Merge Path Improvements for
Minimal Model Hyper Tableaux

Peter Baumgartner, J.D. Horton, and Bruce Spencer

University of New Brunswick Fredericton, New Brunswick E3B 5A3, Canada
{baumgart, jdh,bspencer}@unb.ca

Abstract. We combine techniques originally developed for refutational
first-order theorem proving within the clause tree framework with tech-
niques for minimal model computation developed within the hyper tab-
leau framework. This combination generalizes well-known tableaux tech-
niques like complement splitting and folding-up/down. We argue that
this combination allows for efficiency improvements over previous, re-
lated methods. It is motivated by application to diagnosis tasks; in par-
ticular the problem of avoiding redundancies in the diagnoses of electrical
circuits with reconvergent fanouts is addressed by the new technique. In
the paper we develop as our main contribution in a more general way a
sound and complete calculus for propositional circumscriptive reasoning
in the presence of minimized and varying predicates.

1 Introduction

Recently clause trees [6], a data structure and calculus for automated theorem
proving, introduced a general method to close branches based on so-called merge
paths. In this paper we bring these merge paths to tableaux for minimal model
reasoning (e.g. [4,11-13]). We use the framework of hyper tableau for this, which
began with [2].

The paper [6] is devoted to refutational theorem proving. Merge paths al-
low branches to close earlier than it would be possible without them or when
using merge paths to simulate known instances such as folding-down [8]. Ex-
pressed from the viewpoint of complement splitting [9], one advantage is that
the splitting of literals can be deferred.

In this paper we advocate to use merge paths for model computation calculi.
In addition to the advantages in the refutational framework, merge path allow
one to partially re-use previously computed models instead of computing them
again. To achieve this, new inference rules dealing with merge paths for minimal
model computation are defined. In contrast to the purely refutational setting,
these inference rules have to be applied with care, as termination is no longer
a trivial property. Therefore, we give conditions for termination such that the
central properties of minimal model soundness and minimal model completeness
hold. More precisely, as our main result we develop such a calculus for the more
general case of circumscriptive reasoning for minimized and varying predicates
(Section 4). The minimal model completeness proof is given by a simulation of

merge paths by atomic cuts (cf. Lemma 1 in Section 4). Viewed from this point,
our approach can thus be seen as a more and generalized approach for a controlled
integration of the cut rule for the purpose of minimal model computation.

The rest of this paper is structured as follows: first we briefly give the idea
of merge paths as defined in [6]. This presentation should be sufficient to explain
the subsequent motivation of the new calculus from the viewpoint of a certain
problem encountered in diagnosis tasks. In Section 2 we bring merge paths into
trees and define an ordering on merge paths. It is employed in Section 3 in the
new calculus. In Section 4 we show how merge paths can be simulated by atomic
cuts and, based on that, prove soundness and completeness. Section 5 discusses
certain aspects of the calculus (memory requirements, atomic cuts vs. merge
paths).

Clause trees. Merge paths are introduced and studied in [6] in the context of
clause trees. Clause trees are a data structure that represent equivalence classes
of resolution derivations. Merge paths are a unified inference rule and generalize
the folding up/folding down technique of [8].

Clause trees consist of clause nodes and atom nodes. Clause nodes are in-
dicated by a o. Every clause node N corresponds to some input clause A(N) =
Ly V...V L, as can be seen from the n emerging edges; these edges are labeled
by the signs of the L;’s, and the atom parts of the L;’s can be found in the
adjacent atom nodes. Clause trees are built in such a way that from every atom
node exactly two edges with opposite sign emerge. This corresponds to a binary
resolution inference. Here is an example:

e S e =

Clause tree: o— C —o0— A —o0—— B —o0——

Clause set: < C C<+ A A B+~ C+ B

Now, in addition, merge paths can be drawn between equally labeled atom
nodes, provided that the first and final edges are also equally labelled. In the
preceeding figure, there is a merge path from the right C-node (called the tail
of the merge path), to the left C-node (called the head of the merge path). The
idea is “in order to find a proof at the tail of a merge path, look it up (copy
it) from the head of the merge path”. Thus, tail nodes are considered as proven
and need no further extension. Thus a proof is a clause tree where every leaf is
proven in this way or is a clause node.

Head nodes can be part of another merge path, and then there is a depen-
dency of the nodes on the path on the head node. In this case the “lookup” of
proofs is done recursively. In order to terminate this, cyclic dependencies must
be excluded. The absence of cycles in a set of merge paths is referred to by the
term “legal”. Many of the results in [6] concerning legality and relation notions
are derived as general properties of paths in trees. They thus can be readily
applied to our case of hyper tableaux as well.

Motivation: A diagnosis application. We consider consistency-based diagnosis
according to Reiter [15]. In this scenario, a model of a device under consideration

is constructed and is used to predict its normal behavior. By comparing this
prediction with the actual behavior it is possible to derive a diagnosis. More
precisely, a diagnosis A is a (minimal) subset of the components of the device,
such that the observed behavior is consistent with the assumption that exactly
the components in A are behaving abnormally. Computing diagnosis can also
be formalized as a circumscription problem.

