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ABSTRACT

The general objective of this research is to compare the performance of scveral spatial
indexing methods. In order to do so, we built spatial indices for two-dimensional non-
zero size objects and performed range searches on those objects. There are two ways to
create an index: 1) use the spatial data support in commercially available databases such
as Oracle 8i and O2, and 2) create the spatial data-indexing scheme directly using spatial
data structures such as the R-tree or Grid file. A new data structure based on the binary-

radix bucket-region (BR?%) grid file was created for non-point objects.

Two sets of data from the National Topological Database were used to perform the
experimental comparisons. We performed two different types of range search: search
based on the bounding box of the objects only (primary) and search based on the real data
(secondary). Testing was performed with query window areas = 1%, 4%, 9%, 16%, 25%,

36%, 49%, 64%, 81%, and 100% of the data extent.

For secondary range search, the R-tree and the modified grid file took the least amount of
time (0.497 seconds and 0.628 seconds respectively) on average to report (out of a test set
of 20,000 objects) the objects in range for a query window area = 49% of the original
data extent. The Oracle 8i Spatial object-relational, and the Oracle 8i Spatial relational
methods required, on average, 220, and 400 times more time for the same search,
respectively. Significant difficulties were encountered in getting the commercially

available databases to perform range searches on the test data.
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CHAPTER ONE

INTRODUCTION

1.1 Spatial Data and Range Queries

I.1.1 Spatial Data

A common example of spatial data can be seen in a road map. A road map is a two-
dimensional object that contains points, lines, and polygons that can represent cities,
roads, and political boundaries such as states or provinces. A road map is a visualization
of geographic information. The location of cities, roads, and political boundaries that
exist on the surface of the Earth are projected onto a two-dimensional display or piece of
paper, preserving the relative positions and relative distances of the rendered objects. The
data that indicates the Earth location (latitude, longitude, and height or depth) of these

rendered objects is the spatial data.

Spatial data is rich in meaning including not only locational but also topological
information stored either explicitly or implicitly. From the data we can acquire the

locations and shapes of the objects, as well as their relation with other objects.

There are two basic types of spatial data: raster and vector. For vector data, there are
three primitives: a point, a polyline, and a polygon. Points can be considered as a basic

type, since any complicated object can be ultimately decomposed into points. Spatial




operations for points can be used for the objects of the other two types. In this thesis, we

will deal with non-point data such as polylines and polygons.

1.1.2  Range Search

The range Search based on a range query is a frequent operation performed on spatial
objects. It can be described as retrieving or counting a collection of spatial data. Given a
set of spatial data and a query window, there are two types of range queries. First, tell if a
specified object intersects the query window. Second, report all objects that intersect the
query window. For example, a typical one-dimensional range search requires retrieval of
all the objects within the range [x), x;] among N objects ordered along the x-axis. In this
thesis we will be primarily concerned with a two-dimensional range query with a 2-d

orthogonal query window.

Since the large volume spatial data must be physically stored on a medium such as a disc,
overhead is always a problem in range search. Reading data from the medium or writing
data to it involves relative movement of the disc heads. Two locationally close data
objects may not be close on the disk, and a range search operation may require substantial
disc head movement. This results in a slow range search time.

In order to solve this problem, a spatial indexing mechanism is used. The spatial indexing
structure of the real objects is much smaller than the set of real objects themselves, so it

can be kept in memory to speed up the range search processing.




1.2 Data Structures for Spatial Indexing

In order to speed up range searches in geographic information systems and digital
mapping, advanced indexing mechanisms for spatial data are used. There are many

spatial indexing methods developed starting in the 1970s.

Three indexing schemes were investigated by Greene [1989] from the University of

California at Berkeley. Those schemes included the R- tree, KDB-tree, and 2D- ISAM.

R-tree indexing [Guttman, 1984] is based on a multi-level tree structure designed to
handle n-dimensional objects. All non-leaf nodes are assigned a minimum and maximum
number of entries and each entry contains an identifier which locates its child node and
also the spatial region which the child covers (see Figure 1.1). The time for range search

in an R-tree is O(N),

Similarly, the KDB-tree [Robinson, 1981] is another multi-level balanced tree structure
designed to handle n-dimensional point data. The nodes at a given level in the tree are
partitioned into disjoint sub-regions such that when summed, span the entire search

space.

On the other hand, 2D-ISAM [Greene, 1989] is a two-level tree structure similar to grid
files; the first level partitions the data along the x-axis and the second level partitions
along the y-axis. Compared to the R-tree, 2D-ISAM is better in terms of storage required

(approximately 1/3 less space for 2D-ISAM). This is the only advantage of 2D-JSAM




over the R-tree. R-trees can be made to simulate 2D-ISAM performance-wise, with a
significant advantage: the data in the R-tree has a dynamic index and can accept updates

without risking overflow and requiring re-organization.

Empirical testing on insertion and retrieval operations indicated that R-tree indexing

provided the best overall performance [Greene, 1989].

(Gao [1994] conducted an experiment to compare internal indexing and external indexing
[Nickerson and Gao, 1998]. In his research, a Morton code indexing scheme using the
INGRES database was compared to a Morton cade external indexing scheme written
directly in C code. The results were clear; external Morton code indexing provided
excellent performance compared to Morton code indexing using the INGRES database;
direct Morton code indexing took an average of 1,535 times less CPU time for searching,
and required approximately 4.5 times less space. Again, this is also an empirical result
based on real data obtained from the Hydrographic Data Cleaning System (HDCS) [Ware

et al., 1990].



(a) A planar representation (b) The directory of a R-tree

Figure 1.1 The structure of an R-tree where M=3 (adapted from Samet [1990]).

The R-iree indexing structure has many advantages. Firstly, minimal bounding rectangles
(MBRs) give us a rough idea about the Spatial extent of objects. MBRs are easy to
describe and to be compared with search ranges since their edges are parallel to the x-
and y-axes, respectively, and an MBR can be simply defined by four numbers. Secondly,
when massive data are involved, a hierarchy can be formed by using large MBRs
covering small MBRs. Thirdly, leaf nodes store the descriptions of complete spatial
objects. Thus the spatial search can be performed in an object-oriented way. Range
search can be performed at fast speed because of the R-tree’s hierarchical characteristic
as well as its using MBRs in an object-oriented manner. Fourthly, R-trees can be used in

dynamic indexing. For further details of the R-tree structure, please see chapter 3.




Abel and Smith [1983] solved the rectangle cover problem using a B* tree. This consists
of a sorted list of rectangles held in ascending sequence by key value, with each member
of that list consisting of the rectangle identifier and the assigned locational key. The B-
tree index provides direct access to the member of the sorted list with the smatlest
locational key value greater than or equal to a given key. The number of accesses to

locate a number through the B tree is O(logN).

Nievergelt’s grid file [1984] is a metric data structure designed to store points and simple
geometric objects in multidimensional space. Its goal is to retrieve records with at most
two disk accesses and to handle range queries efficiently (see Figure 1.2). Smith and Gao
[1990] evaluated the performance of grid-file spatial access method. The grid file, like
the B tree, performs very well in the insert and delete operation and achieves high
storage utilization. They report that the grid file has poor search performance, but no
details are given. This seems to contradict Nievergelt et al’s [1984] paper that claims a

worst case of two disk accesses to retrieve a record.

Hinrichs [1990] introduced the new BR® —directory structure for the grid file. BR? means
binary radix bucket region. It is a tree structure, designed to handle multidimensionat
point data. Two disk accesses for search is not guaranteed; however, this new kind of
directory guarantees a linear growth with the number of buckets. Figure 1.2 shows the
construction of BR?-directory for the two-dimensional partitioning of the data space by a

tree-like structure. Data buckets are indicated by the label By, By, Bs, ..., By,
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Figure 1.2 The grid file structure: BR-directory and BR*-tree
(adapted from Hinrichs [1990]).

The BRz-directory has the advantage that every bucket in the query range is refurned
exactly once. In the grid array representation [Hinrichs, 1985] a bucket may cover more
than one grid cell and hence it may be returned more than once during range searches.
Therefore we have to decide for each bucket whether it has already been visited. For this
test we must construct its bucket region, and determine whether this region extends into a
part of the data space that has already been processed. Constructing the bucket region

from the grid array representation is a time-consuming task.

The BR2-directory is superior to the region directory [Hinterberger, 1987] for the

following reasons. Simpler and fewer comparisons are necessary to find the relevant

buckets. The space to represent bucket regions in the BRZ-directory does not depend on




the number of dimensions of the grid file. The overall space requirements are higher for

the region directory. For further details of grid file structure, please see chapter 4.

1.3 Problem Definition

It is expected that the application characterizes the degree of suitability of an indexing
mechanism, An effective data structure on one kind of spatial data may behave

differently on other kinds of spatial data.

The general objective of this thesis is to build efficient spatial indices for two-
dimensional objects and perform range searches upon those objects. There are two ways
to create spatial indexing: 1) use the sbatial data support available with some databases,
and 2) create the spatial data-indexing scheme by ourselves. The following are the

specific objectives:

e Can the grid-file method [Hinrichs, 1991] be extended to handle non-point data?
e How well do commercial database spatial indexing tools handle non-point data?
» How do commercial database spatial indexing tools compare in terms of time for the

range search to direct spatial indexing methods?



For commercial database spatial indexing methods, we choose to use the Oracle g
spatial data cartridge [Oracle 81, 1999] and O spatial {Ardent, 1998]. For direct spatial

indexing methods, we implemented the R-tree and the grid-file.



CHAPTER TWO

NTDB TEST DATA

2.1 Data Range

The test data we used was obtained from the National Topographic Database (NTDB).
The contents of the NTDB largely correspond to that of the topographic maps in the
National Topographic System (NTS). Under the NTS, Canada is divided into m;mbered
primary quadrangles, each 4° latitude by 8° longitude south of 80°, and 4° latitude by 16°
longitude north of 80°. In this research we will use two sets of data. The first covers the
area bounded by longitude 66° to 68° W and latitude 45° to 46° N, and represents the
1:250,000 scale map sheet NTS21G. This data set has approximately 9 MB of
geographical data. It contains 20,108 objects (15,370 polylines and 4,738 polygons), and
the data extent is 114,994m in the NS direction, and 159,018m in the EW direction. The
average bounding box of a polyline object is 1051m in the NS direction, and 986m in the
EW direction. The average length of a polyline is 1906m. The average bounding box of a
polygon object is 671m in the NS direction, and 599m in the EW direction. The average
area of a polygon is 69,825m?. The second set of data covers the area bounded by
longitude 66°30” to 67° W and latitude 45°45’ to 46°N, and represents the 1:50,000 scale
map sheet NTS21G1S5; it contains about 14MB of geographical data. It contains 17,034
objects (13,198 polylines and 3,836 polygons), the data extent is 28,870m in the NS
direction, and 40,106m in the EW direction. The average bounding box of a polyline

object is 410m in the NS direction and 408m in the EW direction. The average length of a

10




polyline is 713m. The average bounding box of a polygon object is 172m in the NS
direction, and 159m in the EW direction. The average area of a polygon is 17,037m?.
Plots of real objects as well as histograms of sizes of objects for these two datasets are
shown in Appendix 0. Digital data sets for all of Canada arc available, and can be ordered

using http://maps.nrcan. gc.ca [NRCanada, 1999].

