rotation equivalent to 7%.
a

We focus on the set of rotation equivalent trees that do not contain
an irregular binary resolution tree. Any tree in this set is said to be
minimal, since surgery cannot be applied to make it smaller.

DEFINITION 6. A binary resolution tree T is minimal if no sequence
of rotations of edges generates a tree T’ that is irreqular.
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THEOREM 6. If a binary resolution tree T’ on S is non-minimal, there
exists a minimal binary resolution tree T' on S which is smaller than
T and the result of T' subsumes the result of T'.

Proof. If T is not minimal, apply edge rotations and surgery operations
so that a regular tree is produced. If this tree is minimal then let 7’
be this tree. Otherwise repeat from the beginning until 7’ is defined.
This process must terminate because the tree is getting smaller at each
application of Operation Surgery. Also the old result is subsumed by
the new result at each step. O

4. Checking Minimality

Determining whether a given binary resolution tree is minimal seems
to be labourious, since the straightforward application of the definition,
as is done in the proof of Theorem 6, checks every possible sequence of
rotations, and there can be exponentially many. In this section we give
an efficient algorithm for determining visibility — which nodes can be
rotated below which — so deciding minimality is efficient.

DEFINITION 7. (Visible). In a given binary resolution tree with in-
ternal nodes N and M, we say that M is visible from N, and that
N can see M, if there exists a sequence of rotations such that M is a
descendant of N. Otherwise M is invisible from N.

Thus a node can see the nodes that can be rotated below it. Although
this is a property defined in terms of rotations, it is possible to inspect a
static tree, without doing any rotations, to determine visibility. Because
of this, visibility can be computed in linear time. That static property,
holds, is defined after one more concept, precedes.

DEFINITION 8. (Precedes). A history path P directly precedes a his-
tory path Q if P and Q have no nodes in common, and P closes at some
node in Q. We write P < Q). Moreover we say P precedes @), and write
P <* Q if there is a sequence of history paths (Py, ..., Px) with P = P,
and Q@ = Py and P; directly precedes Py fori=1,...,k—1. A history
path P precedes a node N if N closes some history path QQ and P <* Q).

The precedes relation on history paths is the reflexive and transitive
closure of directly precedes. In particular a history path precedes itself,
even though it does not directly precede itself. Also note that precedes
defines a partial order on the set of history paths.

In most cases a rotation does not change the precedes relation on
history paths.

13



LEMMA 7. Let the history path P precede the history path @ in the
binary resolution tree T and let P',Q" and T’ be the images of P,Q
and T respectively after a rotation of the edge (C,E) in T as in the

definition of edge rotation. Further suppose that in T the head of Q) is
not C. Then P' precedes Q' in T'.

Proof. If the tail of P is not an ancestor of F then the rotation cannot
affect whether P’ <* @'. Assume that tail(P) is an ancestor of F. Let
T4, T and Tp be the subtrees of T rooted at A, B and D respectively.
If the node at which P closes and head(Q) are in the same one of
these subtrees, again the rotation has no effect on whether P’ <* @Q'.
Assume that they are not in the same subtree. We know that head(Q)
is a descendant of the node at which P closes, so head(Q) cannot be in
any of the subtrees T4, Tg or Tp. Also head(Q) is not C so head(Q)
must be a (non-strict) descendant of F.

Now if tail(P) and tail(Q) are in the same subtree T4, Tg or Tp,
then the rotation does not affect P’ <* ' because the node of @ that
P precedes is also in that subtree.

Assume that tail(P) and tail(Q) are not in the same subtree T4, Ts
or Tp. Let P be the path closing at the node of @) that P precedes.
Thus P <* P; < Q. We have these cases, which are illustrated in
Figure 5.

1. tail(Q) is in Tx. If tail(P) is in Tg then P closes at C'. After the
rotation, P[, which is one node longer, closes at C'in 77. P" <*
Pl <Q".

Otherwise tail(P) isin Tp. Let Py denote a path through B closing
at C'. After the rotation P’ <* P| < P < Q.

2. tail(Q) is in Tg. If tail(P) is in T4, then after the rotation P’ <*
Pl < Q.
Otherwise if tail(P) is in Tp then after the rotation, P’ <* P| < Q’.

3. tail(Q) is in Tp. Since no path through A closes at F, we know
tail(P) is not in T4. Thus tail(P) is in Tg. After the rotation,
P <* P <Q".

4. tail(Q) is not an ancestor of F. In T, there is a path R such that
P < R <Q and Fis on R. By the cases above P’ < R in T". Also
R’ < Q' in T’ since the precedes relation of paths that close below
FE are not affected by the rotation.O

14



of Lemma 7

Figure 5. Cases
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DEFINITION 9. (Hold). Two history paths Py and @y directly hold
an internal node M of a binary resolution tree if M is the first node
that occurs on both Py and Q, (i.e. neither parent of M occurs on
both.) We say that history paths P and @ hold M if there exist history
paths Py and Q1 such that Py <* P,Q1 <* Q while P, and Q1 directly
hold M. A node N holds M if P and Q hold M and both P and Q)
close at N. Also, if P and Q hold M and are in a set of history paths,
we say that the set holds M.