The figure below depicts a hypothetical diagnosis scenario of an electrical
circuit where merge paths are useful. The notation [0] in the left picture means
that at this point the circuit is logical zero. The [0]’s at the bottom refer to input
values of the actually observed behavior. The “Huge” box is meant to stand for
a large circuit. The lightning at the output indicates that the predicted output
is different from the actual output. Two possible diagnoses are A; = {inv!} and
Ay = {inv2}. Notice that with declaring these as “abnormal”, it is consistent to
have [0] at the output of the and-gate.

Circuit Hyper tableau ... with merge paths
ab(inv}) aiz(inv?) ab(inv:.l) ab'(inv2)
o o “{op" o
*
Al A2

ab(z’n'u'l’) al.z.(in'v.?)

Ay As

Now, the crucial observation is that the computation of A; and A, show
considerable redundancies. The hyper tableau based diagnosis approach of [1]
would result in the tableau depicted in the middle of the figure. Diagnoses are
read off from open branches by collecting the ab-literals found there. The trian-
gles stand for sub-tableaux containing diagnoses of the “Huge” part. There are
two open branches containing A; and A, respectively.

Notice that the “Huge” part has to be diagnosed twice although for its diag-
nosis ezactly the same situation applies, namely [0] at its input. This is reflected
by the nodes “[0]”. Clearly, for the diagnosis of “Huge” it is irrelevant what
caused the “[0]”-situation. The generalized underlying problem is well-known in
the diagnosis community and is referred to as “reconvergent fanouts”.

So, the symmetry hidden in this problem was not exploited. In fact, the
merge path technique just realizes this. It is indicated in the right part of the
figure above: after the diagnosis A; is computed in the left branch, and the
computation reaches the “[0]” node in the right subtree, a merge path is drawn
as indicated, and the branch with the right “[0]” node is closed. The price to be
paid is that A, as computed so far is invalid now. Technically, the ab(inv1) literal
can be thought of as being removed from the branch (it becomes “invisible” in
our terminology). Hence, the computation starts again as indicated below the
triangle. Eventually, both A; and Ay can be found there.

Why is it attractive to use such a “non-monotonic” strategy? The answer is
that it is little effort to recompute the initial segment of the diagnosis and better
to save recomputing the “huge” part. We do not suggest to use the merge paths
in all possible situations. In order to be flexible and allow guidance by heuristics,
merge paths are thus always optional in the calculus defined below.

Preliminaries. We assume that the reader is familiar with the basic concepts
of first-order logic. Throughout this paper, we are concerned with finite ground
clause sets. A clause is an expression of the form A < B, where A = (A1, ..., An)
and B = (By,...,B,) are finite sequences of atoms (m,n > 0); A is called the
head, and B is called the body of the clause. Whenever convenient, a clause is
also identified with the disjunction Ay V---V A, V 2By V ---V =B, of literals.

Quite often, the ordering of atoms does not play a role, and we identify A and
B with the sets {A1,..., Ay} and {By,..., By}, respectively. Thus, set-theoretic
operations (such as “C”, “N” etc.) can be applied meaningfully.

By L we denote the complement of a literal L. Two literals L and K are
complementary if L = K. In the sequel, the letters K and L always denote
literals, A and B always denote atoms, C' and D always denote clauses, 8 always
denotes a finite ground clause set, and X denotes its signature,i.e. £ = [J{AUB |
A+ B eS8}

As usual, we represent a X-interpretation J by the set of true atoms, i.e.
J(A) = true iff A € J. DefineJ = A + B iff B CJ implies ANJ #). Notice
that this is consistent with other usual definitions when clauses are treated as
disjunctions of literals. Usual model-theoretical notions of “satisfiability”, “va-
lidity” etc. of clauses and clause sets are applied without defining them explicitly
here.

Minimal models are of central importance in various fields, like (logic) pro-
gramming language semantics, non-monotonic reasoning (e.g. GCWA, WGCWA)
and knowledge representation. Of particular interest are I'-minimal models, i.e.
minimal models only wrt. the I'-subset of X. From a circumscriptive point of
view, I' is thus the set of atoms to be minimized, and X'\ I" varies. In the sequel,
I'" always denotes some subset of the signature X.

Definition 1 (I'-Minimal Models). For any atom set M define the restric-
tion of M to I' as M|I" = M NI'. In order to relate atom sets My and M, define
M, <r M, fo M1|F C M2|F, and M, =r M, 'Lﬁ M1|F = MQ'F As usual,
the relation My <p M is defined as M1 <p My or My =p M. We say that a
model J for a clause set M is I'-minimal (for M) iff there is no model J' for M
such that J' <r J

It is easy to see that < is a partial order and that = is an equivalence relation.
Notice that the “general” minimal models can simply be expressed by setting
I' = X¥. Henceforth, by a minimal model we mean a X-minimal one.