2.2 Characteristics of the Data

To represent a topographic feature in the NTDB, three distinct data components are
needed, namely: entity, geometric representation, and ancillary data. For NTDB
purposes, an entity is the digital representation of the descriptive component of a
topographic feature. It is associated with a name in order to distinguish it from other
entities (e.g. road, dam, transmission line, and contour).

The geometric representation is the digital representation of the spatial component of a
topographic feature. The NTDB supports three different types of geometric
representation: point, line and area. Each entity may be associated with more than one
fype of geometric representation. Each type of representation (point, line, and area) may
be defined in two or three dimensions. Three-dimensional definition is given by
association of an elevation (Z) with each point or vertex, both defined by a pair of
planimetric coordinates (X, Y). Coordinates are represented in the Universal Transverse
Mercator (UTM) projection on the North American Datum 1983 (NADS83) to a resolution
of one meter. All points, lines, and areas are assigned an identifying feature code.
Information inherent to data acquisition and validation is assembled in the ancillary data

of entities. A maximum of two distinct occurrences of ancillary data of entities may be

11



simultaneously associated with an occurrence of geometric representation: one specific to

data acquisition and one specific to data validation.

2.3 Data Format
The digital data is in Intergraph Standard Interchange Format (ISIF). ISIF is a product of
Intergraph Systems Ltd. For a full description of ISIF, see EMR Canada [1983, 1987,1989].

Omly a sub-set of ISIF commands are used here. They are as follows:
LST- Line String, used to define a line object consisting of n coordinate pairs.
e.g. LST/x1,yl,z1,...,xn,yn,zn

LST/OP,x1,yl,zl,...,xn,yn,zn

CUR- Curve, followed by n coordinate pairs.

e.g. CUR/x1,yl,zl,...,xn,yn,zn

CON- Continuation data, followed by n coordinate pairs.

e.g. CON/x1,yl,zl,...,xn,yn,zn

ASC- Association, used to define the feature code assigned to an object.

e.g. ASC/Feature code (e.g. 5790)

DID- Drawing identification, used to define the name of the file that was created.

¢.g. DID/NA = file name, DA = date, MO = dimension, RA= Range
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Note that all the coordinates are given in meters using the UTM map projection [e.g.

Krakiwsky, 1973]. Figures 2.1 and 2.2 show sample data from the two test datasets.

DID/NA=21GEMR2DZ,DA=02/28/90,M0=2,RA=577435,4983220,736453,5098214
ASC/5780
LST/OP,629829,4998263,629816,4998287,629766,4998331,629722,4998330,
629722,4998305,629792,4598256,629825,4998263
LST/OP,629769,4998486,629662, 4998529%,629581,4998540,625537, 4998565,
629487,4998571,629468,49985353,629487,4998489,629525,4958452,629613,
4998403,629695,4998385,629745,4998411,629769, 4998486
LST/OP,627536,5000496,627529,5000546,627460,5000614,627416,5000645,
627353,5000657,627334,5000650,627322,5000625,627354,5000550,627436,
5000470,627487,5000458,627524,5000471,627536,5000496
L3T/OP,605425,4999195,605418,4999233,605393,4999251,605356,4999245,
605312,4999188,605319,4999144,605345,4999113,605358,4999063,605383,
4999045,605414,4998052,605419,4999189,605425,4999195

Figure 2.1 Sample ISIF data for 1:250,000 map sheet NTS21G.

DID/NA=21G15T3D,DA=07/02/87,M0=3 ,RA=654868,5067998,-2147483648,654974,
5096868,2147483647

ASC/9963
LST/OP,655564,5067988,-32769,675009,5068515,-32769,694454,5069093, -
32769,693584, 5096868,-32769,674226,5096290,-32769,654868,5095774, -
32769,655564,5067998, -32769
LST/0P,654868,5095774,-32769,655056,5088263,-32769%,655245,5080753, -
32769

ASC/10100
CUR/665328,5082570,100,665337,5082559,100,665344,5082545,100,665345,508
2536,100,65346,5082502,100,665346,5082469,100,665350,5082446,100,665362
5082433,100,665373,5082413,100,665381,5082383,100,665391,5082361,100,66
5404,5082348,100,665417,5082346,100,665437,5082361,100,665467,5082401,1
00

Figure 2.2 Sample ISIF data for 1:50,000 map sheet NTS21G15.
2.4 Data Preprocessing
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Since we use only these two sets of data to compare the performance of several spatial
indexing methods, we do not have to distinguish different layers. This means we do not
keep track of the object type (feature code). Instead we only take coordinates for each
object (point, polyline, and polygon) and put all the objects in one layer for each set of
data. For the 1:50,000 dataset, we discard the z value. All the objects in the two sets of
data are considered as two-dimensional. For the 1:250,000 dataset, we only read in the
coordinates after LST/OP. For the 1:50,000 set of data, we read in the coordinates after

LST/OP, CUR and CON.

Since the original data is in ASCII format, we first pre-process the data to transform the
original data into a format that represents the same information using a smaller amount of
space. This will also allow faster retrieval of information. We split the original data into
two files: the control file and the detail file. The detail file acts as a database that
contains detailed information and the control file acts as the index for the database. For
each record in the detail file, there is a corresponding record in the control file that
contains meta-data of the record such as the position of the record, the length of the
record, and the bounding box of the record. Notice that although the bounding box can
be derived from the data, we decided to store the bounding box in the control file for
faster searching. This means that we only need the control file to do a primary search
(i.e. a search on bounding rectangles only). Once we have narrowed down the number of
records that could potentially match our search criteria, we can then access the detail file
to do a more accurate, slower search. In both the R-tree and grid file methods, we used

this preprocessed form of data. The control file is used to build the tree itself and the
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detail file can be stored anywhere on disk and accessed as needed. Figure 2.3 illustrates

how original data files are preprocessed. Figure 2.4 shows the format of the control file.

Original Data
(e.g. nts21g.dat or
nts21g15.dat)

control.dat detail.dat

Figure 2.3 Test data preprocessing.

i Coverdll | Position! | Lengthl BoundingBox ... | PositionN LengthN BoundingBoxN

| (@*ing | (ongint) | (in) (4 * int) (long int) (int) (4 * int)

Figure 2.4 Format of the control file.

Coverall means the data extent, and includes 4 integers giving the minimum value of X
and Y and the maximum value of X and Y for all objects in the file. The rest of the file

contains position, length and bounding box for each object in turn.

Position is the byte offset of the beginning of the coordinates for this object in the detail

file. Length is the number of vertices stored for this object in the detail file.
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Fig. 2.5 shows the structure of the detail file.

X1 Array Y1 Array Xn Array Yn Array

Figure 2.5 Format of detail file.

X1 Array and Y1 Array contain lengthl X and Y coordinates for the first object, and Xn

Array, Yn Array contain lengthn X and Y coordinates for the nth object.
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CHAPTER THREE

R-TREE SPATIAL INDEXING

3.1 The Structure of an R-tree

In order to handle spatial data efficiently, we choose to use the R-tree, a dynamic index

structure, designed to handle multi-dimensional spatial data.

An R-tree is a height-balanced tree similar to a B-tree [Comer, 79]. Each node in the tree
corresponds to the smallest d-dimensional rectangle that encloses its child nodes. The leaf
nodes contain pointers to the actual geometric objects in the data file, instead of children.
The objects are represented by the smallest aligned rectangle in which they are contained.
Nodes correspond to disk pages if the index is disk-resident, and the structure is designed
so that pruning of nodes during spatial search takes place as close to the root as possible.
The index is completely dynamic; inserts can be intermixed with searches and no

periodic reorganization is required.

The basic rules for the formation of an R-tree are similar to those for a B-tree. All leaf
nodes appear at the same level. Each entry in a leaf node is a 2-tuple of the form (R,0)
such that R is the smallest rectangle that spatially contains data object O. Each entryin a
non-leaf node is a 2-tuple of the form (R, P) such that R is the smallest rectangle that

spatially contains the rectahgles in the child node pointed at by P. As for a B-tree, an R-
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tree of order m means that each node in the tree, with the exception of the root, contains
between [ m/2 ] and m children. The root node has at least two children unless it is a leaf

node.

For example, consider the collection of rectangles given in Figure 3.1, and treat the query
rectangles (i.e., 1, 2, and 3) as elements of the collection so that there are 10 rectangles.
Let m=3. One possible R-tree for this collection is given in Figure 3.1(b). Figure3.1(a)
shows the spatial extent of the rectangles of the nodes in Figure3.1(a), with broken lines
denoting the rectangles corresponding to the sub-trees rooted at the non-leaf nodes. Note
that the R-tree is not unique. Its structure depends heavily on the order in which the

individual rectangles were inserted into (and possibly deleted from}) the tree.

r,:..—..-..:.:.—.-:.:.—..:.:.—._:‘:
(i !
o (As) |
pome R :
i I i B g
A I |
¥ Lk !
' it ¥
[N
: : I: ------- riia:i-a:a-ll
! o I LFL Jms )
! :l' H
I Pl !
:i O g !I_I I_
il | ,
[iwuse: RN N Cpew . |
| 1E I3 J} |
R1{pa |
LY ET T

(a) A planar representation (b) The directory of an R-tree

Figure 3.1 The structure of an R-tree where m=3 (adapted from Samet [1990]).
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3.2 R-Tree Operations
3.2.1 Searching

The search algorithm descends the tree from the root in a manner similar to a B-tree.
More than one sub-tree under a node visited may need to be searched. It is not possible to
guarantee good worst-case performance. With most kinds of data the update algorithms
will maintain the tree in a form that allows the search algorithm to eliminate irrelevant

regions of the indexed space, and examine only data near the search area.

In the following we denote the rectangle part entry E by E.i and the child-pointer part by

E.p. Given an R-tree whose root node is T, find all index records whose rectangles

overlap a search rectangle S, If Tisnota leaf, check each entry E to determine whether

E.ioverlaps S. For all overlapping entries, search on the tree whose root node is pointed

to by E.p. If T is a leaf, check all entries E to determine whether E.i overlaps S. If so, E
| is a qualifying record. Checking bounding rectangles only against S is called a primary

search.

3.2.2 Insertion

The algorithm for inserting an object (i.e., a record corresponding to its enclosing
rectangle) in an R-tree is analogous to that used for B-trees. New rectangles are added to
leaf nodes. The appropriate leaf node is determined by traversing the R-tree starting at its

root and at each step choosing the sub-tree whose corresponding rectangle would have to
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be enlarged the least. Once the leaf node has been determined, a check is made to see if
insertion of the rectangle will cause the node to overflow. If yes, then the node must be
split, and the m+1 records must be distributed in the two nodes. Splits are propagated up

the tree. Details of algorithms for splitting nodes are discussed in Guttman [1984].

3.3 Implementation

We stored object detail data on disk, stored bounding box and disk location of each object

in leaf nodes of the R-tree, and the entire R-tree indexing structure is kept in memory.

In building a tree, we use index information available in the control file (control.dat) to
populate the nodes of the tree. This allows the control information to be searched much
faster. Once all the information is in the tree, we can do an in-memory primary search
(see Figure 3.2). Once we have narrowed the search to a smaller set of possibilities, we
can then use the data in the detail file (detail.dat) to perform a secondary search to check
for objects intersecting the search rectangle S. This is illustrated in Figure 3.2 (b). The

formats of control.dat and detail.dat files are described in Chapter Two.
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Primary range
Control.dat . search results

(a)

Control.dat

— Primary followed

by secondary range
/ search results
Detail.dat

(b)

Figure 3.2 Implementation architecture for R-tree testing.

