The Design of j-DREW : a Deductive Reasoning
Engine for the Web

Bruce Spencer

Institute for Information Technology — e-Business
National Research Council of Canada
46 Dineen Drive, Fredericton, New Brunswick, Canada E3B 5A3
Bruce.Spencer@nre.ca, hitp://www.iit.nre.ca

Abstract. j-DREW is an easily configured, powerful deductive reason-
ing engine for first order, clausal logic written in Java and well integrated
with the Web. A programmer with the ability to manipulate recursive
data structures, such as commonly taught in university computer science
programs, will be able to reconfigure the reasoning engine of j-DREW
using its application programmers interface (API). j-DREW uses power-
ful and efficient techniques developed for competitive automated theorem
provers, such as discrimination trees, sound unification, subsumption and
flatterms. It can be deployed as part of a larger Java system, on a server
or, with its small memory footprint, on a client. Three prototypes for
definite clauses are considered: several variants of Prolog, a backward
chaining RuleML engine and a proposed forward chaining deduction en-
gine that interfaces to the Java 1.1 event model.

1 Introduction

j-DREW is a powerful, highly configurable reasoning engine for definite clauses
or rules, with various deployment venues possible, including use on the Web.
More important, j-DREW is an idea that includes a class of reasoning engines.
The current paper deals only with definite clausal logic, since that logic expresses
many examples and needs only semantic ordered resolution without factoring,
essentially SLD resolution. The j-DREW components faciltate development of
new engines for special purposes, freeing programmers from the complexity of
handling the binding and unbinding of variables, yet offering good to very good
performance. Choosing this flexibility results in removing the possibility of com-
pilation.

The motive for developing j-DREW came from teaching Prolog program-
ming, conventional programming and object oriented programming for many
years. Most programmers with one or two years training can readily build re-
cursive data structures, including trees. They can also perform more complex
operations that involve adding and deleting from a tree. Most students of Prolog
have no difficulty understanding the Prolog goal tree. But it is very uncommon
to ask students to write programs in C, C++ or Java that build and manipu-
late Prolog goal trees, probably because the task is complicated by a number

of subtle points involving variable bindings: creating unifying substitutions, ap-
plying substitutions to some part or to all of the tree, composing substitutions,
creating fresh variables, performing occurs-check during unification, unbinding
of variables during backtracking, and controlling the search. Courses that cover
these topics at the programming level are specialized courses on implementations
of logic systems, not general data structures or artificial intelligence courses.
However, if one restricts the discussion from first order logic and allows only
propositional logic, avoiding all issues of handling variables, the propositional
Prolog engine is no more than a backtracking search, shown in Figure 1, and
can be presented in a data structures classroom with a reasonable chance of
achieving comprehension by the better students.

ALet initialGoal be the given goal, initially open
Tree proofTree = new Tree(initialGoal);
Stack choicePoints = new Stack();
while(true){
if (proofTree.hasNoOpenGoal())
halt(’success’);
else {
Goal g = proofTree.selectOpenGoal();
g.createMatchingClauseList();
if (g.hasMoreMatchingClauses ()){
Clause c = g.nextMatchingClause();
GoalList children = c.body0fClause();
g.addChildren(children) ;
choicePoints.push(g);

}

else {
chronologicalBacktrack() ;

}

void chronologicalBacktrack(){
while(!choicePoints.empty()){
Goal g = choicePoints.pop();
g.removeChildren() ;
if (g.hasMoreMatchingClauses())
return; jexit
Jibecause there is something to try
}
%no proof can be found
halt(’failure’)

Fig. 1. Propositional definite clause reasoner with backtracking search

To understand the code in Figure 1, let Tree be the class of proof trees,
where each proof tree can tell that it either has no open goal remaining, or can
provide a deepest open goal. An intial open goal is provided when the tree is
created. Each goal maintains its own list of those definite clauses having heads
that match it; a goal can tell if it has more matching clauses, and can provide the
next matching clause on demand. The body of that chosen matching clause is a
list of goals, and these are added to the tree as the children of the goal; then the
goal is no longer open, and these children are new open goals. For backtracking,
choicePoints is a stack of goals in the proof tree. A goal is pushed onto this stack
whenever a goal chooses its children. Backtracking is forced if some selected goal
has no matching clauses, and then some earlier choice of a goal list for a goal
must be undone. The earlier goals are on the stack in reverse chronological order
— the top of the stack is the most recent choice.