An obvious consequence of this definition is that every minimal model of 8
is also a I'-Minimal model of 8 (but the converse does not hold in general).

2 Literal Trees and Merge Paths

We consider finite ordered trees T' where the nodes, except the root node, are
labeled with literals. The labeling function is denoted by A. A branch of T is a
sequence b = (Ng, N1, ..., N,) of nodes of T such that Ny is the root, N; is an
immediate successor node of N;_; (for 1 < ¢ < n) and N, is a leaf node. The
fact that b is a branch of T is also written as b € T'.

Any subsequence b' = (N;,...,N;) with 0 < ¢ < j < n is called a partial
branch of b; if i = 0 then this subsequence is called rooted. Define last(b') =
Nj. In the sequel the letter b always denotes a branch or a partial branch.
The expression (b1, b2) denotes the concatenation of partial branches by and be;
similarly, the expression (b, N) denotes (N;,...,N;, N), where b is the partial

branch (I, ..., N;). For convenience we write “the node L”, where L is a literal,
instead of the more lengthy “the node N labeled with L”, where IV is some node
given by the context. In the same spirit, we write (Ly,...,L,) and mean the

partial branch (Ny,...,N,), or even (No, N1,...,N,) in case Ny is the root and
N; is an immediate successor node of the root, where Nj is labelled with L; (for
1 <i < n). Further, (b, L) means (b, N), where N is some node labeled with L
and b is a partial branch.

A branch b is labeled either as “open”, “closed” or with some subset of I". In
the latter case, b is called a MM-branch, and MM(b) denotes that set, which is
called the minimal model of b. A tree or subtree is closed iff every of its branches
is closed, otherwise it is mon-closed. A tree or subtree is open if some of its
branches are open.

Definition 2 (Ancestor Path, Merge Path). Let T be a tree and suppose
that T' contains a rooted partial branch b of the form b = (Ng, N1,..., N4, ..., Ny)
with Ny being the root. Any sequence ancp(b, N;) := (Np, Np—1,...,N;), where
n > 1> 0, is called an ancestor path (of b). The node N,, is called the tail and
the node N; is called the head of this ancestor path. Now, if it additionally holds
that A(V;) = A and A(N,,) = —A (for some atom A) then ancp(b, N;) is called
an ancestor merge path (of b).
Let T contain rooted partial branches T = (No,N1y...,NiyNiy1,...Ny) and
b = (No,Ni,...,Ni, Miyq,... My,) with Ny being the root and m,n > i > 0
and M;iy1 # Niy1 and such that M(N,) = AN M,,) = A for some atom A.
Deﬁne pT = Nna s JNi+l: pH = 41y - - '7Mm’ and p = (pTapH) Here, p
is understood as a concatenation of pT and p™. By this definition, nodes on
paths are written in order from tail to head. We assume that p can always be
decomposed into its constituents p’ and p™; p is called a non-ancestor merge
path of T from bT to b¥ with tail N,, and head M,,. It is also denoted by
mergep(bT,b%). The node N; is called the turn point of p. Note that the turn
point is not on p.

By o merge path we mean a non-ancestor merge path or an ancestor merge
path. The letters p and q are used in the sequel to denote ancestor paths or merge
paths, and the letter P will be used to refer to sets of merge paths.

A non-ancestor merge path with m = n = i + 1 is called factoring, the case
m =1+ 1 is called a hook, and the case m > ¢ + 1 is called a deep merge path.

Definition 3 (Ordering on paths). Suppose the paths p = (Ni,...,Ny)
and ¢ = (My,...,M,,) as given. Define q precedes p, as q < p iff M, €
{Na,...,Np_1}. We say that a finite set of paths P is legal iff the < relation on
P can be extended to a partial order < on P. Illegal means not legal.

Notice that the < relation is irreflexive but in general not transitive. One could
also define a set of paths to be illegal if it contains a cycle, i.e. if there are paths
Di,---,Pn € P such that p; < ps < --- < p, < p1, for some n > 1. Avoiding
cycles is important to guarantee the soundness of the calculus.

Ezample 1 (Ordering). The figure below contains examples of trees equipped
with merge paths. The underlying clause sets can be left implicit. Merge paths
are indicated using arrow notation. For instance, in the right tree, the arrow from
the leaf node —A to A indicates an (the) ancestor merge path p; = (—A,C, A) of
the branch (A, C,—A) with tail =A and head A. In the same tree, the arrow from
the rightmost node C' to the other node C indicates a non-ancestor merge path
p2 = mergep((B,C), (4,C)) = (C,B, A,C) with tail C (the right node) and
head C (the other node C) and the root as turn point. In terms of Definition 2
we have pi = (C,B) and pi = (A,C). The path p, is an example of a deep
merge path. The merge path set {p1,p2} is not legal because both p; < p2 and
p2 < p1 and hence < cannot be extended to a partial order. The left tree contains
two non-ancestor merge paths and both are “hooks”.

