We consider the I/O-efficient rectangular segment search problem in 2D. The problem involves storing a given set S of N line segments in a data structure such that an axis aligned rectangular range query R can be performed efficiently; i.e., report all line segments in S which intersect R. We give a data structure requiring space $O\left(\frac{N}{B} \log_{B} N + \lambda/B\right)$ disk blocks that can answer a range query R using $O(\log_{B} N + K/B)$ I/Os, where λ is the number of intersection points among the line segments in S, B is the number of line segments transferred in one I/O, and K is the number of line segments intersecting R. We also consider the problem of finding all the line segments which are entirely within the rectangle R if the set S contains only vertical and horizontal line segments. For this problem, an optimal data structure is presented with size $O\left(\frac{N}{B} \log_{B} N\right)$ disk blocks that requires $O(\log_{B} N + K/B)$ I/Os to answer the query.

Gautam K. Das received his M. Sc. degree in Applied Mathematics from the Calcutta University in 2000; and his M. Tech and Ph.D. degrees in Computer Science from the Indian Statistical Institute in 2002 and 2008 respectively. He received a national scholarship from the Government of India in 1998 on the basis of undergraduate result for pursuing higher education. Currently, he is a postdoctoral fellow in the Faculty of Computer Science, University of New Brunswick.