The following theorem relates “invisible”, a property that depends
on all rotation equivalent trees, to “holds”, a property that can be
checked by examining just the one tree of interest. Consider the second
tree of Figure 4. In this tree N5 is visible from N4, and hence also from
Njp. This can be seen by undoing the rotations performed, resulting in
Figure 1, where N5 is a descendant of N4. This can also be observed
directly, without undoing the rotations, by noting that N4 does not
hold Nj in the second tree of Figure 4. The history paths above My are
shown in the first part of Figure 6. No path from Ly precedes Ny.

When Njy is rotated below Ny it becomes a descendant of N; also,
and this brings about an opportunity for surgery to be applied.

Now if —¢ had occurred at Ly, and was resolved away at N4, then
a new history path would exist from Ly to M4. Then N5 would be
directly held by N4 via the two paths for —¢, as shown in the second
part of Figure 6. If —¢ were instead added to Ly, then a new history
path from L; to My would exist and N5 would be directly held by the
path for A and a path for —c. N5 would be held by both paths for —¢
closing at Ny, since the path for & directly precedes the new path for
=c. This is shown in the third part of Figure 6. In both the second and
third trees N5 is not visible from Ny.

THEOREM 8. In a binary resolution tree, the nearest common de-
scendant of two internal nodes M and N holds M if and only if M is
invisible from N .

Proof. (=) We show that if the nearest common descendant of M and
N holds M, then after a rotation, the (possibly new) nearest common
descendant of M and N holds M. Thus M can never be a descendant of
N, for if it were then the nearest common descendant would be M and
a node cannot hold itself. Cases in the proof of the forward direction
are shown in Figure 7.

Let F be the nearest common descendant of N and M, let the
rotated edge be (C, F), and let nodes A, B and D adjacent to it be as
defined in Operation Fdge Rotation. Let P and @ hold M and close at
F, while P; and @ directly hold M, and P, <* P and @1 <* Q.

16
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Figure 6. N4y does not hold N5 in the first tree, but does in the others.

In Cases 0 and 1, suppose F' # F| so that after the rotation I is
still the nearest common descendant of M and N. Then C is not the
head of P or Q. By Lemma 7, P| <* P' and Q) <* Q'. Suppose (Case
0) M # E. Then after the rotation, M is still the first common node
on P| and Q}, so F still holds M.

Now suppose (Case 1) that M = FE. Without loss of generality
assume that Py contains C' and @ contains D. If (Case 1a) P; contains
B then after the rotation, P{ and @ still hold F, so F holds M. If (Case
1b) P; contains A then consider the path R containing B and closing
at C'. After the rotation, R’ < P <* P’, so that R’ and @} hold F, so
again F’ holds M.

For Cases 2 and 3, suppose that I’ = E. If (Case 2) M is an ancestor
of C' then N is either F or an ancestor of D. Since no history path can
contain A and C' and close at F/, M # C. For the same reason, P and @
contain B and close at E. If (Case 2a) M is an ancestor of A then the
paths that directly precede P and @ close at C' and hold M. Thus C
holds M. After the rotation the nearest common descendant of M and
N is C', and C still holds M. Otherwise (Case 2b) if M is an ancestor
of B then after the rotation the nearest common descendant of M and
N is F and F still holds M.

Finally consider the case (Case 3) where M is an ancestor of D. If
(Case 3a) N is either F or an ancestor of B then after the rotation, F
still holds M and is still the nearest common descendant of N and M.
If (Case 3b) N is C or is an ancestor of A, then consider path R with
head at B which closes at C. After the rotation, the nearest common
descendant of M and N is C, while R’ directly precedes both P’ and
Q'. Thus C holds M after the rotation.

17
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(<) Conversely, suppose that M is not held by the nearest common
descendant F of M and N. We generate a sequence of rotations so
that M is a descendant of N. If ¥ = M then M is a descendant of
N and therefore visible from N. If F’ is the child of M then the edge
(M, F) can be rotated because M is not held by F'. This rotation makes
M a descendant of F' and therefore of N. Now suppose I is a proper
descedant of the child of M. There exists a path (Hy, Hy, ..., H,) for
n > 1 where ' = H,, M = Hp, so that H;,_; and K;_q are the
parents of H;, for i = 1,...,n. We use induction on n. Without loss of
generality Ky is chosen so that al(H3) occurs in ¢/(Ky); thus a history
path through Ky closes at Hj. If there exists 7 in {2,...,n} such that
no history path through H;_ closes at H; then the edge (H;_1, H;) can
be rotated, shown as Rotation 1 in Figure 8. We say that H; has been
rotated to the side of the path(M, F'), and so M is now closer to F' and
the theorem holds by induction.