Tllegal: Legal: Tllegal:
A K/ﬁ* B 4 mB A/\B
ool T
X X T ‘ X C g’
3! /\
X X

The left and right cases are the simplest cases for illegality, as in both cases
only two merge paths are involved. These are illegal, because the heads of the
merge paths are mutually contained as inner nodes. The left tableau would
correspond to an unsound combination of the “folding up” and “folding down”
inference rules, usually avoided in implementations by choosing not to combine
them at all.

The new calculus to be presented below does not only construct a tableaux T as
the derivation proceeds, but also a legal set of merge paths P. This guarantees
soundness.

In order to achieve minimal model computation, we have to define how in-
terpretations are extracted from open branches.

Definition 4 (Visibility, Branch Semantics). Let b = (No,N1...,Ny,) be a
rooted partial branch in o tree T (not necessarily a hyper tableau) with n > 0,

and let P be a legal set of merge paths in T. The node N; (where 0 < i < n)
that is not the tail of a merge path in P is said to be visible from N,, wrt. P iff
P U {ancp(b,N;)} is legal. Define

[(No,Ni,...,Nu)lp = {A(N;) | N; is visible from N,, wrt. P, for 0 <i<n} .

The set [b]p is called inconsistent iff {A,—~A} C [b], for some atom A; con-
sistent means “not inconsistent”. We omit “wrt. P” when P is given by the
context.

The head of a merge path hides nodes that are on the path from nodes beyond the
head, i.e. away from the direction that the head points. Those nodes that are not
hidden from a node are visible to that node. In the definition of branch semantics
an atom A is true in a consistent branch if and only if it is visible from the
leaf. For instance, in the middle tableau in Example 1 we have [(4,C,~C)], =
{=C,C} and [(B,C)], = {B, C}, where P consists of the two merge paths drawn
there. Notice that the case n = 0 is not excluded, and it holds that [(Ny)] = 0.

3 Hyper Tableaux with Merge Paths

Before defining the new calculus we take one more preliminary step: suppose
that B € [b], for given open branch b and legal path set P. In the trees con-
structed in Definition 5, there is a unigue node Np in b with A(Ng) = B such
that Np is visible from the leaf of b!. Consequently, the ancestor merge path
ancp((b,—B), Ng) is uniquely defined, and it is denoted by ancp((b,—B)) alone.

Definition 5 (Hyper tableaux with merge paths). Let T be a tree, b be a
branch in T and let Ly V---V L, be a disjunction of literals. We say that T' is an
extension of T at b with Ly V ---V L,, iff T' is obtained from T by attaching to
the leaf of b n new successor nodes Ny, ..., N, that are labeled with the literals
Ly,...,L, in this order.

A selection function is a total function f that maps an open tree to one of
its open branches. If f(T) = b we also say that b is selected in T by f.

Hyper tableaux T for 8 with merge path set P — or (T,P) for short — are
defined inductively as follows.

Initialization step: (e,0) is a hyper tableau for 8, where € is a tree consisting
of a root node only. Its single branch is marked as “open”.

Hyper extension step with C: If (i) (T,P) is an open hyper tableau for § with
selected branch b, and (i) C = Ay,..., Ay < By,..., B, is a clause from 8 (for
some Ai,...,Am and By,...,B, and m,n > 0), and (i) {B1,...,Bn} C [b]4,
and () {A1,...,An} N [bly = 0 (regularity), then (T',P') is a hyper tableau
for 8, where (i) T' is an extension of T at b with A1V ---V A, V-B1V---V-By,,
and (i1) every branch (b,—By)...,(b,—By) of T' is labeled as closed, and (iii)

! Most proofs are omitted or only sketched for space reasons; the full version [3] con-
tains all proofs.

every branch (b, A1)...,(b,An) of T' is labeled as open, and (iv) P' = P U
{ancp((b,~B1)), ..., ancp((b,~By))}. If conditions (i) — (iv) hold, we say that
an “extension step with clause A < B is applicable to b”.

Merge path step with p: If (i) (T,P) is an open hyper tableau for 8§ with
selected branch b, and (i) p = mergep(b,b™) is a non-ancestor merge path from
b, for some rooted partial branch b of T, and (iii) last(b?) is not the tail of a
merge path in P, and (i) PU {p} is legal, then (T',P') is a hyper tableau for 8,
where (i) T' is the same as T, except that b is labeled as closed in T', and every
MM-branch b" of T with [b']p ¢,y [I" C MM(Y') is labeled as open in T", and (i)
P =PU{p}. If conditions (i) — (iv) hold, we say that a “merge path step with
merge path p is applicable to b”.

Minimal Model Test: If (i) (T,P) is an open hyper tableau for 8 with selected
branch b, and (i) [b], is a I'-minimal model of 8, then (T",P) is a hyper tableau
for 8, where T' is the same as T except that b is labeled in T' with [b],|I". If
applicability conditions (i) and (i) hold, we say that the minimal model test
inference rule is applicable (to b).