3.4 Testing

We performed two different types of range search to test the performance of the R-tree
‘indexing methods. The first was a search based on the bounding box of the objects
(primary search) and the second was a search based on the real objects (secondary
search). Figure3.3 illustrates an example range search on six objects. The query window

is shown in dashed lines.
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Figure 3.3 Example spatial query on six objects.

For a search based on bounding boxes of the objects, we will get objects 2, 3, and 6

reported in range. For a query based on real objects, we will only get objects 2 and 3

reported, since the real data of object 6 does not intersect the query window.

For testing, we chose to use query window (QW) areas of 1%, 4%, 9%, 16%, 25%, 36%,

49%, 64%, 81%, and 100% of the data extent area. These query window sizes are not

from real life query logs; they are generated by 10% x 10%, 20% X 20%, ..., etc. of each

dimension of data extent. (Xym, Ymny) and (Xmax, Yuax) are the bottom-left and upper-

right coordinates defining the data extent area, (XWpin, YWpin) and (XWinax, YWiax) are

the bottom-left and upper-right coordinates defining the query windows (see Figure 3.4).

With each different size of query window we ran 50 random searches.
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Figure 3.4 Coordinates of data extent and query window.

Figure 3.6 shows the algorithms for performing testing and generating random search
windows 50 times. Figure 3.7 shows the R-tree testing algorithm for primary range

search. The structures used in the algorithm are shown in Figure 3.5.

struct Rect
{ int b{4];//xmin, ymin, xmax, ymax
//The position and len are needed to retrieve the detail data
//from disk.
long position; //byte offset
int len; //length, counts each four bytes as one
// xArr and vArr is just place holder, it does not contain
// real data until we do a secondary search. 2Allocation
// is done in Search function
int* xArr;
int* vArr;
Y

gtruct Branch
{ Rect rect;

Node *child;
};

struct Node
{ int count;
int level; // 0 is leaf, others positive
Branch b[m}; // m is the order of the R-tree.
Yi

Figure 3.5 Structures used for R-tree range search.
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main{)

{

1. Loop = 50;

2. for (j=0; j<Loop; j++} {

3 for (i=0; i<10; i++) {

4. SearchWindow {&w, &CoverAll, ({(i+1)*10Q):

5 HitCount[i] += Search{Root, &w, &ResultList):}:
}

SearchWindow (Rect* window, Rect* data, int percentage)

{

1. float p;

2.p = (float)percentage/100.0;

3. for {i=0; i< DIMS; i++} {

4, range[i] = data->b{DIMS+i] - data->b[i]:

5. window->b[i} =(rand()%(int){(1.0-p)*range[i]l}+ data->b[i]);
6. window->b[1+DIMS] = window->b[i] + p*rangelil;}

}

Figure 3.6 Algorithms for testing and
generating random search windows 50 times.

The code in main() function in Figure 3.6 are explained as follows:
Line 3: For 10 times (once per query window size). Line 4: Create a random search
window based on the data extent. Line 5: Do a search using this generated scarch

window,

The code in the SearchWindow() procedure in Figure 3.7 is explained as follows:

Line 4: For each dimension (2 in this case), range = Maximum value — Minimum value.
Lines 5 and 6: Generate random range search windows defined by bottom-left and upper-
right coordinates. Table 3.1 shows the boundary values as used in the code. Note that the
testing for the range search is considered as best case testing, since the entire indexing

structure is kept in memory.
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Table 3.1 Boundary values for the range search testing algorithm,

Point Corresponding code

KWmin, YWrin : window->b[0], window->b[1]
KWraxs YWoax window->b[2], window->b[3]
Xyrnr  Yum data->b[0], data->b[l]
Xnxr Yomx data->b[2], data->b[3]

int Search(Node *n, Rect *w, ListNode * ResultList)
{
1. int hitCount = 0;

2.if (n-»>level ==0)} /* this is a leaf node */

3. for (i=0; i< m; i++)

4, if (n-»>b[i].child && Overlap(w, &n->b[i].rect))
5. hitCount++;

6. AddtoResultList (&n->bfi}.rect, &ResultlList);
7.else /* this is an internal node in the tree */

8. for (i=0; i< m; i++)

9. if (n-»b(i].child && Overlap(w, &n->b[i].rect))
10. hitCount += Searchin->b[i].child, w);

11. return hitCount;
}

Figure 3.7 R-tree testing algorithm for primary range search.

Procedure Search() for primary range search is shown in Figure 3.7, and is explained with

help of Figure 3.1(a) and (b) as follows:

First we check if the query window (QW) intersects with any rectangles in the root node.
As we can see in Figure 3.1 (a) QW only intersects with R2. We prune R1 and follow the
R2 link to the next level. This time QW intersects with R6 only. We prune RS and follow
the R6 link to the leaf level. Now we are at leaf node, and we check if QW intersects with
any object rectangles in this node. Rectangles 2, F, and G, which are the bounding boxes

of three real objects, are in range, so we report them.
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The R-tree testing algorithm for secondary range search is split into two parts as shown in

Figures 3.9 and 3.10. The Ptcoord structure used in the algorithm is defined as follows:

struct Ptcoord // point coordinate
{

float x,vy;
};:

The sub-functions Overlap(), Contained() and twoline_intersect() are omitted; the details
about these functions are shown in Appendix 2. Figure 3.8 shows the “overlap” and

“contained” relationships between two rectangles d and w.

(a) (b) (©)

Figure 3.8 Relationship between two rectangles for overlapping and containing,

Rectangle w (dotted line) stands for a query window, and rectangle d (solid line) stands
for a data object. Two rectangles in Figure 3.8 (a), (b), and (c) are all considered as
overlapping. Two rectangles in Figure 3.8 (a} and (¢) are considered as containing (w

contains d in {a), d contains w in (c)).
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int Search{Node * n, Rect * w)

{

1
2
3
4

5

-~

11
12

13
14

15

16

17

18
19
20

21
22
23

Ptecoord temph, tempe, lineb, linee;
if (n->level > Q) // this is an internal node in the tree
for (i=0; i<m; i++)} // m is the order of the r-tree
if (n->k{il.child && Overlap{w, &n->b[i].rect})
hitCount += Search(n->bii]l.child, w);

else // this is a leaf node
{

for (i=0; i<m; i++)

//case 1l: bounding rectangle of data is inside search window
if (n->bi{i]l.child && Contained ( &n->b[i].rect, w )}
hitCount++;

//case 2: bounding rectangle of data interact search window
else if {(n->blil.child && Overlapi{w, &n->b[i].rect)}
{

fseek{theStream, n->b[i].rect.position, SEEK_SET)};

if {n->bli].rect.xArr == NULL)

n->pb[i] .rect.xArr = {int*)malloc{sizeof(int}*n->b[i].rect
.itsLen);

if (n->b[i].rect.yArr == NULL)

n->b[i] .rect.vArr = {(int*)malloc(sizeocf{int)*n->b[i].rect
.itsLen);

//Read in the real data

fread(n->b[i].rect.xArr, sizeof(int), n->bii]l.rect.itslLen,
theStream);

fread(n->bi{i)] .rect.yArr, sizeof(int), n-»bii].rect.itslen,
theStream) ;

intersect=0;
//check if real data intersect with search window
//for each segment of the real data

for (k=0; k<(n->bli].rect.itsLen)-1; k++}
for {each side of the search window)
if (twoline_intersect (data_segment.begin,
data_segment.end, window_side.begin, window_side.end)
hitCount++;

break;

Figure 3.9 First part of the R-tree secondary range search algorithm.
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//case 3: search window is inside the bounding rectangle
24 else
{
//check if the search window is inside the polygon data

25 for (k=0; k<{n->b[i].rect.itsLen)~1; k++)
{
26 tempb.x=n->b[i] .rect.xArr k] ;
27 tempb.y=n->b[i] .rect.yaArr{k];
28 tempe.x=n->bfil].rect.xaArr{k+1i];
29 tempe.y=n->b{i).rect.yArr{k+1];
30 lineb.x = w->b[0];
31 lineb.y = w->b[1l];
32 linee.x = INT MIN;
33 linee.y = w=->b[1l];
34 if (w->b[l]l>=tempb.y && w->b[l]<=tempe.y}
35 if {twoline_ intersect(tempb, tempe, lineb, linee))}
36 intersect_point++;

}//end of for

//check the number of intersect point is odd
37 if (intersect_point%2 !=0)
38 hitCount++;

}//end of if
3¢9 free(n->branch(i]}.rect.xArr);
a0 free(n->branch(i}.rect. yaArr);
}//end of elseif (end of case 2)
}//end of for
}//end of else

41 return hitCount;
}

Figure 3.10 Second part of the R-tree secondary range search algorithm.

Case 1 in Figure 3.9 will handle situation (a) in Figure 3.8. If the data rectangle is
contained in the query window, then the real data must be contained in the quéry

window.
Case 2 in Figure 3.9 handles situation (b) in Figure 3.8. If the data rectangle overlaps the

query window, the real data may or may not overlap the query window (see Figure 3.11}.

The polygon inside the rectangle d is the real data.
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(a) (b)

Figure 3.11 Real data may (a) or may not (b) intersect with QW for overlapping.

Case 3 in Figure 3.9 handles situation {c) in Figure 3.8. If the data rectangle contains the
query window, the real data may or may not intersect with the query window (see Figure

3.12). At this point, all cases where intersection can occur have been tested.

(a) (b) (c)

Figure 3.12 Real data may ((a) and (b)) or may not (c¢) intersect with QW for containing.
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CHAPTER FOUR

MODIFIED GRID FILE INDEXING

This chapter investigates a new approach based on Hinrichs’s grid file indexing method
[Hinrichs , 1992]. Hinrichs’s binary-radix bucket-region (BR?) grid file directory was
originally designed for point data. In order to handle non-point data, we modified
Hinrichs’s grid file. One object can be inserted into several buckets. For each bucket, we
used an R-tree to store all the objects in that bucket. As far as we know, this is the first

time this approach was used to index non-point data.

4.1 A Grid File Index

Grid file index for non-point data is almost the same as that for point data, except one
object can be inserted into several buckets. In order to simplify the explanation, we use

point data as an example to explain the concept of the construction and the properties of

the BR? - directory grid file.

4.1.1 Construction of the BR? —tree for the grid file
The BR2-directory structure is a tree structure. It grows linearly with the number of data

buckets and reduces both the CPU-costs for directory operations and the I/O costs for

directory pages. Figure 4.1 shows the construction of a BR? -directory for two-

dimensional partitioning of the data space.
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Figure 4.1 An example partitioning of 2D space.

In Figure 4.1, two scales each containing four boundaries bj o - bj 3 determine the grid

consisting of nine cells. I, stands for intervals in dimension j. The binary sequence S

determines how an interval Ij g is obtained by subsequent bisection from dj : A zero (0)

means selection of the lower interval, a one (1) selection of the upper interval. B, ...B,

represent the buckets. Each covers one grid cell with the exception of B, and B,.