Note that while this is essentially SLD resolution, there is an explicit data
structure constructed which is different from the list of goal clauses created by
SLD resolution. It is also different, perhaps bulkier, than the reasoning procedure
in most Prolog implementations, such as establish in [5]. That function builds
an implicit tree, because a Prolog programmer’s objective is to generate answers
rather than to create proof trees.

The idea that came to be j-DREW was to provide programming tools in the
form of a Java application programmers interface (API), that would address the
problems mentioned: that of complicating the previous explanation by combining
it with an explanation of variable bindings. The j-DREW API deals with the
variable bindings “behind the scenes,” so that the code in Figure 1 is a definite
clause reasoner for first order logic as well.

In the following sections, the ideas behind the j-DREW architecture are ex-
plained, organized according to (1) the basic components, some of which were
derived from competititve theorem provers, (2) the programmer’s interface to
the various configurations possible, and (3) some deployed and designed proto-
types. Lastly, comparisons with other reasoning systems, and future prospects
are offered.

2 Basic Components

We use standard definitions [2] for predicate symbol, function symbol, atom, lit-
eral, substitution, unifier and most general unifier. In this paper, lower case let-
ters p,q,r, ... (and with subscritps) refer to predicate symbols or to whole atoms,
and letters f, g, h,... (and with subscritps) refer to constants and function sym-
bols, while upper case letters X,Y,... (and with subscritps) refer to variables.
A definite clause is an ordered disjunction of literals, the first of which, called
the head, is positive and the rest are negative, e.g. pV - p; V...V —p, .

At its kernel, j-DREW is a theorem prover for definite clauses of first order
logic. The data structure for definite clauses is important since it affects the
efficiency of key operations, such as unification. The negation signs of literals in
definite clauses are not stored, because they are known from their positions in

the clause: the second through last literals are negative. Because symbols can
have long names and can occur in many parts of a formula, it makes sense to
store these names in one place. A symbol table is an array of print names and
arities of symbols. For instance in the atom p(f(g1), h, h(g2)), p has arity 3, f
has 1, and both ¢g; and go have arity 0. There are two different symbols h: one
with arity 0 and the other with arity 1. Sometimes symbols are juxtaposed with
the arity, as h/0 and h/1, to distinguish them. A suitable symbol table for this
atom appears in Figure 2.

Atoms and clauses are represented as flatterms[3], which for most applica-
tions are more space efficient than linked lists or pointer-based trees of symbols.
Our flatterm type is a pair of arrays: symbol and length, both composed of short
integers. The length array is not strictly needed, but simplifies the code at the
cost of doubling the storage requirement, which so far has not presented a prob-
lem. Each predicate symbol, function symbol and variable in the formula has
a position in these arrays. We deal with variable free formulas first. The first
array of the flatterm, symbol, contains the symbol table index for predicate or
function symbol in this position. The second array, length, contains the length of
the subformula (subterm) beginning at this position. For example, in Figure 2,
the subterm g» begins at position 6, so the flatterm’s symbol array contains in
position 6 the symbol index for g2, which is 4. Since g2 is a subterm of length
1, there is a 1 in the flatterm’s length array for position 6. Meanwhile h(gz) is a
subterm of length 2 beginning in position 5.