A (possibly infinite) sequence ((€,0) = (To,%0)), (T1,P1)s-+ s (Tn, Pn), ... of
hyper tableaux for § is called a derivation, where (To,Po) is obtained by an
initialization step, and for i > 0 the tableau (T}, P;) is obtained from (T;—1,Pi—1)
by a single application of one of the other inference rules. A derivation of (T}, P,,)
is a finite derivation that ends in (Ty,P,). A refutation of 8 is a derivation of
a closed tableau.

This definition is an extension of previous ground versions of hyper tableaux
(mentioned in the introduction) by bringing in an inference rule for merge paths
and explicitly handling I'-minimal models. The introduction of non-ancestor
merge paths requires to explicitly keep track of the ancestor merge paths as
well.

The purpose of the hyper extension step rule is to satisfy a clause that is
not satisfied in the selected branch b. An implicit legality check for the ancestor
paths added in an extension step is carried out by excluding those atoms from
the branch semantics that would cause illegality when drawing an ancestor path
to them.

An obvious invariant of the inference rules is that every open or MM-branch
b is labeled with positive literals only and hence [b], is consistent. Thus [b],
conforms to our convention of representing interpretations as the set of atoms
being true in it.

The purpose of the minimal model test rule is to remember that a I'-minimal
model is computed and to attach it to the selected branch b. Since usually one is
interested only in the I'-subset of models, we keep only the I'-atoms. These are
thought to be the output of the computation. Notice that for MM-branches, a
hyper extension step is not applicable, because MM-branches are not open and
only open branches can be selected. For the same reason merge path steps are
also not applicable to MM-branches.

The purpose of the merge path step inference rule is to close branches because
a “proof” or a model is to be found in the branch where the drawn merge path is
pointing to. But in the course of a derivation, a previously computed I'-minimal
model MM(b) of a branch b might no longer be the same as [b],|I", because of
a deep merge path step with head node (for instance) in b. Therefore, the label
MM(b) has to be rejected and the branch has to be opened again for further
extension. This is expressed in item (i) in the conclusion of the merge path
step inference rule (Def. 5). Notice, however, that this happens only if some
atom A € I' in [b], becomes invisible, not if some other literal from X'\ I’
becomes invisible. Thus, some deep merge paths can still be drawn without
causing recomputation.

3.1 Examples

(1) Consider the figure in Example 1 again. Closed branches are marked with
the symbol “x” as closed. Only the tableau in the middle is constructible by the
calculus, because the calculus rules forbid the derivation of a tableau with an
illegal set of merge paths. In this middle tableau the left branch gets closed by
a hyper extension step with the clause < C, and the right branch is closed by
a non-ancestor merge path step as indicated. This application of a non-ancestor
merge path step corresponds to a folding-up step in model elimination [8].

The right tableau shows that both ancestor and non-ancestor merge paths
have to be taken into account for legality.

(2) The figure below serves as an example to demonstrate the change of branch
semantics as the derivation proceeds and the computation of models. We forget
about the minimal model test rule for a moment.

A B A B T J‘B
Lo i
Wt ey O, €447)
E
{C,...,B,E}

Suppose that the hyper tableau has been constructed. The semantics of
the right branch b = (B, E,C) is [b], = {B, E,C}. Suppose that this branch
can be extended further. Suppose that the left subtree contains an open branch
b... that makes A and C' true. This is indicated by the set [b...], = {4,C,...}.
Further suppose that this is a minimal model.

Next, let a merge path step be applied with non-ancestor merge path p to
the tableau , yielding the tableau . By this step, b is closed and hence
its interpretation is rejected for the time being. A second effect of this step

is that the node labeled with A becomes invisible from the leaf of b_. Thus
[v..]pugy = {C,---}. Now, this new interpretation has to be “repaired” by
bringing in A again. This is done in the next step by extending with AV B
yielding a tableau (which is not depicted). Notice that the minimal model
[b..]5 is indeed reconstructed, only in a different order. In order to reconstruct
the rejected interpretation {B, E, C'} from above that was rejected by the merge
path step, a hyper extension step below the new B node with E is carried
out. This leads to the tableaux . Notice that the new branch with semantics
{C,...,B, E} possibly contains more elements than the corresponding one with
semantics {B, E,C}.

It is worth emphasizing that the re-computation of models happens only in
the case of non-ancestor merge paths with their head in open branches. Merge
paths into closed branches are “cheap” in that no re-computation is necessary.
Thus, in a sense, refutational theorem proving, which would stop with failure
after the first open finished branch (cf. Def. 6 below) is found, is “simpler” than
computing models.

In order to demonstrate the effect of the minimal model test inference rule let
now I' = {C, E}. We start with tableau | 1 |again. For the branch b_. the minimal
model [b..], = {4,C,...} was supposed. Suppose that E is not contained in
that set. Then [b..]|I" = {C'} is a I'-minimal model, because [b...]; is a minimal
model. According to the minimal model test inference rule, the branch b can
be labeled with {C'} then.