Thus for each ¢ in {2,...,n}, some history path through H;_s closes
at H;. If there is no j in {1,...,n} such that H; is held by F then
in particular H,,_; is not held so the edge (H,—1, H,) can be rotated,
rotating N,_; off the bottom of the path. This is shown in Figure 8
as Rotation 2. But then the distance from M to the nearest common
descendant of M and N is n — 1 edges, and the theorem holds by
induction. Choose the smallest j in {1,...,n} so that H; is held by
F. Note that j # 1 by assumption. If there is a history path through
K;_o closing at H; then this path and the path through H;_s closing
at H; directly hold H;_i. Thus H,_; is held by F’, contradicting the
definition of j. Therefore no such path through K;_, exists and the
edge (H;_1, H;) can be rotated as illustrated in Rotation 3 of Figure 8.
If 7 = 2 then Hj is closer to I’ after the rotation; we say that H; has
been rotated off the top of the path(M, F), and the theorem holds by
induction. Otherwise consider the history paths through H;_, closing
at H;. If one of these includes H;_3 and another includes K;_3 then
H;_, is held by I after the rotation. This means that H;_, was held by
I before the rotation, contradicting the definition of j. Thus the edge
(Hj_9,H;_1) can be rotated. The result of this rotation is that H; will
be rotated either to the side of the path(M, F), or closer to M. By a
second induction on the distance from M to H;, H; will eventually be
rotated off the top or to the side. Thus the distance from M to F will
decrease by the constructed sequence of rotations. O

The sequence of rotations, constructed in the proof of the converse
direction of Theorem 8 rotates the visible node M to below the node
N that can see it. Thus if the tree were regular but non-minimal,
the rotations would make it irregular, exposing the non-minimal parts.

19



Rotation 1: to the side

Hi, \ /Kiz Kio \ /Kil
]{i—l \ /K-J—I ]{i—Z \ /]{l
F F
Rotation 2: off the bottom
Kn—2 Hn-2 Hn-2 1

Rotation 3: off the top

H;, Ki» sz\ /Kjl
Hj. \ /Kj_l K2 \ /HJ
Hy, Hy
F F

Figure 8. Rotations in the proof of Theorem 8
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Using surgery, we can remove all non-minimal sections of a tree, and
reconstruct a minimal tree from the pieces left behind.

As an example, consider the second tree of IFigure 4, where Nj
is visible from N;. We generate the sequence of rotations to bring
N5 below Ni. The common descendant is N4. The path of H’s is
(M3, N5, M4, Ng). The first step of the construction in the converse
proof above, to show the visibility, is to rotate edge (N5, My), as no
path through Ms closes at My. This rotates My to the side, to give
the top tree of Figure 4. Now the path of H’s is (My, N5, N4). Since
no path through My closes at Ny, Ny can be rotated to the side by
rotating edge (N5, Ng). N5 is now a descendant of Ny as in Figure 1.

Unfortunately the number of rotations required to expose a non-
minimality may be quadratic in the length of the path in the tree.
Since the trees are not balanced, this is quadratic in the size of the tree
in the worst case. Later we give a linear time operation, called Splay,
to bring a visible node to a descendant. In the next section, however,
we detect and avoid non-minimal trees.

5. Minimality as a restriction

Now we turn our attention to a theorem prover that keeps only minimal
binary resolution trees. Since every non-minimal tree is subsumed by
some minimal tree, this strategy uses the minimal criteria to reduce
redundancy, lessening reliance on subsumption.

DEFINITION 10. Let T be a binary resolution tree. Then atoms(T) =
{al(N)|N is a node of T} is called the set of atoms of T. A subbrt of
T is a binary resolution tree whose node set consists of a node of T
called the root of the subbrt, and all of its ancestors. For a subbrt T' of
T, Vis(T') = {al(N)|N is a node of T" and visible from the root of T'}

is called the set of visible atoms of T”.

THEOREM 9. Let a binary resolution tree T consist of a root node R
and two subbrt’s Ty and Ty. T is minimal if and only if

1. T and Ty are minimal,
2. no atom in cl(R) is in atoms(T),
3. atoms(T1) N Vis(Ty) = ¢, and

4. atoms(Ty) NVis(T1) = ¢.
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Proof. Assume that T is minimal. If 77 or Ty were not minimal, then
there would be a sequence of edge rotations which would make the
subbrt irregular. The same sequence performed on T would make T
irregular as well. Hence the first condition is true. If the second con-
dition were false, then T" would be irregular immediately. Assume that
the third condition is false. Then there are two nodes, N € T; and
M € T, whose atom labels are the same, and M is visible from R. Also
M can be rotated below R, without rotating any edges in T3. Now
M is a descendant of N, making T irregular, because the parent of
M between N and M must have al/(/N) in its clause label. The fourth
condition is symmetric to the third.

Conversely, assume that T is not minimal. Then there is a sequence
of rotations that create an irregular tree 7. Some node N has a descen-
dant My in T” such that al/(N) occurs in ¢/(Mj). Since the rotations do
not change cl(R),if al(N) occurs in the result of 77, it occurs in ¢/(R) in
T and then T violates the second condition. Thus a/(/N) does not occur
in c/(R) so there is a descendant M of N in 7" such that al(N) = al(M).
Back in T', M is visible from N. Hence in T by Theorem 8, the nearest
common descendant of M and N, call it F’, does not hold M. If M and
N are in the same T; then [ is also in T; and does not hold M. Thus
M is visible from N in T;. Then T; is not minimal and violates the first
condition.