Each boundary partitions the data space into two. For a grid file, which has been
generated by insertions, only the buddy system [e.g. Samet, 1990, pp139] guarantees the

existence of at least one boundary that does not intersect any bucket region, e.g. b, , and

b, | in Figure 4.1. We select boundary b, , that separates the buckets B, , B, ...B,

from the buckets B, and B, (Figurc 4.2). Therefore the root node N, of the BR? -tree

0

obtains an entry for the dimension of b i.e. node dimension dN =1.

I2? 0
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Figure 4.2 Bisection along boundary b ».

We continue by selecting boundaries and represent them by new nodes, which contain
their dimension as an entry. Figure 4.3 shows one of the possible BR? -trees for our

example. The pointers to the leaves are the identifiers of the buckets on disk.

root

/C?)NO\\

4] 1

N Ny
e R SN
: Non

: 0 1

B, B, ---Bj---
1 0 1

BS BG B4 B7

Figure 4.3 One possible BR*-tree for the BR?-directory in Figure 4.1.
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4.1.2 Properties of BR? -trees

Let n be the number of buckets. Some properties of BR? -trees is shown as follows

[Hinrichs, 1992]:

- In binary trees the number of internal nodes is equal to the number of leaves minus

one. Therefore the size of the BR? -tree grows linearly in n, so the space requirement

for a BR-tree is ©(n).

- Each internal node corresponds to a unique boundary in one of the scales. A boundary

may be assigned to more than one internal node.

- Each node N (internal node or leaf) represents a rectangular region Dy of the data

space; this region is the Cartesian product of binary-radix intervals represented by the

scales. The depth of a node or leaf determines the size of this region.

- Each internal node or leaf owns a unique path, which can be described by a bit-

sequence S. In Figure 4.3, these bit sequences S form the node identifiers N(S) IS,

is the bit-sequence of a parent node N, and S, the bit-sequence of a child node N, ,

then S, is prefix of S, .

- The BR? -representation of the partitioning is not unique. In most cases there exist

several different equivalent BR? —trees.
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Each tree can be obtained from any equivalent tree by performing a number of

transformations. Figure 4.4 shows a subdivision of one part of a data space.

Dy

N
HOO

t ]

dy- . : :
1—' di b

Figure 4.4 One subdivision of a data space.

D,..D, in Figure 4.4 could be bucket regions or parent nodes of further subdivisions. The

two equivalent BR? ~subtrees representing this subdivision are shown in Figure 4.5.

Iy

0

1 0 1 1 0 1

ANONCORCEONORNCONC

Figure 4.5 Two equivalent BR? —subtrees for the data subdivision shown in Figure 4.4.

In an implementation of the BR2-tree by Hinrichs [Hinrichs, 1992}, each node can be

represented by 8 bytes; three bytes for each pointer to the children and two bytes for
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additional information, e.g. the node dimension. Since the identifiers for buckets are
stored in their parent nodes we need 8(n — 1) bytes for n buckets. This is less than what is
needed in the grid array representation [Hinrichs, 1985] (even under uniform data

distribution) and the region representation [Hinterberger, 1987].

4.2 Operations on BR? -trees

Fundamental operations on directory structures are searching, splitting and merging

buckets. In the following we discuss only the first two operations.

4.2.1 Range Searching

The range search is formally defined as follows: Search all buckets B whose bucket

regions intersect a given query range R = (I, ..., 1) where I; is an interval in the range

of dimension dj. The query is performed in two steps as follows:

I. Determine for each interval Ij = [lj, u.] two bit sequences Lj and Uj for the lower and

upper bound of [; in the binary-radix tree for dimension d..
J J

2. Traverse the BR?-directory.

Remember that each node N of the BRz-directory is represented by a unique bit sequence

Sy For example, the representation (or path) to bucket B 4 iInFigure 4.3 is SB4 =1,2,1,
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20 . The corresponding part of the data space is the Cartesian product of k binary radix

intervals that can again be described by k unique bit sequences. Let Si,; j be the bit

sequence for dimension j {e.g. SB4 2522, ).

A node N is relevant for the range query if all sequences Sy (1<) <k) satisfy L; < Sn;
< Uj where < is the lexicographic order on bit strings. Starting at the root of the tree, we

distinguish the following cases at a node N that has node dimension j (see Figure 4.6):

| —~ |
‘/®N\(SN)\
| Ly | |
la) | o g ! I
b | ! ' [ |
1b) | | AT
| | | A B
o) | T | o]
| o | Yo |
2a) | 1 | | _
| : | | | g
2b) | | n l N
| | o | K
3a) I-l | | - |
Y | | ! |
3 | | o | |
S ! | |
4a) | | 1

Figure 4.6 Eight cases for range query in the BR>-tree.

1) Sy i is a prefix of L and U, i.e. the binary radix interval corresponding to the region

of node N in dimension j contains both the lower bound lj and the upper bound . If
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2)

3)

the current bits of the sequences L; and U; are both 0, we have to continue with the

left child (1a), if the current bits are both 1, we have to continue with the right child

(1b}. If the current bits are different we have to visit both children (1c).

Sn,; is a prefix of L;, but not of U;, i.e. the binary radix interval corresponding to the
region of node N in dimension j contains the lower bound lj. If the current bit of
sequence Lj is 0 we have to visit both children of N (2a). Otherwise only the right

child is considered (2b).

S, is a prefix of U, but not of L;, i.c. the binary radix interval corresponding to the
region of node N in dimension j contains the upper bound u;. If the current bit of

sequence Uj is 1 we have to visit both children of N (3a). Otherwise only the left

child is considered (3b).

4) Sy i is neither a prefix of L; nor of U;, i.c. the binary radix interval corresponding
to the region of node N in dimension j contains neither the lower bound lj nor the

upper bound u;. Therefore we have to visit both children (4a).

It is not necessary to construct the bit sequences of a visited node because the prefix

properties can be inherited from the parent. It is sufficient to introduce 2k status variables

to describe the prefix properties of each bit sequence. The other tests in the algorithm are

stmple bit comparisons. The complete range search algorithm for non-point data is given

in Figure 4.7.
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The range search algorithm for a Grid file is done via a recursive procedure. This
procedure will take the following formal parameters: the range to search, the root of the
grid file tree and an AVL tree to put the results in. The AVL tree is used in the search

algorithm in the grid file tree to avoid reporting duplicates.

void GDir::Search{int minx, int miny, int maxx, int maxy,
GNode* theRoot, AVLTree<Object>* T)
//First we check if the tree passed in is in fact a valid tree.
if (theRoot == NULL) return;
//this is not a leaf node, we have to check if we should perform
//the search down the left subtree, the right subtree, or both.

//We know that a node is not the leaf node because its bucket is
NULL (and therefore no data)

if (theRoot->_bucket == NULL) {
//1f the search window overlaps with the left subtree’'s
//range, we should perform the search on the left subtree
if (theRoot->0Overlap(minx, miny, maxx, maxy, theRoot-
> nodel-»_minx, theRoot->_nodel->_miny, theRoot-
>_nodel->_maxx, theRoot->_nodel->_maxy}){
//Search down the left tree recursively should the
//above condition holds true
Search(minx, miny, maxx, maxy, theRoot->_nodel, T);}
//If the search window overlaps with the right subtree’s range, we
//should perform the search on the right subtree
if {theRoot->0Overlap{minx, miny, maxx, maxy, theRoot-
> node2->_minx, theRoot-»_ncde2-»>_miny, theRcot-
> _node2->_maxx, theRoot->_node2->_maxy)){
//Search down the right tree recursively should the
//above condition holds true
Search{minx, miny, maxx, maxy, theRoot->_node2, T);}}
//When the bucket is not NULL, we know that this should be the
//leaf node since there is data stored in the bucket

else //now we are at the leaf node
{ //Now that we are at the leaf node, we can just do the
//search on the Rtree contained in this node in much the
//same way as in chapter 3.
//Call the Rtree search function
theRoot->_bucket->_rtree.Search(minx, miny, maxx, maxy);

Figure 4.7 (part 1 of 2) Grid file range search algorithm.
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int i;

for (i = 0; i < SearchResultCounter; ++i)

{ //Create a temporary object to consolidate all
//information of the search result
Object aTmp({SearchResult([i].boundary(0],
SearchResult[i].boundary[1l],SearchResult[i] .boundary[2],
SearchResult[i] .boundary([3], SearchResult[i].positicn,
SearchResult[i].len);

//Insert the result into the AVL tree passed in as formal
/ /parameter.
T->Insert (aTmp) ;

}//else if

Figure 4.7 (part 2 of 2) Grid file range search algorithm.

4.2.2 Bucket Splitting

A bucket B can overflow when a new data point P = (kl Ky 5.k ) has to be inserted
into B. If B overflows it has to be split and new disk blocks have to be allocated. Let S i

be the bit sequences determining the BR? -path to B, then the split can be performed as

follows:

First the split dimension, i.e. the dimension according to which B is split, must be
determined. If the bucket region covers more than one grid cell, B can be split along an

existing boundary.

If no such existing boundary divides B's region, we select a split dimension j and a

boundary bj and insert the boundary into the particular radix tree of scale j. Now we can

split B by allocating a new internal node N and a new bucket B'. The old parent of B now

points to N. The node dimension of N is j, the left child is B, and the right child is B'. Al
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data points stored in B are distributed between B and B' depending on their key value in
dimension j. For non point data, if one object intersect with both of the subtrees (or
children), we will insert the object in both subtrees. Even if we insert in both subtrees, we
don’t increase the memory requirement significantly because we only keep a pointer to

the same location in the file.

The insertion of a new boundary in a scale costs O(log n) time for uniform data
distribution. The remaining operations of a split require ©(1) time. The algorithm of

insertion and bucket splitting for non-point data is shown in Figure 4.8.

//Inserting into grid file tree. We pass in the object, the root of
//the tree or subtree, the bounding box the underlining of the grid
//file tree or subtree (minx,miny,maxx,maxy}, and the level.
vold GDir::Insert{const Object& theObj, GNode *&theRocot, int gb_bbox,
int thelLevel)
{
if (theRoot == NULL}//first node of the tree only. Called ONCE
{
theRoot = new GNode!{minx, miny, maxx, maxy);
//Insert the object in to the tree
theRoot->_bucket->_rtree.Insert {theObsj.bbox, theCbj._pos,
thelObj._size);
//Change the size of the bucket (number of objects in the bucket)
accordingly
theRoot->_bucket->_size++;
return;
}
else //theRoot is not NULL
{
//Check i1f we can just insert it here cor we have to go further
//éown, the bucket is not NULL indicating this is a leaf node
if {theRoot->_bucket != NULL && theRocot->_bucket->Sizel() <
_limit}//this can contain data
{
theRoot->_bucket->_rtree.Insert (theObj.bbox, theObj._pos,
theObj._sgize);
//Change the size of the bucket (number cof okjects in the
bucket) accordingly
theRoct->_bucket->_size++;
return;

}

Figure 4.8 (part 1 of 3) Grid file insertion and bucket splitting algorithm.
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//If the bucket is NULL, we don't have any data in this tree just
//yet, This also means that this node is not the leaf node as
//all leaf node should contain some data
if {(theRcot->_bucket == NULL) {
if (thelLevel%2 == 1)//horizontal insert
{
//Check to see in which child node(S} should we insert data
//Netice that in this implementation, if one cbject
//intersect with both of the subtrees, we will insert the
//object in both subtrees.
if (theRoot->0QverlapTop (theObj.bbox))

{
Insert (theQbj, theRoot->_nodel, _minx, { maxy+ miny}/2,
_maxx, _maxy, theLevel+l);