Now, consider tableau . The merge path p there eliminates the I'-minimal
model candidate in the right branch by closing it. Concerning the left branch
b..., although A has been removed from its previous interpretation [b], =
{A,C,...}, its I'-minimal model {C} has not been changed, i.e. [b._]Jp|I" =
[o..]pug I = {C}. Consequently the branch label {C'} has not to be removed
and b, has not to be opened again. This is reflected by the result description
(i) in the definition of merge path step. If I" were X, the branch b . would have
to be opened again and the computation could continue as above leading to .

3.2 Finite Derivations

Unfortunately, our calculus does not terminate in general, i.e. there are infinite
derivations (for finite clause sets), although we employ the “regularity” test (cf.
Def. 5). This is due to deep merge paths — without them, termination is straight-
forward to prove. For instance, the satisfiable clause set {(4,B +),(B,C +
),(A,D +),(C « A)} admits an infinite derivation (cf. [3]) even under very
reasonable assumptions, namely that only hooks are mandatory, and that deep
merge paths are carried out only to close branches holding non-minimal models.
As a consequence we propose the following technique:

Theorem 1 (Termination Criterion). A derivation (Tp,Po),...,(Tn,Pn), ...
is finite, provided that for every (T;,P;), where i > 0, an applicable merge path
step with merge path p is not carried out if for some open branch b in T; more

than an a priori fired number max of occurrences of some label A is invisible
from last(b) wrt. P; U {p}.

This criterion avoids infinite derivations by bounding repetitions of the same
literal along branches. A trivial instance is maz = 0. Then no deep merge paths
but only hooks are possible. The idea underlying the criterion is that one should
not without bound repeat the derivation of an atom that becomes repeatedly
invisible on a branch. Due to this criterion we consider from now on only finite
derivations.

Definition 6 (Redundancy, Fairness). Suppose as given some hyper tableau
(T,P) for 8. A clause A < B is called redundant in an open branch b of T wrt.
P iff [= A < B (iff B C [b]p implies AN [b]5 # 0).

A branch b of T is called finished (wrt. P) iff (i) b is closed, or (i) b is an
MM-branch, or else (iii) the minimal model test inference rule is not applicable
to b and every clause A < B € § is redundant in b wrt. P. The term unfinished
means “not finished”.

Now suppose as given a finite derivation D = (To,Py), ..., (Tn,Pn) from 8
with selection function f. D is called fair iff (i) D is a refutation, i.e. T, is
closed, or else (ii) f(Ty) is finished wrt. P,.

The selection function f is called o model computation selection function
iff f maps a given open hyper tableauw (T,P) to an unfinished branch wrt. P,
provided one exists, else f maps T to some other open (finished) branch.

According to this definition, the only possibility to be unfair is to terminate
a derivation with a selected open branch that could be either labeled with a
I'-minimal model or extended further.

The existence of fair derivations is straightforward because we insist on finite
derivations. Notice that any input clause not redundant so far in a branch b can
be made redundant by simply carrying out an extension step with that clause.

The idea behind a model-computation selection function is that no derivation
should stop with an unfinished branch. Since finished open branches constitute
I'-models, with such a selection function every I'-minimal model is computed.

4 Soundness and Completeness

Lemma 1 (Soundness lemma). Let (T,P) be a hyper tableau for satisfiable
clause set 8. Then for every minimal model I of § there is an open branch b of
T such that [b], C J.

The proof of Lemma 1 is done by simulating non-ancestor merge paths by atomic
cuts, i.e. by (-steps applied to disjunctions of the form A vV —A, for some atom
A. The branch semantics in presence of atomic cuts is given by forgetting about
the negative literals, i.e. [b]5 = {A € [b], | A is a positive literal} for any
consistent branch b in a hyper tableau with atomic cuts.

The transformation ¢ defined below takes a hyper tableau with cut (T, P)
where P is legal and contains at least one non-ancestor merge path, and returns

a hyper tableau with cut (7", P") = ¢(T,P) that contains one less non-ancestor
merge path in P’ (which is legal as well). The transformation ¢ preserves the
following invariant: for every consistent and open branch o' of T' there is a
consistent and open branch b of T such that [b]5 C [b']. Repeated application
of t as long as possible results in a tableau (Teus, Peus) with cuts but without
non-ancestor merge paths. All literals along all branches are visible there, and
hence we have a “standard tableau” with cuts then. The lemma then is proven
for this tableau, and using the invariant above it can be translated back for the
originally given tableau (T, P).

The transformation t itself is depicted in the figure below. The left side
displays the most general situation. Dashed lines mean partial branches. For
instance, the top leftmost dashed line leading to B means the partial branch
pp from the root to the node (inclusive) labeled with B. Triangles are certain
forests. The most appropriate intuition is to think of trees as branch sets. Then
the triangle T2 is simply the set of the branches obtained from T by deleting
all branches that contain pg.