Formulas with variables can also be represented with flatterms. In j-DREW
we are interested in clausal logic where variables have scope that is across a clause
and no further. The variables in each clause are numbered according to their first
appearance with negative indices starting at —1, and there is no confusion with
variables from other clauses. All occurrences of the same variable in a flatterm
have the same negative number in the symbol array. For example, Figure 3 shows
the flatterms for p(f(h(X)),h(Y), f(X),Y) in which -1 is the index for X and
-2 is the index for Y. These are always numbered according to their appearance
in left-to-right order.

Flatterm for
Symbol Table p(f(g1),k, h(g2),91)

. symbol|length
name|arity A &
1 1 7
1l p 3
2 2 2
2\ f 1
3 3 1
3 g1 0
4 5 1
4 g2 0
5 6 2
5/ h 0
6l n 1 6| 4 1
73 1

Fig. 2. Symbol Table and Flatterm

Flatterm for left Flatterm for right

p(f((X)),n(Y), f(X),Y) p(f(W), h(f(92)). 2, 2)

symbol|length symbol|length

1 1 9

1 1 8
2| 2 3

2| 2 2
3] 6 2

3] -1 1
4] -1 1

4 6 3
5 6 2

5 2 2
6| -2 1

6] 4 1
72 2

7 -2 1
8 -1 1 8 9 1
9] -2 1

-1 3 left

Fig. 3. Flatterms and variable substitutions

While j-DREW ’s variable handling strategy may appear obtuse to program-
mers of definite clause reasoning engines and Prolog system programmers, recall
that one of the objectives of j-DREW is to be a common API for forward and
backward reasoning, even allowing mixed search strategies, and to build explicit
data structures. As such there is no attempt in the current prototype to take
advantage of structure sharing between clause instances, used heavily in Prolog
but often not used in theorem proving and in forward reasoners such as JESS
[4].

A variable substitution in j-DREW is also represented as two arrays, posi-
tion and side, of short integers. A substitution entry is created for each distinct
variable in the flatterm. Substitution arrays are created only in response to a re-
quest for unification of two flatterms, called left and right, and a value given to a
variable is always a subterm in one of the two flatterms. For instance, in Figure 3
the value given to X in the left atom is go. This is shown in the left substitution
arrays in position —1 for X, where the values are 6 and right, indicating the
subterm at position 6 in the right atom, which is g;. Note that the result of ap-
plying either of given substitutions would be p(f(h(g2)), h(f(g2)), f(g2),h(g=2))-
Thus these substitutions unify the two flatterms.

Note that this binding strategy is called a local shallow binding, which is not
usually used in backtracking search. Local bindings need no global list of vari-
ables and values, but variables are always referenced with respect to a clause. An
advantage to local binding is that no large, sparsely populated array of global
variables needs to be created. Although this is not an issue for backtraking search
because the variables come and go in Last-In-First-Out (LIFO) fashion, it arises
in other types of search. With shallow binding, a variable’s current replacement,
is available by looking it up in a list that is always up to date, requiring only a
shallow search for the value. With deep bindings, new replacements do not up-

date the the values in the existing replacements, so when looking up the existing
value one or several searches may be required to see if any of its embedded vari-
ables have been bound. Deep bindings are usually used in backtracking search
where new bindings are often undone in LIFO fashion.

j-DREW uses sound unificiation.

The main data structure in j-DREW is the DCTree, or definite clause tree.
Each node in the tree contains a flatterm for the atoms in a definite clause, where
the signs of these atom are defined implicitly by position, as mentioned before;
the first atom is positive and others are negative. For simplicity, the second and
subsequent atoms in flatterm for the node is called a goal list. Each atom in the
goal list is called a goal, and has at most one child node. A goal has a child if
some clause has been chosen to solve that goal. In that case, the instance of the
definite clause in the child node is such that its first atom is usually identical to
the atom for this goal. In some cases the child atom is an instance of goal atom,
and then an operation to make them identical is scheduled to occur later as part
of variable binding propagation, described next.