}

if {theRoot->0OverlapBottom{theObj.bbox})

{
Insert{theCbj, theRoot->_node2, _minx, _miny, _maxx,
{maxy+_miny) /2, theLevel+l);

Y//1it

return;

Y/ /it

else//VERTICAL insert

{
//Check to see which child node(S) should we insert
if {theRoot->0OverlapLeft{theObj.bbox)}

{
Insert (theObj, theRoot->_nodel, _minx, _miny,
(maxx+_minx) /2, _maxy, thelLevel+1l};
Y/ /it
if {theRoot->0OverlapRight {thelb]j.bbox))
{
Insert {theQ0bj, theRoot->_nodeZ, {_maxx+_minx)/2, _miny,
_maxx, _maxy, thelLevel+l);
y//1iE
returmn;
}Y//else if
Y/ /1E
//overflow, using the current level to keep track of splitting
//direction

if ({theRoot->_bucket->Size() >= _1limit}
{
if (theLevel%2 == 1l)//horizontal split
{
theRoot->_nodel = new GNode{theRoot->_minx, (theRoot-
>_maxy+theRoot->_miny) /2, theRoot->_maxx, theRoct->_maxy);
theRoot->_node2 = new GNode{theRoot->_minx, theRoot->_miny,
theRoot->_maxx, {theRoot->_maxy+theRoct->_miny}/2);
}

Figure 4.8 (part 2 of 3) Grid file insertion and bucket splitting algorithm.
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else // VERTICAL split

{
theRoot->_nodel = new GNode{theRoot->_minx, theRoot-> miny,

(theRoot->_maxx+theRoot-> minx)/2, theRoot->_maxy) ;

theRoot->_node2 = new GNode{ (theRoot->_minx+theRoot-

>_maxx)/2, theRocot->_miny, theRoot->_maxx, theRoot->_maxy);

}
//Cleanup the current bucket and put objects inside bucket

//into appropriate subtree. We do this by searching inserting
//each object in the current Rtree into the appropriate
//subtresa,
theRoot->_bucket->_rtree.Search{theRoot->bbox) ;
int i;
for {i = 0; i < BearchResultCounter; ++i}
{
Object aTmp(SearchResult[i] .boundary,
SearchResult[i] .position, SearchResult[i].len});
if (theRoot-»0Overlap{SearchResult[i].boundary,
theRoot->_nocdel->bbox) )

{
Insert{aTmp, theRoot->_nodel, theRoot->_nodel->bbox,
theLevel+1};
}
if {theRoot-»>0Overlap{SearchResult(i] .boundary,
theRcot->_node2->bbox) )
{
Insert{aTmp, theRoot->_node2, theRoot->_nodeZ->bbox,
theLevel+l);

1

}
}

//0nce inserted, we have to clear the _bucket in the current
//node since it is not a leaf node anymore
theRoot->Clear{);

//Now we can try to reinsert the same object at the same level
//because the current tree now is one level deeper than
//before. This 1s a recursive call.

Insert{theObj, theRoot, gb_bbox, theLevel);

1//else if

Figure 4.8 (part 3 of 3) Grid file insertion and bucket splitting algorithm.
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4.3 Implementation

We implemented Hinrichs’ BR”-directory for non-point data in two dimensions. The
following is the example in which we build a BR-tree for 6 objects. Let M = 2, i.e. for
each bucket we allow a maximum of 2 objects to be stored. Similar to the R-tree
implementation, we kept the bounding box and the location of objects in the BR*-tree
structure, and stored the real objects’ data in a file on disk. The bounding boxes
(indicated by the coordinates of bottom-left and upper-right vertices) of 6 objects are as

follow:

Objectl: (629722,5028256), (629829,5028331)
Object2: (629468,5028385), (629769,5028571)
Cbhject3: (629231,5028527), (625420,5028682)
Cbjectd: (630011,5028202), (630500,5028831)
Object5: (629563,5029040}, {(630000,5029095)

Object6: (628861,5028356), {(629102,5029106)

The bounding box for all 6 objects is (628861,5028202), (630500,5029106). Figure
4.9 and 4.10 show the BRZ-directory and BR*-tree structure for these 6 objects. There are

11 buckets. Note that one object may appear in several different buckets.



" BIO .

VEVAN

Figure 4.10 BR-tree structure for six objects.
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For the data stored in each bucket, we used two different methods to index them; a linked

list and an R-tree.

4.3.1 Linked list

This is a straightforward solution to keeping track of the data in each bucket. The linked
list implementation is slow when the list gets longer since the list can only be traversed
sequentially. In this particular case, the performance would degrade dramatically if we
set M to be a large number. In addition, the linked list implementation only reports

primary search (i.e. bounding rectangle intersection ) results.

4.3.2 Combining Grid files and R-trees

It is clear that the linked list degrades the performance of Grid file tree. A possible
solution is to replace the linked list with an R tree since the R tree offers a much better
way to index data. Using an R tree, out-of-range branches are pruned so we do not have
to traverse through the complete data set in each bucket. It is worthy to note that this
solution is superior to using a grid file with a small linked list because the grid file tree

would be very deep causing performance degradation.

In order to integrate the R tree into the Grid file tree easily, we have created a wrapper for

the R tree original implementation (which is written in C) to provide a C++ interface with
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the grid file (which is written entirely in C++). Figure 4.11 shows the combination of R-

tree and Grid file tree structures,

R-tree C code

R-tree C++ code Grid file C++ code

merge

(Gnd file and R-tree
combined code

Figure 4.11 Combining grid file and R-tree software.

4.4 Testing

The range search includes search in the gnd file tree and search in the R-tree. The naive
range search reports redundant objects since one object may appear in several buckets.
We used an AVL tree structure to report only unique objects during the range search. The

testing algorithm for range search is shown in Figure 4.7.

We chose M = 1000 for the grid file and R-tree order m = 50 for the R-tree combined
with the grid file structure. The same two sets of data (nts21g.dat and nts21gl5.dat) used

for testing with the R-tree and for Oracle Spatial were used for testing the grid file.
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CHAPTER FIVE
RELATIONAL DATABASE SPATIAL INDEXING
5.1 Oracle 8i Spatial Data Cartridge

Oracle8i Spatial {often referred to as Spatial) provides a standard SQL schema and
functions that facilitate the storage, retrieval, update, and query of collections of spatial

objects in an Oracle8i database.

The release of Spatial used (Oracle 8i release 8.1.5) supports two-mechanisms for
representing geometry. The first, an object-relational scheme, uses a table with single
column of type MDSYS.SDO_GEOMETRY and a single row per geometry instance.
The second, a relational scheme, uses a table with a predefined set of columns of type
NUMBER and one or more rows for each geometry instance. Details are described in the

following sections entitled "Object-Relational Model" and "Relational Model".

Spatial uses a two-tier query model to resolve spatial queries. Two distinct operations are
performed in order to resolve queries. The output of both operations yields the exact

result set.

The two operations are referred to as primary and secondary filter operations. The
primary filter permits fast selection of candidate records to pass along to the secondary

filter. The primary filter compares geometry approximations to reduce computation
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complexity and is considered a lower cost filter. The secondary filter applies exact
computations to geometries that result from the primary filter. It yields an accurate
answer to a spatial query. The secondary filter operation is computationally expensive,

but it is only applied to the primary filter results, not the entire data set.

Figure 5.1 illustrates the relationship between the primary and secondary filters.

Large Input
Data Set Prim. Small Exact
ary maver Second
Filter Candidate 1—» Filte: ary Result
Set Set

Figure 5.1 Oracle Spatial query model.

Spatial uses a linear quadtree-based spatial index to implement the primary filter [Oracle
81, 1998]. The function SDO_GEOM.RELATE() is used as a secondary filter. It
evaluates the topological relationship among two objects, such as whether two given

geometries are touching, covering each other, or have any intersection.

The purpose of the primary filter is to quickly create a subset of the data and reduce the
processing burden on the secondary filter. The primary filter therefore should be as
efficient, that is selective yet fast, as possible. The efficiency of a primary filter is

determined by the characteristics of the spatial index generated on the data.
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5.2 Object — Relational Model

The object-relational implementation of Oracle8i Spatial consists of a set of object data
types, an index method type, and operators on these types. A geometry is stored as an
object, in a single row, in a column of type SDO_GEOMETRY. Spatial index creation
and maintenance is done using basic Data Description Language (DDL) (CREATE,
ALTER, DROP) and Data Manipulation Language (DML) (INSERT, UPDATE,

DELETE) statements.

5.2.1 Object-Relational Data Structures

In the Spatial object-relational model, a single SDO_GEOMETRY object replaces the

rows and columns in a <layername>_ SDOGEOM table of the relational model.

The geometric description of a spatial object 1s stored in a single row, in a single column
of object type SDO_GEOMETRY in a user-defined table. The table does not require the
" _SDOGEOM?" suffix anymore. Because the SDO_GEOMETRY type does not have an
SDO_GID attribute, any table that has a column of type SDO_GEOMETRY must have
another column, or set of columns, that defines a'unique primary key for that table.

Tables of this sort are sometimes referred to as geometry tables.

Oracle8i Spatial defines the object type SDO_GEOMETRY as shown in Figure 5.2.
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CREATE TYPE sdo_geometry AS OBJECT (
SDO_GTYPE NUMRER,

SDO_SRID NUMRER,

SDO_POINT SDO_POINT_TYPE,

SDO_ELEM _INFO MDSYS,.SDO_ELEM_INFO_ARRAY,
SDO_CRDINATES MDSYS.SDO_ORDINATE ARRAY) ;

Figure 5.2 SDO_GEOMETRY object definitions,

The attributes of the SDO_GEOMETRY object type have the following semantics:

SDO_GTYPE - Indicates the type of the geometry.
For our test data, we only have type 2 (polyline) and type 3 (polygon).

SDO_SRID - Is reserved for future use. This attribute is intended to be a foreign key in a
spatial reference system definition table.

SDO_POINT - Is an object type with attributes X, Y, and Z, all éf type NUMBER. If the
SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and the SDO_POINT
attribute is non-null, then the X and Y values are considered to be the coordinates for a
point geometry. Otherwise the SDO_POINT attribute is ignored by Spatial. You should
store points in the SDO_POINT attribute for optimal storage.

SDO_ELEM_INFO - [s a varying length array of numbers. This attribute lets you know

how to interpret the ordinates stored in the SDO_ORDINATES attribute.

Each triplet set of numbers conveys information about one geometry element, and a
geometry may contain many elements. If a geometry has one element, then the
SDO_ELEM_INFO array has three numbers; if the geometry has two elements, then the

array has six numbers, and so on. Each triplet set is interpreted as shown in Figure 5.3.
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1. SDO_STARTING_OFFSET -- Indicates the offset within the
SDO_ORDINATES array where the first ordinate for this
element is stored. Offset values start at 1 and not at 0.

2. SDO_ETYPE - Indicates the type of the element. valid values
are 0 through 5,

SDO_ETYPEs 1, 2, and 3, are considered simple elements.
They are defined by a single triplet entry in the
SDO_ELEMINFQO array. SDO_ETYPEs 4 and 5 are considered
compound elements. They contain at least one header triplet
with a series of triplet values that belcng to the compound
element.

3. SDO_INTERPRETATION - Means one of two things, depending on
whether or not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element {4 or 5}, this field
specifies how many subsequent triplet values are parts of
the element.