Assume M and N are in different T;. Since M has been rotated
below N, M is visible from N in T, and by Theorem 8 M is not held
by the nearest common descendant R of M and N. Thus M is visible
from R. Therefore al(M) is in Vis(T;) while al(N) is in atoms(T3_;).
This violates condition 3 or 4. O

Any theorem prover based on binary resolution that keeps only
minimal trees has already satisfied the first condition in Theorem 9 for
any newly constructed tree, since only minimal trees are used in the
construction. It is easy to check that the new result does not contain
an atom in atoms(7T). What is left is to find is an easy way to calculate
those atoms in each subbrt 7; which are visible from the root of T.

Vis(N,Pn) returns the atoms labels of nodes at and above node N
in T visible from the root on T', where Py is the paths through N that
precede the root. The idea in procedure Visis that a node is visible in
from the root if and only if it is not held by the root, by Theorem 8. So
for each node NV we need to calculate the history paths going through
it that precede the root. If some of these paths go through one parent
of N, and some go through the other, then N is held by the root;
otherwise N is visible from the root.

In each procedure call Vis(N,Py), the first argument N is a node
in the tree and we want to know whether or not it is held by the root.
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Initially it is one of the parents of the root, but as we traverse upward
it becomes instantiated with each ancestor of this parent. The invariant
we maintain is that the second argument, Py, is the set of paths that
include N and precede the root. The paths through the parent of the
root that precede the root are simply those whose heads are that parent,
so the invariant is easy to establish in the first place. Suppose N has
parents A and B. To calculate the paths Pg through B that precede
the root, we start with Py, and remove those paths that go through A
if there are any. If there are none then Ppg is Py. If there is some path
in Py through A, we need to add to Pp any path with head at B, since
these paths precede that path through A, and thus precede the root.

Since we know that the paths in Px must go through at least one
of the parents of NV, we assume that B is that parent.

procedure Vis(N, Py)
if N is a leaf then return ¢
else

Let A and B be the parents of N and partition Py into P4 and

Pp, which are the sets of paths which go through A and through

B, respectively. Assume without loss of generality that B is chosen

so that Pp is nonempty.

Let C4 and Cp be the sets of history paths with heads at A and B

respectively, and hence close at N.

if P4 is nonempty then

//N is held
return Vis(4,P4UC4) U Vis(B,PpUCg);
else
//Pa= ¢ and N is not held, so it is visible
return {al(N)}U Vis(A,Caq) U Vis(B, Pg)
endif
endif

The third and fourth conditions in Theorem 9 require us calculate
Vis(T;) which is done by calling Vis(R;, Q;) where R is the root of the
binary resolution tree, Ry and Ry are the parents of R, and Q; is the
set of paths with heads at R;.

Procedure Vis runs in a number of set union calculations which is
proportional to the number of nodes in the tree. With hashing, these
operations can in principle be performed in time proportional to the
size of the clauses. Hence Vis is a linear time algorithm, which is as
fast as one could expect.
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6. Restoring Minimality

There are two basic ways to restore minimality. If a binary resolution
tree is irregular then the surgery operation removes the non-minimality.
For a binary resolution tree that is regular but non-minimal, some
rotations need to be done to make it irregular — we call this exposing
the non-minimality. This irregularity involves two internal nodes M
and N that resolve upon the same atom a and neither is a descendant
of the other but (at least) one is visible from the other. Suppose M
is visible from N. When M is rotated below N, one parent of M also
becomes a descendant of N. Since a occurs in that parent’s clause label,
surgery from N can be done.

In the proof of the converse of Theorem 8 we gave a quadratic
length sequence of operations for moving visible nodes down to become
descendants. Operation Splay uses a linear number of operations. It is
related to the splay operation [13] for binary trees in that it brings a
node closer to the root. In our case, to splay a binary resolution tree at
M, we divide the descendants of M into two sets: the observers O for
those that can see M, and the non-observers O for those that cannot.
Then we rearrange the tree so that all the nodes in O are ancestors
of M, leaving just those nodes in O as descendants of M. Thus M
is brought as close to the root as possible. This is done in a way that
guarantees N is an ancestor of M, so that surgery can be accomplished.

The first step in the Splay is to determine the observers of M, which
are the descendants of M that can see M. Procedure Obs does this.
Given a node M in a binary resolution tree T such that Py is the
complete set of history paths containing both M and one parent of M
and Py is the paths containing M and the other parent, Obs(M, Py, P2)
returns the set of proper descendants of M that can see M.

procedure Obs(M, Py, Ps)
if M is the root of T then
return ¢
else
Let D be the child of M and let K be the other parent of D.
Let C1 be the paths from P; that close at D and Cy be the paths
from Py that close at D.
Let I be the paths that contain both K and D.
if C1 # ¢ and Cy # ¢ then
//D holds M
return Obs(D, KU Py — C1, KU Py — Cy)
else if Cy — ¢ then
return {D}U Obs(D, KU Py — Cq,P2)
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else

//C1=¢
return {D}U Obs(D, P, KU Py — Ca)
endif
endif

Every time Obs is called, every pair of paths one from Py and the
other from Py holds the initial M. If we ever find a descendant D that
closes a member of each, then D holds M and so cannot see M and
therefore D is not returned; otherwise it is returned as part of the final
set of observers. To maintain the invariant as we go from M to D, if D
closes paths in P; we need to add to P; all of the paths K that come
from K through D, because each one of these paths precedes a path
that contains M. If D does not close any path through P;, then we
have nothing to add to P;. In either case we remove from P; any path
that closes at D since these do not contain D.