T: r‘ T’
|

B

e

-C C
X

b

-2

7
;{

S

Since P is legal it is extendible to a partial order <. Let p be a minimal element
in this order. This is the one to be transformed away. It is important to use a
minimal element in order to prove the invariant.

The solid lines, just like the ones below B indicate a hyper extension step;
here, it is supposed that a hyper extension step with clause C = A;,..., A, < B
has been carried out to pg, and all the literals short of A; and A; (for some
i,j7 € {1,...,n} and i # j) are attached to nodes in the subtree Tg. The assumed
non-ancestor merge path p is indicated with tail node C' (left) and head node
C (right) and turn point B. There might be other non-ancestor merge paths in
P, in particular some where the head of p is an inner node. This possibility is
indicated in the figure as well, by the arrow pointing into 7. The tail of this
non-ancestor merge path, say pc is a leaf node N somewhere in 7T'.

Inconsistent or closed branches are marked by “x”. The effect of the trans-
formation ¢ is shown on the right. Notice the cut with C'V —C at the turn point
B. The transformation is understood to move merge paths as well. For example,
the non-ancestor merge path pc still has the same head and tail node, but they
are possibly located in different places in T" now, and also a different turn point
might result. After transformation some branches might get closed due to the
presence of —C'. This is indicated by “(x)”. Notice that the transformation only

<

-

introduces new negative literals into branches, =C, so that the branch semantics
wrt. positive literals does not change, as required in the invariant.

The central properties that have to be argued for are (i) that the tableau
resulting from the transformation is a hyper tableau (i.e. that all negative leaf
nodes can still be closed by legal ancestor paths), and (i) that the invariant
holds. This is done by expressing the invariant in terms of visibility from leaf
nodes and then arguing with the orderings underlying P and P'.

This lemma is applied in the proof of the next theorem, which is our main
result.

Theorem 2 (Soundness and Completeness). Let f be a model computa-
tion selection function and D be a finite, fair derivation from clause set 8 of
the hyper tableaw (T,P). Then {MM(b) | b is a MM-branch of T} = {J|I" |
J is a I'-minimal model of 8} Furthermore, if 8 is unsatisfiable then T is closed
(refutational completeness).

Proof. Minimal model soundness — the first theorem statement in the “C”-
direction — is an immediate consequence of the applicability condition (ii) in
the minimal model test inference rule and the result description (i) in the merge
path step inference rule. Regarding minimal model completeness — the first the-
orem statement in the “D”-direction —, suppose to the contrary that for some
I'-minimal model J of 8 there is no MM-branch of T" such that [b], =r J.

Clearly J|I" C J for some minimal model J of 8. Now, label all MM-branches
of T as open and let T' be the resulting tableau. By the soundness lemma
(Lemma 1) we know that 7' contains an open branch b with [b], C J. Suppose
that b is a MM-branch of T'. The case [b], =r J is impossible by the assumption
to the contrary. Hence from [b], #r J and [b], C J it follows [b], <r J. This,
however, is impossible by soundness, as it contradicts the given fact that J is a
I'-minimal model. Therefore b is not an MM-branch in T'. Since it is open in T"
it must be open in T as well. We are given that D is fair. Since f is a model
computation selection function, this implies that b is finished.

For this particular b we show next that [b], =r J holds. For, suppose to
the contrary, that [b], #r J holds. Again, with [b], C J it follows [b], <r J.
Since b (of T') is open — i.e. neither closed nor a MM-branch — and finished the
minimal model test rule is not applicable and every clause from § is redundant
in b wrt. P. In other words, [b], = 8. With [b], <r J this is a contradiction
to the given I'-minimality of J. Hence, [b], =r J. But then the minimal model
test inference rule is applicable to b, because J is given as a I'-minimal model,
and so [b], is a I-minimal model as well. Hence b is not finished, contradicting
the given fairness of D. So the outermost assumption to the contrary must have
been wrong, and the theorem follows.

Refutational completeness is proven as follows: suppose that 8 is unsatisfiable
but T is not closed. By the minimal model soundness result then 7' must con-
tain an open branch b (because MM-branches are impossible). Since [b],, is an
interpretation and 8 is unsatisfiable, [b], falsifies some input clause from 8. But
then a hyper extension step is applicable to b with this clause. This contradicts
the given fact that D is fair. O

5 Further Considerations and Conclusions

Calculi like ours and related calculi need some extra test or device to ensure
I'-minimal model soundness as well. This is due to the inherent complexity of
the problem [5]. Fortunately, every I'-minimal model candidate can be tested
in a branch-local way for actual I'-minimality. More specifically, the approach
suggested as the groundedness test in [11,12] is adapted in the full paper. This
approach is attractive due to its low (polynomial) memory consumption. Since
our approach, when forgetting about merge path steps, is an instance of the
method of in [12], low memory assumption can be achieved in our case as well.
This does not hold for related methods like MILO-resolution [14], or the minimal-
model computation extension of MGTP proposed in [7], or the tableau method
of [13], whose worst-case space complexity is exponential.