If the SDO_ETYPE is not a compcound element- (1, 2, or 3),
the interpretation attribute determines how the seguence of
ordinates for this element is interpreted. For example, a
line gtring or polygon boundary may be made up of a

sequence of connected straight line segments or circular
arcs.

Figure 5.3 Definition of SDOG_ELEM_INFO triplets.

A detailed description of valid SDO_ETYPE and SDO_INTERPRETATION value pairs

is given in Oracle 8i Spatial User’s guide and reference [Oracle 8i, 1998].

SDO_ORDINATES - Is a varying length array of NUMBER type that stores the
coordinate values that make up the boundary of a spatial object. This array must always
be used in conjunction with the SDO_ELEM_INFO varying length array.

Figure 5.4 illustrates a geometry with only one element.
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(12, 24) (15, 24)

(12, 15) (15,15)

SDO_GEOMETRY (3, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,3,1},

SDO_ORDINATE_ARRAY (12,15, 15,15,15,24,12,24,12,15})

Figure 5.4 Geometry polygon formed by straight lines.

The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension must be stored as a single entry in a table named

SDO_GEOM_METADATA created ih your schema and defined as shown in Figure 5.5.

Create Table SDO_GECOM_METADATA
TABLE_NAME VARCHARZ (30),
COLUMN_NAME VARCHARZ (30),

DIMINFO MDSYS.SDO_DIM_ARRAY) ;

Figure 5.5 SDO_GEOM_METADATA table description.

The SDO_GEOM_METADATA.TABLE_NAME column contains the name of a feature
table, such as Roads or Parks, which has a column of type SDO_GEOMETRY. The name
of this column, of type SDO_GEOMETRY, is stored in the feature table in the
SDO_GEOM_METADATA.COLUMN_NAME column. For the tables Roads and Parks,
this column is called theGeometry, and therefore the SDO_GEOM_METADATA table

for Roads should contain rows {Roads, theGeometry, SomeDimInfol). The
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SDO_GEOM_METADATA.DIMINFO row is a varying length array of an object type,

ordered by dimension, and has one entry per dimension.

5.2.2 Preprocessing

This section describes how to load spatial data into a database, including storing the data

in a table with a column of type SDO_GEOMETRY and creating a spatial index for it.

Figure 5.6 shows the overall approach to preprocess the data.

Datal tabl
Input data (e.g. atalayer table

nts21g.dat or
nts21gl5.dat)

Metadata table

Preprocessing

Figure 5.6 Overall approach for preprocessing data for Oracle 8i Spatial.

5.2.2.1 Loading Spatial Data

First we create and insert data in Metadata table. For the first set of data, which contains
20,000 objects, the two dimensions are named X and Y, their bounds are 577435 to
736453 in X dimension, 4982220 to 5098214 in Y dimension, and the tolerance for both
dimensions is 1. The SQL statement for creating and loading the

SDO_GEOM_METADATA table is shown in Figure 5.7.
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CREATE TARLE SDO_GEOM_METADATA 20k (TABLE_NAME VARCHAR2 (30},
COLUMN_NAME VARCHARZ (30), DIMINFO MDSYS.SDO_DIM_ARRAY) ;

INSERT INTC SDO_GEOM_METADATA 20k

VALUES ('LAYER_20k', 'SHAPE', MDSYS,SDO_DIM_ARRAY({
MDSYS.S5DC_DIM_FELEMENT('X', 577435, 736453, 1},
MDSYS.S5DO_DIM_ELEMENT ('Y', 4982220, 5098214,1)}};

Figure 5.7 An example of creating and inserting data

into an Oracle 81 Spatial metadata table.

As an example of inserting data into the datalayer table, assume the geometry in Figure
5.4 represents a park. Table Parks can be created as shown in Figure 5.8 (a). The SQL

statement for inserting the data for geometry OBJ_1 is shown in Figure 5.8 (b).

CREATE TABLE PARKS (NAME VARCHARZ2(32},
SHAPE MDSYS.SDO_GEQOMETRY) ;

(2)

INSERT INTO PARKS
VALUES ('CBJ_1', MDSYS.SDO_GEOMETRY (3, NULL,NULL,
MDSYS.SDO_ELEM_INFO_ARRAY(1,3,1),
MDSYS.5DO_ORDINATE_ARRAY{ 12,15, 15,15,
15,24,12,24,12,15)1});

(b

Figure 5.8 Creating and inserting data into table Parks.

The SQL statements for creating and inserting one object into table ‘LAYER_20K’ are
listed in Figure 5.9 (a). Figure 5.9 (b) shows the code for generating SQL script to insert

data into table ‘LAYER_20K’.
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CREATE TABLE LAYER_20k (NAME VARCHARZ {32},
SHAPE MDSYS.S5DO_GEOMETRY) ;

INSERT INTO LAYER_20k
VALUES('l', MDSYS.SDO_GECMETRY (3, NULL, NULL,
MDSYS.SDO_ELEM_INFO_ARRAY(1,3,1),
MDSYS.SDO_ORDINATE_ARRAY (629829,5028263, 629816,5028287,
629766,5028331, 629722,5028330, 629722,5028305, 629792,5028256,
629829,5028263)));

Figure 5.9 (a) Creating and inserting data into datalayer table LAYER_20K.

For one object:
if {xArray({0] == xArray|arrayLen-1] && yArray(0] == yArray[arrayLen-1])

{
3 = sprintf{insertCommand, "EXEC SQL INSERT INTC LAYER_20K VALUES

{'%d’,
MDSYS.SDO_GEOMETRY {3, NULL, NULL, MDSYS . SDO_ELEM_INFO ARRAY(1,3,1),
MDSYS.S5DO_QORDINATE_ARRAY (", ++objCount);

for (i = 0; 1 < arraylLen; ++i)
{

J += sprintf{insertCommand+j, "%d,%d, ", xArray([i], varray(il);
}//end for

sprintf (insertCommand+j-2, “)});\n\n"};
3 .
else

{
j = sprintf (insertCommand, "EXEC SQL INSERT INTQ LAYER_20k VALUES

(%d,
MDSYS.SDO_GECMETRY (2, NULL, NULL,MDSYS. SDO_ELEM_ INFO_ARRAY(1,2,1),
MDSYS.SDO_ORDINATE_ARRAY (", ++objCount};

for (i = 0; 1 < arrayLen; ++i)
{

j += sprintf{insertCommand+j, “%d4,%d, ", xArray([i], vArray([il};
}//end for
sprintf {insertCommand+j-2, "})}:\n\n");

}

fwrite{insertCommand, sizeofi{char), strlen{insertCommand},
theSQLOuUtput) ;

Figure 5.9 (b) Partial code for inserting data into datalayer table LAYER_20K.

This was used inside the rtree program (index.c).

Note that theSQLOutput is the data file that will contain the SQL statements for inserting

all data into table LAYER_20K.
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5.2.2.2 Index Creation

Once data has been loaded into the spatial tables, a spatial index must be created on the
tables for efficient access to the data. This is done by approximating geometries with

tiles. For each geometry, we have a set of tiles that fully cover the geometry.

Spatial provides two methods for spatial indexing; fixed and hybrid. Fixed indexing uses
fixed-size tessellation whereas hybrid indexing uses a combination of fixed-size and
variable-size tessellation. Hybrid indexing is recommended for the Spatial object-
relational model [Oracle8i, 1998]. If specified correctly, it will provide better selectivity

and spatial join performance for most data sets and application scenarios.

The tessellation algorithm used by the CREATE INDEX and index maintenance routines
on INSERT, or UPDATE, is determined by the SDO_LEVEL and SDO_NUMTILES
values supplied by the user in the PARAMETERS clause of the CREATE INDEX
statement. SDO_LEVEL specifies the desired fixed-size tiling level, data type is
NUMBER. SDO_NUMTILES specifies the number of variable-sized tiles to be used in
tessellating an object, data type is NUMBER. The SDO_TUNE.ESTIMATE_
TILING_LEVEL() function can be used to determine an appropriate level for indexing.
For the first set of test data, which contains 20,000 objects, the SDO_TUNE.ESTIMATE
_ TILING_LEVEL() function returned SDO_LEVEL = 10. To use fixed-size tile
indexing, the SDO_NUMTILES parameter is omitted and the SDO_LEVEL value is set

to the desired tiling level. To use hybrid tiling, both SDO_LEVEL and
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SDO_NUMTILES must be greater than 1. The SDO_LEVEL value determines the
number of fixed-size tiles, and the SDO_NUMTILES value determines the number of
variable tiles that will be used to fully cover a geometry being indexed. Typically this
value is small. For points, SDO_NUMTILES is always one. For other element types, we

set SDO_NUMTILES to a value around 4 as suggested in Oracle 81, [1998].

For example, assume that the LAYER_20K table has been loaded. The statement shown

in Figure 5.10 is used to create the spatial index on LAYER_20K.SHAPE.

CREATE INDEX LAYER_20K_INDEX ON LAYER_20K {SHAPE)
INDEXTYPE IS MDSYS.SPATIAL_ INDEX PARAMETERS ('SDO_LEVEL = 10,
SDO_NUMTILES = 4'};

Figure 5.10. Creating the spatial index on LAYER_20K.SHAPE.

5.2.3 Search (Primary and secondary filter)Testing

An important concept in the spatial data model is that each geometry is represented by a
set of exclusive and exhaustive tiles. This means that no tiles overlap each other
(exclusive), and the tiles fully cover the object (exhaustive).

A typical spatial range query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 5.11 by the dotted-line box. A dynamic
query window refers to a fence that is not defined in the database, but that must be

defined prior to using it.
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Figure 5.11 Tessellated Layer with a query window.

The statement in Figure 5.12 performs a primary filter operation without inserting the
query window into a table. The window will be indexed in memory which should

improve performance.

SELECT A,Feature_ID FROM TARGET A

WHERE mdsys.sdo_filter (A.shape, mdsys.sdo_geometry {3, NULL, NULL,
mdsys.sdo_elem_info(l,3,3), mdsys.sdo_ordinates{xl,yl, x2,y¥2}),
‘querytype=window') = 'TRUE';

Figure 5.12 Primary filter with a temporary query window.

Note that (x1,y1) and (x2,y2) are the lower left and upper right comners of the query
window. This statement will return all the geometries shown in Figure 5.11 that have an

index tile in common with one of the index tiles that approximates the query window; i.e.
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tites T1, T2, T2, and T4. The result of the primary filter are geometries with IDs 1013,

1243, 12, and 501.

The SDO_RELATE( ) operator performs both the primary and secondary filter stages
when processing a query. The statement in Figure 5.13 performs both primary and
secondary filter operations without inserting the query window into a table. They return
all the geometries in Figure 5.11 that lie within or overlap the query window. The result

of these filters is objects 1243 and 1013.