Operation Splay uses code similar to procedure Obs, but not the
procedure itself, to decide how the resolutions below M should be re-
ordered in the new tree. The parents S; and Sy of M are considered
stubs to be built upon. The observers of M are put into one of two
queues (1 and ()9, and the non-observers are put into (J3. Along with
each node put in the queue, we also put the subtree rooted at the other
parent of the node, so that the resolution can be reconstructed later.
Those put into (1 become descendants of Sy, while those in ()2 become
descendants of Sy. After this is done, the two subtrees are joined by
a resolution corresponding to M. Finally all of the nodes in Q3 are
made descendants of M. Each of the resolutions is done so that all of
the history paths closed at a node in the given tree are closed at the
same node in the constructed tree. Thus the resulting tree resolve input
literals similarly with the given tree.

OPERATION 3. (Splay). A splay at an internal node M in a binary
resolution tree T produces a new binary resolution tree T' such that all
descendants of M cannot see M in T'.

All resolutions in this operation must be done so that the resulting
binary resolution tree resolves input literals similary with T.

procedure Splay (7', M)

Initially @1,Q9 and Q3 are three empty queues.

Initially Py is the set of history paths through M and one parent Sy
of M, while Py is the set of history paths through M and the other
parent Sy of M.

call Splay1(M, Py, P2)

return ProcessQ(

resolve(ProcessQ(S1, Q1), ProcessQ(S2,Q2)),
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Q3)

procedure Splayl(M, Py, Ps)
if M is the root of T then
return
else
Let D be the child of M and let K be the other parent of D.
Let C1 be the paths from P; that close at D and Cy be the paths
from P, that close at D.
Let I be the paths that contain both K and D.
if Ci # ¢ and C3 # ¢ then
//D holds M
enqueue D and the subtree rooted at K into (3
Splayl(D, KUuP; —Ci,KUPy — Cg)
else if Cy = ¢ then
enqueue D and the subtree rooted at K into @4
Splay1(D,K U Py — C1, Pa)
else
[/Ci=¢
enqueue D and the subtree rooted at K into (9
Splay1(D, Py, K U Py — C2)
endif
endif

procedure ProcessQ(7, Q)
if () is empty then

return T
else

dequeue 77 and N from @ leaving Q¢

construct Ty by resolving T and T} making them parents of N

return ProcessQ(7T3, Q1)
endif

For example, the binary resolution tree in Figure 9 shows the result
of performing a splay from the node M = N5 on the second tree in
Figure 4. The subtrees S7 and Sy are the leaves labelled aV bV —¢, and
—a V h, respectively. The descendants of N5 are My, Ny, Ng and N7, of
which N4, Ng and N7 are put into 1, while My is put into Q9. These
end up above Ny in the resulting tree, and Ny becomes the root since
every node can see Ns.

LEMMA 10. IfT is a binary resolution tree and M is an internal node
of T, then the result T' of Splay(T, M) is a binary resolution tree. T'
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Figure 9. Result of Operation Splay at N5 on the second tree in Figure 4

is defined on the same set of clauses as T, is the same size as T and
has the same result as T.

Proof. T' resolves input literals similarly to 7. O

OPERATION 4. (SplaySurgery). Let T' be a binary resolution tree T
containing a pair M, N of nodes such that al(M) = al(N) and N can
see M

procedure SplaySurgery(7, M, N).
if M is a descendant of N in T then

return Surgery (7, N)
else

return Surgery(Splay(7T, M), N)
endif

To see that a splay actually brings M below N, so that surgery is
possible, suppose that the nearest common descendant of M and N is
not M. Thus either NV is that nearest common descendant or NV and M
are on different branches. IV is either D or an ancestor of K at some
point in Splay!. We also know N can see M so it must be put into one
of the queues (1 or (Q9, and cannot be part of (J5. Thus when the tree
is rebuilt, N is put in while we are processing either (1 or Q9. M is
put in after )1 and Q9 are empty, so it is below V.

Returning to our example, after the splay, the node N5 in Figure 9 is
below Nj and surgery from Ny can be done. The result of this surgery
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is the same as that shown in Figure 2. Notice that in this example we
also have the option to splay at Ny and do surgery from N5, since Ny is
also visible from Nj5. The resulting tree would be different: it would not
require the leaf —a V h nor —h, and its result would have been f. Thus
splay surgery does not produce a unique result. However its result is at
least as general, and the tree is always smaller.

SplaySurgery does a linear number of set operations since it does at
most n resolution steps where n is the length of a branch, and then
performs surgery, which itself does a number of resolutions limited by
the length of a branch. Thus it is effectively a linear time algorithm.

7. Support

Often a node that is visible from another can be rotated so that it is not
a descendant, but sometimes no sequence of rotations can bring a node
from below another. In this case we say the node supports the other,
since it is always beneath it. Support, like visibility, is a property that
depends on the entire set of rotation equivalent trees. In this section
we characterize support in terms of history paths, so it can be checked
by examining a static tree.