In j-DREW the unification process between two atoms, where one is a goal
and the other is the head of a definite clause, is always performed between two
different clauses. For each clause an array is created to store values, one for
each of its variables. The unification algorithm determines these values, so that
by replacing the variables by their values, the two atoms in question become
identical, if this is possible, or the algorithm returns a failure notification if
this is not. Each of these values is called that variable’s binding. The process of
creating a new flatterm with the variables replaced by their bindings, if any, is
called binding application. Notice that since variables are clause-local, values in
one flatterm are not automatically transfered to another flatterm. In j-DREW
the only way that a variable’s value can be propagated from one node in the tree
to another is by using unification to create variable bindings, and then using
binding application to create a new flatterm.

Propagation occurs this way: Suppose a variable’s value has changed in an
adjacent node, say a child C' of some node N of interest, and that change should
be propagated to V. See Figure 4. In this example, a segment of the flatterm for
N is designated for the goal p;. Also a segment of the flatterm for C is designated
for the head q of a clause. At the moment p; and ¢ are different atoms, but p;
is an instance of ¢. A unification step between ¢ is p; is performed, resulting in
some variable bindings for N’s flatterm. When these are applied, a new flatterm
for N is created, and it becomes the new flatterm, replacing the previous one.

At some times in the search, described later, variable bindings are chosen
and propagated, and later may be found not useful. Then the effect of variable
binding should be removed. If these binding effects are always done and then
undone in last-in first-out order, or LIFO, a stack of flatterms is a convenient
structure. For this reason, the current version of j-DREW allows only LIFO
changes to the variable bindings. Since this is consistent with backtracking search
methods, it is a reasonable restriction. Thus each node has its own stack of
flatterms.

Returning to the example, before the old flatterm for N is discarded, it is
pushed onto N'’s stack of flatterms. Then the new flatterm is create and becomes
N’s flatterm. Subsequently, more variable bindings may be propagated to N from
the child D. If later it becomes necessary to undo both sets of variable bindings,
it is a simple matter to pop the stack until the appropriate flatterm is reached.

N

Fig. 4. Nodes in a DCTree, showing flatterms. C and D are children of V.

j-DREW uses techniques from Java where these simplify its work, making
it easier for Java programmers to incorporate j-DREW into their code. In the
variable propagation example, a Unifier object is created for a specific goal pair
of nodes in the DCTree. This object is capable of creating new flatterms for either
of these nodes. A Unifier also tells whether or not it is possible to unify these
two atoms. The programmer can ask the Unifier whether unification is possible,
without actually creating the instances; in some cases it might be important to
separate these tasks in case one is only interested only in the first and does not
want to invest time to do the second. Also the programmer can ask to have only
one of the new flatterms created, allowing one-way unification, useful for finding
instances of a given literal.

Common in Java programs is the use of Iterators. An Iterator is an object that
gives access to each of a sequence of other objects, through a simple interface.
The method hasNext () returns a boolean result, telling whether or not there
is another object in the sequence that has not yet been given, or visited. The

method next() returns that next object, and advances the Iterator so that
subsequent calls to next () return subsequent elements of the sequence. In the
case of ;-DREW once a goal is identified, an Iterator of Definite Clauses can
be created, where each Definite Clause in the sequence is an instance of some
given clause, chosen so that its head is an instance of the goal. These clauses
give us the goal lists that can later be attached to the goal’s occurrence in the
DCTree. One can see that the code in Figure 1 uses the idea of an Iterator, in
the calls to methods hasMoreMatchingClauses () and nextMatchingClause().
These are choices that arise in the search, and it is also an example of the one-way
unificiation previously mentioned.