In the proof of Lemma 1 we indicated how atomic cuts can be used to simulate
non-ancestor merge paths. So, the question might arise why not directly use these
cuts. The answer is manifold. First, by the mere fact that the simulation exists
we get insights how merge paths relate to atomic cuts. Second, the graphical
notation might be a helpful metaphor to study the topic. Third, merge paths
correspond only to certain cuts, much like folding-down [8] or related techniques
like complement splitting [9] also correspond only to certain cuts. Fourth, with
merge paths, the effect is that they are surgically inserted into the path, and
thus in this sense we procrastinate insertion of cuts until useful.

Our approach can be viewed as a Davis-Putnam (DP) procedure. In DP,
splitting in a certain order is advantageous for deterministic computation (unit-
resulting steps). Our procedure can use the entire set of visible literals to achieve
the same determinism, without pre-selecting this splitting order.

It is generally accepted that analytic or even atomic cuts should be applied
with care in order not to drown in the search space. This is our viewpoint as
well. We emphasize one particular property of the transformation ¢ (cf. the fig-
ure in the proof of Lemma 1): in the cut simulation, the subtree T is moved to
a different place in the tree. By the bare fact that the considered non-ancestor
merge path p is legal in the merge path set containing it, we can be sure that
the destination of T¢ (the C node) contains enough ancestor literals so that T¢
remains a hyper tableau — that all branches with negative leaves remain incon-
sistent. Clearly, opening branches again would be undesirable as it is unclear if
any progress is achieved then. The alternative, forgetting about T would cause
a lot of recomputation.

Of course, this and other effects and how to avoid them could be formulated
as conditions on cuts as well. Non-termination would result if the same atomic
cut occurs without bound on a branch.

Conclusions. In this paper we extended previous versions of the hyper tableau
calculus by inference rules for merge paths, a device that was originally con-
ceived to speed up refutational theorem proving in the context of clause trees
[6]. Our primary goal was to investigate the consequences for model computa-
tion purposes. Our main result is therefore a minimal model sound and complete

calculus to compute circumscription in the presence of minimized and varying
predicates. The motivation was given by the potential to solve a certain problem
in diagnosis applications.

We argued that the new calculus generalizes other approaches developed

in comparable calculi (folding-up/down, complement splitting). How to apply
the new technique practically, in particular in the envisaged diagnosis domain,
is subject to further investigations. Fortunately, the legality test is O(|P|) and
only negligible overhead is introduced. An algorithm is described in [6].

Acknowledgements. We thank the reviewers for their valuable comments.

References

1.

10.

11.

12.

13.

14.

15.

P. Baumgartner, P. Frohlich, U. Furbach, and W. Nejdl. Semantically Guided
Theorem Proving for Diagnosis Applications. In Proc. IJCAI 97, pages 460-465,
Nagoya, 1997.

. P. Baumgartner, U. Furbach, and I. Niemeld. Hyper Tableaux. In Proc. JELIA

96, LNAT 1126. Springer, 1996.

P. Baumgartner, J. Horton, and B. Spencer. Merge Path Improvements for Min-
imal Model Hyper Tableaux. Fachberichte Informatik 1-99, Universitdt Koblenz-
Landau, Universitit Koblenz-Landau, Rheinau 1, D-56075 Koblenz, 1999.

. F. Bry and A. Yahya. Minimal Model Generation with Positive Unit Hyper-

Resolution Tableaux. In Miglioli et al. [10], pages 143-159.

T. Eiter and G. Gottlob. Propositional circumscription and extended closed world
reasoning are mh-complete. Theoretical Computer Science, 114:231-245, 1993.

J. D. Horton and B. Spencer. Clause trees: a tool for understanding and imple-
menting resolution in automated reasoning. Artificial Intelligence, 92:25-89, 1997.
K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as Failure into
a Model Generation Theorem Prover. In D. Kapur, editor, In Proc. CADE 11,
LNAI 607, pp. 400-415. Springer, 1992.

R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into
Connection Tableau Calculi. Journal of Automated Reasoning, 13, 1994.

R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog.
In E. Lusk and R. Overbeek, editors, Proc. CADE 9, LNCS 310, pp. 415-434.
Springer, 1988.

P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors. Theorem Proving
with Analytic Tableaur and Related Methods, LNAI 1071. Springer, 1996.

I. Niemeld. A Tableau Calculus for Minimal Model Reasoning. In Miglioli et al.
[10].

I. Niemeld. Implementing circumscription using a tableau method. In Proc. ECAI,
pages 80-84, Budapest, 1996. John Wiley.

N. Olivetti. A tableaux and sequent calculus for minimal entailment. Journal of
Automated Reasoning, 9:99-139, 1992.

T. Przymusinski. An Algorithm to Compute Circumscription. Artificial Intelli-
gence, 38:49-73, 1989.

R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence,
32(1):57-95, Apr. 1987.