DEFINITION 11. (Support). A node N in a binary resolution tree T
supports a node M if after every sequence of rotations, M is an ancestor

of N.

DEFINITION 12. (Tightly holds). Two history paths P = P, and
Q = Q,, tightly hold a node N if there exist two sequences Py, ..., Pp,
and Q1,...,Q, of history paths such that

L.fori=1,....m—1,P; < Py,
Q.fOTj: IL...,m— 17QJ = Qj+1;
3.the pair Py and Q1 directly holds M, and

4.for no pair 1,7,1 <1 < m and 1 < 57 < n does the head of P; equal
the head of Q;.

A node N tightly holds M if both P and @ close at N.

Tightly holds is the special case of holds, where no two paths in the
sequences have the same head except the bottom two. This turns out
to be the exact condition for one node being below another after every
sequence of rotations.
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Figure 10. Cases showing tightly hold is invariant un
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Figure 11. Cases showing support implies tightly holds

THEOREM 11. In a binary resolution tree, an interior node N tightly
holds an interior node M if and only if N supports M.

Proof. (=) We show that if N tightly holds M before a rotation, it
also does afterwards, and thus must be a descendant of M. Consider a
rotation of edge (C, E') where nodes A, B,C, D and E are defined as in
Operation Rotation. Also let Py, ..., P, and Q1,...,Q, be the paths
by which N tightly holds M. We indicate the image of any history path
P after the rotation by P’.

At first assume that {C, E'} is disjoint from {M, N}. By Lemma 7,
Pl <* P! and Q) <* Q.. Before the rotation all heads of paths in
the sequences were distinct so they must be distinct after the rotation,
unless there is a new path in either of the sequences. There is one
case where such a new path occurs. In Lemma 7, the new path P is
introduced when tail(Q) is in T4 and tail(P) is in Tp. In that case the
head of new history path was not on path(M, N). Thus the heads of
paths of the new sequences (Py,..., P},) and (Qf,...,Q.) are distinct
except head(P)) = head(Q),). Also M is still directly held by P{ and

{ so N tightly holds M.

Now suppose {C, F'} is not disjoint from {M, N}. (Case 1) If C = M
then without loss of generality let P, contain A and (4 contain B. We
know that P, does not close at F since the rotation is possible. Suppose
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first that @1 does not close at F, as in Figure 10.1a. Then after the
rotation C' is directly held by P/ and Q) and so is tightly held by
N. Now suppose 1 closes at F, as in Figure 10.1b. Note that @9
must exist, since otherwise F holds M. Thus @1 and P; both close
at £ = N and then the rotation is not possible. After the rotation,
C' is directly held by P| and @, and so is still tightly held by N.
(Case 2) Now let C' = N. Both P,, and @, close at N, and either
they both include A, as in Figure 10.2a, or they both include B as in
Figure 10.2b. In either case, after the rotation, V tightly holds M by
the sequences (Pf,..., P}) and (Q},...,Q}). (Case 3) Now if £ =M
then assume without loss of generality that C is in Py and D is in Q.
If A is alsoin Py as in Figure 10.3a, then there is a path Fy with head
at B and Py < P;. After the rotation, the sequences (P}, Py, ..., P.,)
and (Qf,...,Q)) ensure that N tightly holds M. If B is in P, as
in Figure 10.3b, then after the rotation the paths (Pj,...,P.,) and
(@Q),...,Q)) ensure N tightly holds M. (Case 4) Finally if £ = N,
then either P, and @),, both contain C' or both contain D. If they both
contain C' then note that they both contain the same parent B of C,
else the rotation is not possible. Then after the rotation, B is a parent
of F and although P!, and Q! are one node shorter than before, N
tightly holds M by the paths (P{,..., P.)and (Qf,...,Q.). If P, and
@), both contain D, then after the rotation there is no change to the
history paths; thus N tightly holds M.

(<) Assume M supports N. We construct the pair of sequences of
history paths by which M tightly holds N. We induct on the length of
path(M,N) = (N1, Ny, ..., N) where M = Ni, N = N, and N; is a
parent of N;4q fore=1,...,k— 1. If k =2, M is a parent of N and
then a rotation of the edge (M, N) is possible unless there exist history
paths that tightly hold M and close at V. Suppose k > 2. First assume
(case 1) that Ny does not support Ni_;i. Then by the first half of this
theorem Nj does not tightly hold Ni_; and so the edge (Ng_1, Ng)
can be rotated. Since M must remain an ancestor of N, M must be
an ancestor of B in the rotation, as shown in Figure 11.1. Thus the
path from M to N is shorter, and by induction N tightly holds M in
the new binary resolution tree. By rotating the edge back again, one
sees that N tightly holds M in T, because tightly holds is invariant
under rotation. As this case is covered, from now on we assume that
N supports Np_1.