Consider further the task of creating all of instances of the given clauses whose
head is an instance of a given goal. Clearly one could just consider each of the
given clauses in turn, attempting to unify each head with the goal. But something
much faster is possible, based in McCune’s discrimination trees. Given the usual
prefix-ordered string representation of a set of terms or atoms, a discrimination
tree is obtained if one combines prefixed as much as possible. An imperfect
discrimination tree results if one first replaces all variables by a new symbol,
say *. See Figure 5 for the imperfect discrimination tree arising from the clause
heads p(f(g1), h, h(g2), 1) and p(f(h(X)),h(Y), f(X),Y). In the resulting tree
structure, each internal node contains either or a function or predicate symbol
that occurs somwhere in the clause heads, or a *. If two atoms have the same
symbols in positions 1 to n, but a different symbol in position n + 1, then in the
discrimination tree the the node corresponding to the first n positions will have
(at least) two children.

The discrimination tree is used to find atoms that are likely to unify with
a given goal atom. At each leaf of our discrimination tree we store the clause
whose head corresponds to the path from the root. Our goal is to hasten the
search for clauses whose head closely matches a given query atom. Once found,
since the discrimination is imperfect, a later unification step is needed, so the
matching process is called pseudo-unification. One can find all atoms likely to be
unifiable with a given query atom by traversing the discrimination tree downward
from the root, following the branches that correspond to the symbols in the
query. What follows is a general description; we refer the reader to McCune’s
exposition for details [6]. When a * is found in the tree, then one skips over one
symbol in the query, and, if present, over its arguments. For example, looking for
generalizations of p(f(h(f(gl))),h(g1), f(g2),h), one enters the discrimination
tree from the root, following the p, f and h branches until * is found in the
tree. One skips over the g, in the query, to account for one subterm skipped.
Thus p(f(h(X)),h(Y), f(X),Y) will eventually be found as a generalization of

The query atom also has its variables replaced by *. When one encounters a
in the query during matching, one skips down all branches in the discrimination
tree that correspond to one subterm. This gives a possibly large number of points
in the tree to explore next. For instance, if one searches for all of the heads
pseudo-unifiable with p(f(*), %, x,*), one would follow the discrimination tree

Fig. 5. Discrimination Tree

p(f(W(X)), (YY), f(X),Y)

p(f(g1), hy h(g2), 91)

containing

and

from the root to p, then f, and would then follow two branches that correspond
to the x at the current position in the query goal: over the ¢g; to the h/0 down
the left branch, and over both the h/1 and the % to the lower h/1 down the
right branch. Eventually both leaves would be identified as pseudo-instances of
PUf (%), %, %, %).

The use of discrimination trees effectively gives every argument indexing,
unlike some Prolog implementations that use only first argument indexing. This
is important if searching for RDF triples [7] in the Semantic Web, as a query
might be set up to find all RDF triples with a certain second or third argument,
without specifying the second argument.

3 Programmer’s Interface to 3-DREW

The reasoning procedure in Figure 1 gives only the first solution to a goal. We
advocate to use an iterator to generate a series of solutions to a goal, where the
state of the computation is stored in the iterator. Thus there is not necessarily
just one top-level query that can be asked, but rather for each goal that one
wants to solve, a separate tree-producing iterator object is created to generate
solutions on demand. Several of these iterators can be active at once. The code
in Figure 6 provides hasNext() and next() functions. Notice that hasNext() does
all the work. The chronologicalBactrack function is unchanged.

To use the solution iterator in Figure 6 provides the essential definition of an
Iterator object, which we will call a Solutionlterator. To build and display the
sequence of proof trees for the goal, one would create a object of type Solution-
Iterator and use the hasNext() and next() methods as follows:

Iterator solver = new SolutionIterator (topLevelGoal) ;
while (solver.hasNext()) print(solver.next());

4 Related and Future Work

Currently the j-DREW API provides a basis on which to build a system func-
tionally equivalent to Prolog, except that its implementation is not compiled,
it does not use structure sharing and it creates explicit solution trees. A parser
has been added to j-DREW to handle RuleML [1]. But j-DREW was designed
from the standpoint of a basic resolution engine, and this allows us to use the
basic levels of j-DREW to provide an API for forward reasoning systems. On
receipt of a new conclusion, the reasoning engine would trigger the creation of
subsequent conclusions, starting a chain of activities.