SELECT A.Feature ID FROM TARGET 2

WHERE mdsys.sdo_relate{A.shape, mdsys.sdo_geometry(3,NULL,NULL,
mdsys.sdo_elem _info{l,3,3) ,mdsys.sdo_ordinates(xl,yl, x2,y2)),
'mask=anyinteract querytype=window'j) = 'TRUE';

Figure 5.13 Secondary filter using a temporary query window.
5.3 Relational Model
Prior to release 8.1.5, the Spatial product always used four database tables to store and
index spatial data. This schema is different from the Spatial object model introduced in

the previous section. The four tables, used to store and index geometry, are collectively

referred to as a layer. Tables 5.1 describes the schema of a Spatial layer.
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<fayername>_SDOLAYER Table or view
SDO_OARDCNT | SDO _LEVEL | SDO_NUMTILES

<number> <humber> <number>

<layername>_SDODIM Table or View

SD0_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<numbers <numbers <number> <numbers <varchar>

<layername>_SDOGEOM Table or View

SDO_GID | SDO_ESEQ| SDO_ETYPE|SDO_SEQ| SDO_X1 | SDO_Y1|...| SDO_Xn | SDO_Yn

<number> |<number> {<number> <numbers> |<numbers|<number>|... l<number> |<number>

<layername>_SDOINDEX Table or view
SDO_GID SDO_CODE SDO_MAXCODE
<number> <raw> <raw>

Table 5.1 Layers in an Oracle Spatial relational model database.

The detailed definitions for the column of each table are given in the Oracle 8i Spatial

User’s guide and reference [Oracle 8i, 1998].

5.3.1 Preprocessing

Similar to the object-relation model, we used ProC/C++ with embedded SQL to load the

raw data into spatial tables and created the spatial index on the tables.

For the relational model, we created four tables and loaded data into the first three tables,
Figures 5.14 and 5.15 show how to create and insert data into these tables for the first set
of data nts21g.dat. Then we used the given procedure SDO_ADMIN POPULATE_INDEX() to
generate a spatial index for the data and insert into a fourth table which is the index table.

Spatial provides two methods for spatial indexing; fixed and hybrid. Fixed indexing is
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recommended for the Spatial relational model. The tessellation algorithm used by the
SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.UPDATE_INDEX()

procedures is determined by the values of the SDO_LEVEL and SDO_NUMTILES.

CREATE TABLE LAYER_Z20K_SDOLAYER (SDC_CRDCNT NUMBER, S$SDO_LEVEL NUMBER,
SDO_NUMTILES NUMBER) ;

CREATE TABLE LAYER_ 20K_SDODIM(SDO_DIMNUM NUMBER, SDO_LB NUMBER, SDO_UB
NUMBER, SDO_TOLERANCE NUMBER, SDO_DIMNAME VARCHAR(20));

CREATE TABLE LAYER_20K_SDOGECOM{SDCO_GID NUMBER, S$SDO_ESEQ NUMBER,
SDO_ETYPE NUMBER, S5DO_SEQ NUMEER, SDO_X1 NUMBER, SDO_Y1l NUMBER,
SDO_X2 NUMBER, SDO_Y2 NUMBER) ;

CREATE TABLE LAYER_20K_SDOINDEX{SDO_GID NUMBER, SDO_CCDE RAW{255)};

INSERT INTO LAYER 20K_SDOLAYFR VALUES (4,10, NULL};
INSERT INTQ LAYER_Z20K_SDODIM VALUES (1,577435,736453,1,'X');
INSERT INTC LAYER 20K_SDODIM VALUES (2,4983220,50%8214,1,'Y');

Figure 5.14 Creating four tables and inserting data into the first two tables
for layer_20k in SQL for the Oracle Spatial relational model.

//for each cbject;
h_sequence 0;
h_serial++;
for {(int i 0; 1 < Len-1; ++1i)
h o x1l = xvValues[i]; h vl = yvValues[i];
h x2 = xValues[i+l]; h_v2 = yValues[i+1];
if {xValues[0] == xValues(Len-1] && yValues[0] == yValues|[Len-1]}
EXEC SQL INSERT INTO LAYER_20K_S$SDOGEOM VALUES
{:h_serial, 0,3, :h_sequence, :h_x1, :h_vl, :h_x2, :h ¥2);
else
EXEC SQL INSERT INTQO LAYER_20K_SDOGEOM VALUES
{:h _serial,0,2,:h_sequence, :h_x1, :h vl, :h x2, :h v2);
h_sequence++;

Figure 5.15 ProC/C++ coding for inserting one object into the third table

for the Oracle Spatial relational model.

61



In Figure 5.15 Len is the number of vertices for each object, and xValues and yValues are

arrays containing the x and y coordinates of the vertices for each object.

5.3.2 Search (primary and secondary filter) Testing

In a different approach compared to the object model, we must insert dynamic query
windows in the tables and create an index for them. In order to do this, we installed the
SDO_WINDOW package first, and then built a layer for the query window. Figure 5.16

shows how to define a query window.

SQL> EXECUTE MDSYS.SDO_WINDOW.CREATE WINDOW_LAYER {fencelayer, DIMNUMI1,
LBl, UBl, TOLERANCEl, DIMNAMEl, DIMNUMZ2, LB2, UB2,TOLERANCEZ2,DIMNAMEZ) ;

SQL> EXECUTE DBMS_ OQUTPUT.PUTLINE (MDSYS.SDO_WINDOW.BUILD WINDOW_FIXED
{comp_user, fencelayer, SDO ETYPE, TILE_SIZE, X1,Yl, X2,¥2, X3,Y3,
X4,¥4, X1,Y1));

Figure 5.16 Defining a query window in SQL for the Oracle Spatial relational model.

After these two statements, the index table for the query window is automatically
generated. For the objects in Figure 5.11, the primary filter query for the relational model

is performed as shown in Figure 5.17.

SELECT DISTINCT A.SDO_GID
FROM <layerl>_SDOINDEX A, <fencelayer>_ SDOINDEX B
WHERE A.5D0O _CODE = B.SDO_CODE
AND B.SDO_GID = {GID returned from SDO WINDOW.BUILD WINDOW_FIXED];

Figure 5.17. Primary filter for the relational model.

The result set of this query is the set of objects: {1013, 501, 1243, 12},
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The secondary filter performs exact geometry calculations of the tiles selected by the
primary filter. The example in Figure 5.18 shows the primary and secondary filters

combined:

SELECT SDO_GID
FROM «<layerls>_SDOGEOM,
{
SELECT SDO GID GID1
FROM {
SELECT DISTINCT A.SDO_GID
FROM <layerl>_SDOINDEX A,
<fencelayer>_SDOINDEX B
WHERE A.S5DO_CODE = B.SDC_CODE
AND B.SDO_GID = {GID returned from
SDO_WINDOW.BUILD WINDOW_FIXED)
)
WHERE SDO_GECM.RELATE({'<layerls>', SDO_GID, 'ANYINTERACT', '<fence>',
1}y = 'TRUE’ )
WHERE SDO_GID = GID]1;

Figure 5.18. Primary and secondary filters for relational model.

This query would return all the geometry IDs that lie within or overlap the window. In

this example, the results of the secondary filter are: {1243,1013}
5.4 Oracle Call Interface (OCI)
An alternative way to access Oracle 8i Spatial is via OCI. This is relatively new

compared to the traditional ProC/C++. In this research, ProC/C++ was used exclusively.

Time did not permit exploring the use of OCI with Oracle Spatial.
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CHAPTER SIX

OBJECT ORIENTED DATABASE SPATIAL INDEXING

6.1 O, System Architecture

We attempted to use O, Spatial from Ardent Software for object oriented database spatial

indexing [Ardent, 1998]. The system architecture of O is illustrated in Figure 6.1.

 External
Interfaces

Devetopment Tools

0, Dev. Tools | | g':fd;;g,s

Figure 6.1: O, system architecture.

The O system can be viewed as consisting of three components. The Database Engine
provides all the features of a database system and an object-oriented system. This engine
can be accessed with Development Tools, such as various programming languages, O

development tools and any standard development tool. Numerous External Interfaces are
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provided. The details of each component are described in the O, Spatial User Manual

[Ardent, 1998].

The object database engine provides direct control of schemas, classes, objects and
transactions through the O;Engine API. It provides full text indexing and search

capabilities with O»Search and spatial indexing and retrieval capabilities with O;Spatial.

6.2 O, Spatial

The O, Spatial module enables us to create, delete, update and query a spatial index
associated with a collection of persistent geographical objects. It ﬁses the O, object

database management group (ODMG) C++ binding and the OQL query language.

The data structure for the spatial indexing mentioned in [Ardent, 1998] is the R-Quad
tree, which stands for rectangle-quadrant tree. We have not been able to determine the

precise meaning of this term.

When using the O, Spatial engine the spatial index stores a geo-referenced object as a
minimum rectangle (called a bounding box) that encompasses the object for identifying
the spatial location of the object. To index an object, we simply provide the object and its
bounding box. This means O, Spatial only checks if the bounding box of an object

intersects with the query window for a range search.
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6.3 Best Efforts

I have been in contact with the Ardent Software technical support personnel since we
started to install the system on a machine in GE 136 in February of 1999. Appendix 1
contains details of contacts made with Ardent support stuff by Emails. Ardent did not
have any C++ sample code that would run on Windows NT. They did send me some code
so I could do system testing after we installed O, Spatial. The code they sent had many
errors. After debugging, it ran once out of ten times. The error message said “theBag,
which is the collection for the reported objects, could not be created.” It was very
difficult to get the code to run again after making any changes. The system seemed very
unstable. When the O, Spatial program did run, it seemed that thé speed for range search
was faster than that of the Oracle 8.0.4 relational model. This was just my impression.
We didn’t have the exact time recorded as the program stopped running before

completing the test.

I obtained a sample O; Spatial test code from a local company, Universal System Limited
(USL). Their code works on the Unix platform. After making certain changes, I got it to
run on Windows NT and I obtained some results from it. The program reported the
number of objects in a query range. Once the O, Spatial code mentioned above failed to
run, the USL code would not run either. This gave me the impression that O, retains
some variables from the previous sessions and uses it for the new session, which is not
correct. I sent four emails from April to June 1999 to Ardent Spatial support people about

this problem, but never got any useful help. At this point we decided to stop the research
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work with O, Spatial starting from July 1999. Universal Systems Limited also stopped

their O, development due to the lack of support and functional deficiencies.
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CHAPTER SEVEN

COMPARISON OF THE SPATIAL INDEXING METHODS

7.1 Experimental Description
Experiments for the R-tree, the BR*-grid file, the Oracle 8i object model and Oracle 8i
relational model were conducted using two sets of data: nts21g15 dat with 17,000 objects

(called the test] dataset) and nts21g dat with 20,000 objects (called the test2 dataset).

The programs for building and searching the indices were developed on a machine with a
Pentium 11 400 MHz processor and 128 MB memory. The compilér used was MS Visual
C++ 6.0 under Windows NT 4.0, The Oracle 8i database was run on an IBM Netfinity

5000 server with a Pentium 11 450 MHz processor. 2 GB of RAM, running MS Windows

NT Server 4.0,

The time for primary search and secondary search spatial indices using the four
approaches was measured. The amount of source code required for the R-tree, modified
grid file, Oracle Si object-relational model and Oracle 8i relational model are 2452, 3637,
104 and 523 lines respectively. The memory space cost for the R-tree and modified grid
file are approximately 1.5 Mbytes (33%) and 3.3 Mbytes (73%) for dataset testl, 1.0
Mbytes (31%) and 2.5 Mbytes (78%) for dataset test2. The percentages are the ratios of
the index meniory space cost to the original dataset size. The dataset size is the space

required tor the control and detail files together; i.c. 4.5 Mbytes for testl, 3 2 Mbytes for
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test2. The space for the Oracle relational and object-relational tables and files are
approximately 275.8 Mbytes and 48.8 Mbytes for testl, and 270Mbytes and 62.7Mbytes

for test2. The details about computing the space cost for Oracle are shown in Appendix 3.