Next assume (case 2) that Nj does not support Ni_s. Then Ng_q
does not support Np_s, for otherwise Ny supports Ni_1 supports Ng_g
and, by transitivity of support, there is a contradiction. By the first half
of this theorem, we may rotate the edge (Nk_2, Nx—1). Then we may
rotate the edge (Ng—g2, Ni), since Ni does not tightly hold Ng_s. In
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this second rotation, N must remain a descendant of Ni_; so it must
be as shown in the third binary resolution tree in Figure 11.2. Thus
path(M, N) is shorter, so by induction N tightly holds M. Because
tightly holds is invariant under rotation, N tightly holds M in T also.
From now on we assume that Ny supports Ni_o. By similar arguments
we assume that Nj supports each of Ng_3,..., No.

(Case 3) If the edge (M, N3) can be rotated in T then path(M, N)
is shorter in the resulting tree 77 and by induction N tightly holds M
in T’. Since tightly holds is invariant under rotation, N tightly holds
Min T.

Finally if the edge (M, N3) cannot be rotated then there are paths
from each parent of M closing at Ny in T. We know by induction that
N tightly holds Ny and assume that (Py,..., Py) and (Q1,...,Q,) are
the paths that make this so. Either P; or ()1 includes N1 = M. Assume
without loss of generality that P; includes Ny. Then ¢ must include
the other parent of Ny since Ny is the first node that P; and (1 have in
common. No matter which parent of M is in Py, there is a path closing
at Ny containing M and M’s other parent. Call this path (). Since the
head of Qg is M, it is distinct from the heads of the other F; and @; in
the sequences. Thus N tightly holds M by the paths (Qo,Q1,...,Qx)
and (Py,...,P,). O

In this final theorem, we relate the notions of visibility and support.

THEOREM 12. In a binary resolution tree, a node M is invisible from
a node N iff there is a support S of M on path(M,N).

Proof. (=) Assume M is invisible from N. Let D be the nearest com-
mon descendant of M and N. Consider the path sequences Py, ..., P,
and @1, ...,Q, by which D holds M. Consider the least ¢+ and j such
that head(P;) = head(Q;) and let S be the node where P; and @; both
close. These ¢ and j must exist since the head(P,,) = head(Q)y). Since
the heads of paths before P; and Q; are distinct, S tightly holds M
and thus S supports M.

(<) Assume that S on path(M, N)is asupport of M. Let Py, ..., Py,
and @1, ...,Q, be the sequences of paths by which S tightly holds M.
Since S is on path(M, N), and S is a descendant of M, S must be an
ancestor of the nearest common descendant D of M and N. Thus there
are paths Ry,..., Ry where R; < R;4q for e = 1,...,k — 1 such that
S is on Ry and Ry closes at D. Thus D holds M via the sequences
(Pl,...,Pm,Rl,...,Rk) and (Ql,...,Qn,Rl,...,Rk). O
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Figure 12. Clause trees corresponding to Figures 1, 4, and 9 and to Figure 2

8. Relation to Clause Trees

The results in this paper were developed after we understood clause
trees [5], and then primarily as a means to implement clause trees.
We eventually found that most of our ideas from clause trees could be
expressed in binary resolution trees. Binary resolution trees are simpler
in some ways since they are easier to implement, but often clause trees
are easier to use when exploring new ideas. In particular, visibility and
support can be read almost directly from a clause tree, whereas the
properties held and tightly held are somewhat harder to see in binary
resolution trees. In this section we relate the two.

Refering once again to the example, the rotation equivalent binary
resolution trees in Figures 1, 4 and 9 all correspond to the first clause
tree in Figure 12. The binary resolution tree in Figure 2 corresponds to
the second clause tree in Figure 12. A reader familiar with clause trees
will note that the second clause tree in Iigure 12 can be constructed
directly from the first by adding a merge path between the ¢ atom
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nodes and then doing surgery to remove the subtree beyond the tail of
the new merge path.

Some of the correspondences between binary resolution trees and
clause trees are obvious. The leaves of a binary resolution tree are the
clause nodes of the clause tree; both are labeled by an instance of an
input clause. The internal nodes of a binary resolution tree are the
atom nodes of a clause tree. A history path in a binary resolution tree,
which we associate with a literal, corresponds to a labeled edge in a
clause tree, also associated with a literal. If the history path is not
closed, it corresponds to an edge incident with an atom node leaf; a
closed history path corresponds to an edge incident with a closed atom
node.

Minimal clause trees correspond to minimal binary resolution trees
whose result does not contain two identical atoms. The minimal con-
dition on clause trees does not allow any legal unchosen merge path
or legal tautology path, including leaf to leaf paths. A minimal binary
resolution tree may correspond to a clause tree with a legal unchosen
leaf to leaf merge path, or legal leaf to leaf tautology path. This is
because the regularity condition in binary resolution trees requires one
of the nodes to be internal.

Finally, visibility (resp. support) between internal nodes in a bi-
nary resolution tree correspond to visibility (resp. support) between
closed atom nodes in a clause tree. Table I shows a number of the
corresponding notions.

9. Related, Past and Future Work

Regularity is one of the most important restrictions and some form
of it is used in many theorem proving methods related to resolution,
including tableau [11], and all variants of model elimination[9].