In particular we plan to integrate 7-DREW into the Java 1.1 Event archi-
tecture. In Java 1.1, a user-interface event, such as a button-click, is attached
to an event handler object, called a listener. A particular method in the listener
is called each time the user-interface event occurs. For our button example,
the event handler is called a ActionEventListener, and each time the button is

10

boolean foundNext = false;

boolean failed = false;

boolean enteringFirstTime = true;

Tree proofTree = new Tree(initialGoal)
Stack choicePoints = new Stack();

boolean hasNext(){
if (foundNext)
return true;
else if (failed)
return false;
if (not enteringFirstTime)
if (not chronologicalBacktrack())
failed = true;
boolean succeeded = false;
while(not failed and not succeeded)q{
if (proofTree.hasNoOpenGoal ()){
succeeded = true;
}
else {
Goal g = proofTree.selectOpenGoal();
g.createMatchingClauseList () ;
if (g.hasMoreMatchingClauses()){
Clause c = g.nextMatchingClause();
GoalList children = c.bodyOfClause();
g.addChildren(children) ;
choicePoints.push(g) ;
}
else if (not chronologicalBactrack()){
failed = true;
}
}
}
foundNext = succeeded;
return foundNext;

Object next(){
if (not hasNext())
throw new NoSuchElementException() ;
foundNext = false;
enteringFirstTime = false;
return proofTree;

Fig. 6. Propositional definite clause reasoner as a Java Iterator

11

pressed, the ActionPerformed method in the ActionEventListener is called. That
method contains the code that responds to the event.

Event-condition-action rules, also known as reaction rules, are commonly
used in expert systems, agent systems and messaging systems, or wherever reac-
tions to asynchronous events are required. A forward reasoning j-DREW system
would be implemented as a Java EventListener, reacting to the addition of a new
conclusion, by inferring new information and possibly raising new events as a
result.

There is interest in buiding systems for the Semantic Web using two kinds
of rule-based systems: deductive and reactive [8]. We are committed to using
j-DREW not just with a backtracking search, but rather to allow possible any
search that the programmer might find convenient for a given problem, and
possibly allowing simultaneously several search techniques. It is still an open
question how best to design the variable binding strategy to accomodate both
backtracking and non-backtracking search.

References

1. Harold Boley and Said Tabet. RuleML Homepage, 2002. http://www.dfki.uni-
kl.de/ruleml.

2. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York and London, 1973.

3. Hans de Nivelle. Data Structures for Resolution. Technical report, Max Planck
Institut fiir Informatik, 66123 Saarbriicken, Germany, 1999.

4. Ernest Friedman-Hill. Jess, the Expert System Shell for the Java Platform, 2002.
http://herzberg.ca.sandia.gov/jess/.

5. David Maier and David S. Warren. Computing with Logic: Logic Programming with
Prolog. Benjamin/Cummings Publishing Co., Menlo Park, CA, USA, 1988.

6. W. W. McCune. Experiments with discrimination-tree indexing and path indexing
for term retrieval. Journal of Automated Reasoning, 9:147-168, 1992.

7. RDFCore Working Group (co-chairs Dan Brickley and Brian McBride). Re-
source Description Framework (RDF) / W3C Semantic Web Activity, 2002.
http://www.w3.org/RDF/.

8. Michael Schroeder(msch@soi.city.ac.uk) and Gerd Wagner (G.Wagner@tm.tue.nl),
editors. International Workshop on Rule Markup Languages for Business Rules on
the Semantic Web. http://www.soi.city.ac.uk/~msch/conf/ruleml/, Chia, Sardinia,
Italy, June 14 2002. In conjunction with the First International Semantic Web
Conference (ISWC2002).

12