By Theorem 6 a smallest binary resolution tree is minimal. Goerdt
has shown [4] that a smallest regular binary resolution directed acyclic
graph (DAG) may be exponentially larger than an irregular binary
resolution DAG. Thus by considering only regular or minimal binary
resolution DAGs, a theorem prover may not find the smallest proof, and
hence may require more inferences to prove a given theorem. However
in most cases we believe that the space of minimal binary resolution
DAGs is much smaller than the space of all binary resolution DAGs
and that considerable time can be saved by restricting to minimal ones.
(Similar arguments can be made for and against most restrictions of
resolution, including set-of-support and hyperresolution.)
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Table 1. Corresponding notions

Clause Trees Binary Resolution Trees

leaf node

clause node

internal atom node internal node

edge history path

open leaf atom node literal in result

result

c(T)

internal-to-internal surgery splay surgery

internal-to-leaf surgery surgery

merge set all history paths closing at a given node

equivalence classes of reversal equivalent equivalence classes of rotation equivalent

minimal (up to leaf-to-leaf) minimal

visible internal atom nodes visible (not held by a common descendant)

support on internal atom nodes support, tightly hold

path reversal no structural change

|
|
|
|
|
|
|
|
merge path | two history paths with a common head
|
|
|
|
|
|
|

no structural change (change in derivation) | rotation

Permuting inference steps has been investigated by Kleene [8], in
the context of Gentzen’s sequent calculus, both classical and intuition-
istic. Kleene’s permutations sometimes increase the size of the proof.
It is interesting to note that he defines the ancestor relation between
instances of formulas in each inference, allowing him to state which
instances of formulas in the deduction belong to a given instance in the
end sequent. This is analogous to our notion of history paths.

In the context of binary resolution derivations, de Nivelle [3], has
two types of nodes: resolution nodes have two parents and factoring
nodes have one. He defines four types of edge rotations, depending on
the type of nodes incident with the edge. We disallow the rotation
where a factorization node is parent to a resolution node, because in
this case the size of the derivation must be increased. His application
is to construct resolution games which are then used to show various
completeness results for restrictions of resolution based on ordering
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literals. Both de Nivelle’s paper and ours show that basic properties of
resolution may be explored by considering the set of trees equivalent
modulo permutations or resolutions.

The main contribution of this paper is to present the minimal re-
striction of resolution, originally developed in terms of clause trees,
using the well known proof format of binary resolution derivations. The
original motivation for doing so was to implement bottom up algorithms
for constructing minimal clause trees. A direct implementation, based
on the structural definition of clause trees was done, but each new
tree needed its own storage space and the visibility algorithm was
cumbersome. To remedy both of these problems we used the notion
of binary resolution derivations and implemented each new clause tree
as a single storage cell with two parent clause trees. (For propositional
logic this solves the space problem, since each tree can be used as part
of other trees.) The surprising result is that visibility can be expressed
easily, and requires a linear algorithm using this data structure. We
then determined to explain as much of our clause tree work as we could
using binary resolution trees, to make them more accessible to readers
familiar with resolution. This task turned out to be difficult until we
discovered that edge rotations, history paths and the “precedes” rela-
tion between history paths are the fundamental concepts needed. Then
we related visibility and support to history paths using the “holds” and
“tightly holds” relations. In retrospect the authors still believe that it
is easier to work conceptually with clause trees. We have anecdotal
evidence, from a graduate course in automated reasoning given once
with clause trees only and twice with binary resolution trees followed
by clause trees, that the intuitions for support and visibility are quite
understandable using either data structure.

We are presently developing the full theorem provers described here,
one to use minimality as a restriction and another to use splay and
surgery to improve proofs after they are constructed by resolution. Both
retain only minimal binary resolution trees so that the recursive calls in
the first condition of Theorem 9 are not needed. Our implementations
actually build binary resolution DAGs, instead of trees, to save space.
This is important because theorem provers are limited by space as well
as by time. Note that procedure Vis traverses the entire implicit tree,
so it may visit a single stored node more than once. Thus its runtime
is not guaranteed to be linear in the size of the DAG.

Redundancy elimination by subsumption is always an important
consideration for theorem provers. Unfortunately the minimal restric-
tion is not complete with full subsumption. For instance one can not
refute {p, =pV ¢,—pV —¢} with a minimal binary resolution tree if one
resolves p against —pV ¢q, generating ¢, and then uses back subsumption
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to remove —p V ¢ before the resolution between —pV ¢ and —p V ¢ is
done. The latter resolution is part of the only minimal binary reso-
lution refutation of these clauses. The former resolution step leads to
a binary resolution tree in which p is resolved at two different nodes
on one branch. However, we have discovered [7] that one can retain
completeness by giving up some of the power of minimality, without
giving up any of the power of subsumption.

The implementations optionally include the rank/activity restric-
tion, discussed in [6], which ensures that from each set of rotation
equivalent binary resolution trees, exactly one is found.

The space of minimal binary resolution trees is interesting for the
following reasons: (1) it is refutationally complete, (2) it extends the
well known regularity restriction of resolution, (3) it contains the small-
est binary resolution tree, (4) non-minimal (sub)trees can be identified
in time linear in the size of the tree, and (5) non-minimal trees can be
reduced to minimal ones efficiently.
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