7.2 Times for Range Searches Using R-tree Spatial Indices

We chose two orders for R-tree indexing; m=>5 and m=50. Tables 7.1 and 7.2 (or Figure
7.1) show the times for primary and secondary search on dataset test]. Tables 7.3 and 7.4
(or Figure 7.2) show the times for primary and secondary search on dataset test2. SD
stands for the standard deviation for 50 searches. 1t took 15.800, 16,494, 11 316 and
11,667 seconds to build the R-tree spatial indexes for the test] dataset (m=5 and m=50)

and the test2 dataset (m=5 and m=350), respectively.

Table 7.1 Average primary R-tree range search time (in seconds) for dataset test].

Size(%) m=3 SD m=50 SD
1 0.00100  0.00001 0.00100 0.00001]
4 0.00542 000003 0.00664 (.00003
9 0.01140 000002 0.00942 0.00002
16 0.01882 000005 001642 0.00004
25 0.02944  0.00001 002724  0.00002

36 0.04912  0.00005 004344 0.00004
49 0.05308 0.00007 0.04650 0.00006
o4 0.07786  0.00004 0.07026 0.00004
81 0.09898  0.00002 0.09076 0.00003
100 0.11334 0.00002 009972 0.00001

The size column gives the ratios of query window area to the data extent area, in %o.
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Table 7.2 Average secondary R-tree range search time (in seconds) for dataset test1.

Size{%) m=5 SD m=50 SD
1 0.07654 0.00086 0.07108 0.00076
4 0.13232  0.00110 0.13714 0.00090
9 0.20364  0.00215 0.16788 0.00044

16 0.30974 0.00202 0.31550 0.00090
25 0.39008 0.00496 039232 0.00320
36 0.45992 0.00401 0.46026 0.00362
49 0.52876 0.00386 0.54160 0.00434
64 0.58084 0.00484 0.60892 0.00518
81 0.54596  0.00587 0.54554 0.00641
100 0.12042  0.00003 0.10758 0.00004

rtree range search for dataset test1

--o— primary(m=>5)
—f— primarym=50) _
' —&— secondary{m=5)

(%)

Figure 7.1 Average R-tree range search time (in seconds) for dataset testl.



Table 7.3 Average primary R-tree range search time (in seconds) for dataset test2.

Size(%) m=5 SD m=50 SD

1 0.00160  0.00001 0.00380 0.00002
4 0.00442  0.00003 0.00562 0.00003
0.01022  0.00001 0.01320 0.00002

16 0.02102 0.00001 0.02524 0.00003
25 0.03264 0.00002 0.03242 0.00002
36 0.05188 0.00003 0.05254 0.00002
49 0.07590 0.00002 0.07726 0.00004
64 0.10558 0.00004 0.10418 0.00003
81 0.11734 0.00002 0.11438 0.00003
100 0.12718  0.00003 0.12636  0.00003

Table 7.4 Average secondary R-tree range search time (in seconds) for dataset test2.

Size(%) m=>5 SD m=50 SD

1 0.01102  0.00004 0.01602 0.00007
4 0.05566 0.00017 0.06192 0.00020
9 0.11400  0.00031 0.12010 0.00028
16 0.18162 0.00219 0.19114 0.00215
25 0.28082 0.00453 0.29178 0.00458
36 0.38130 0.00442 0.37298 0.00483
49 048618 0.00864 0.49666 0.00889
64 0.45764 0.00299 0.45146 0.00332
81 0.40996 0.00245 0.39440 0.00198
100 0.14002  0.00005 0.12256 0.00003
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Figure 7.2 Average R-tree range search time (in seconds) for dataset test2.

7.3 Times for Range Searches Using Grid File Spatial Indices

We chose to use M=1000 for the grid file, i.e. each bucket is allowed to store a maximum
of 1000 objects. The data inside each bucket were indexed using an R-tree with order
m=>50. Table 7.5 (or Figure 7.3) and Table 7.6 (or Figure 7.4) list the times for range
search on both test datasets. The testing was performed 50 times for each different size of
query window. It took 9.453 and 6.329 seconds to build the modified grid file spatial

index for the test] and test? datasets.
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Table 7.5 Average range search time (in seconds) for dataset test1

using modified grid files.
Size(%)  Primary SD Secondary SD
1 0.00640 0.00598 0.01942 0.00767
4 0.02902 0.01933 0.05890 0.02627
9 0.05772 0.02221 0.10196 0.03188
16 0.12070 0.03286 0.15620 0.02967
25 0.19196 0.01470 0.27018 0.02730
36 0.27944 0.04978 0.37558 0.06269
49 0.39294 0.05674 0.45046 0.05307
64 0.54560 0.03684 0.62046 0.04590
81 0.71482 0.01750 0.80076 0.01788
100 0.83498 0.00530 0.82638 0.00550

Table 7.6 Average range search time (in seconds) for dataset test2

using modified gnd files.

Size(%)  Primary SD Secondary SD

1 0.00000 0.00000 0.00340 0.00479
4 0.00862 0.00406 0.02862 0.00834
9 0.04304 0.00579 0.07806 0.01130
16 0.10350 0.00752 0.14662 0.01460
25 0.17364 0.00713 0.24472 0.01795
36 0.31256 0.03855 0.41024 0.03482
49 0.50886 0.03564 0.62812 0.06095
64 0.75142 0.04498 0.85938 0.05953
81 0.84926 0.02848 0.94916 0.02777

100 0.99948 0.06132 0.97210 0.00778
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Figure 7.3 Average range search time (in seconds) for dataset test!

using modified grid files.
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Figure 7.4 Average range search time (in seconds) for dataset test2

using modified grid files.
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7.4 Times for Range Searches Using Oracle 8i Object-relational and Oracle &1 Relational

Models

Table 7.7 (or Figure 7.5) and Table 7.8 (or Figure 7.6) list the time for range search on
both datasets using Oracle 81 object-relational model. The testing was run 10 times for
each different size of query window. It required approximately 660 and 900 seconds to

build the spatial index for dataset testl and test2, respectively.

Table 7.7 Average time for range search

using Oracle 8i object-relational model on dataset testl,

Size(%)  Primary(s) sD Secondary(s) SD
1 0.270 0.014 1.863 : 0.156
4 0.401 0.000 10.060 4.228
9 0.796 0.545 13.074 1.820
16 2.689 - 0120 27.074 3.817

25 3.986 0.313 44,995 5.849
36 5833 0.134 66.796 8.370
49 8.773 0.694 90.976 9.737
64 13.049 0.566 N/A N/A
81 20.205 0.163 N/A N/A
100 25232 0.375 N/A N/A

Table 7.8 Average time for range search

using Oracle 8i object-relational model on dataset test2.

Size(%)  Primary(s) SD Secondary(s) SD

1 0.171 0.042 0.906 0.021
4 0.351 0.001 5,743 2414

0 1.327 0.4486 14.330 4.617
16 3.265 0.396 22015 1.680
25 5.821 1.618 40.018 2.847
36 8.095 0.841 69.307 10.717
49 13.484 1.297 113.868 13.999
64 25.213 1.694 157.862 11.734
81 30.705 1.631 179.193 2.189
100 35.867 1.750 207.103 6.620
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Figure 7.5 Average time for range search
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Although the Oracle 8i object-relational model is recommended in the Oracle 8i Spatial
users guide, it suffers from several problems. For example, the SDO_LEVEL value
returned from a recommended procedure SDO_TUNE.ESTIMATE_TILING_LEVEL()
is not efficient to perform range searches. For our datasets, the procedure returned
SDO_LEVEL values of 8 and 10 for testl and test2, We used these values to generate a
spatial index, and then perform primary and secondary range searches using this spatial
index. When the query window size was increased up to 49%, the primary search for
test] dataset generated the error massage “too many tiles to create spatial index for
window object”. The same thing happened for the test2 dataset for a window size of 4%.
In order to complete a range search with our 10 differently sized windows, we reduced
the level values and set SDO_LEVEL to 5 for the test] dataset aﬂd SDO_LEVEL to 7 for
the test2 dataset. Another problem encountered is that the secondary range search with
certain sizes of query windows seems to be running in an infinite loop. We can see this
from Table 7.8, the fourth and fifth columns, where N/A means not available due to this

problem.

Table 7.9 (or Figure 7.7) lists the time for range search on the test2 dataset using the
Oracle 81 relational model. The Oracle 8i relational model seems unstable compared to
the Oracle 8i object-relational model. T could only generate a spatial index for the test2
dataset and perform primary and secondary range searches based on this generated spatial
index. The time required to generate the Oracle 8ia relational index for dataset test2 was
approximately 480 seconds. The commands to use two procedures to generate the spatial

index for the test] dataset and the according error messages are shown in Figure 7.8.
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Figure 7.7 Times for range search using Oracle 8i relational model for test2 dataset.

EXECUTE SDO_ADMIN.POPULATE_INDEX _FIXED('LAYER17',10,FALSE, FALSE, FALSE};

ERROR ORA-13041: failed to compare tile with element LAYER17.3698.0

EXECUTE SDO_ADMIN, POPULATE_INDEX('LAYER17'};

ERROR ORA-00604: error occurred at recursive SQL level 1

Figure 7.8 Two procedures and error messages

for generating the spatial index on dataset testl.

The second procedure SDO_ADMIN.POPULATE_INDEX() is recommended in the user

guide.
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Table 7. 9 Times for range search using Oracle 8i relational model for test2 dataset.

Qw size (%) Primary(s) Secondary (s)

1 77.661 75.399

4 76.450 81.447

9 75.739 87.686

16 79.704 103.900
25 81.798 132.641
36 86.755 142.725
49 92.843 191.586
64 97.019 238.834
81 105.472 241.267
100 110.699 265.602

Since the number of objects reported from the secondary range search with a 100% query
window size was 15,000 instead of 20,000, there seems to be a ﬁindamental problem with
the Oracle 8i relational model. It does not seem to find all the objects in range. This

model was used before Oracle 81 Spatial was released. For performance reasons, its use is

not recommended in the latest release [Oracle8i, 1999].
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CHAPTER EIGHT

SUMMARY AND CONCLUSION

In this research we compared the performance of four spatial indexing methods for range
searches. One of the four methods is a new spatial indexing method based on the grid file
index. Two sets of data from the National Topological Database were used to perform the
experimental comparisons. A 1:50,000 scale data set with 20,000 objects as well as a
1:250,000 scale data set with 17,000 objects were used. All the data sets contain

two-dimensional non-point objects.

In order to do the comparison, we first built spatial indices for objects. There are two
ways to create a spatial index. These include 1) use the spatial data support in
commercially available databases such as Oracle 8i and O, and 2) create the spatial data-
indexing scheme directly using spatial data structures such as the R-tree or grid file.
Oracle 81 Spatial has two models for spatial indexing, namely the object-relational model
and the relational model. We built spatial indexes using both medels from Oracle 8i. Due
to the lack of support and functionality, we abandoned the spatial indexing method from
O,. For the direct spatial indexing method, we used the R-tree and modified grid file
spatial data structures. The time required for building the spatial indexes for the four
methods are 11.667 and 6.329 seconds for the R-tree and grid file, and approximately 660
and 480 seconds for the Oracle8i object-relational model and the Oracle8i relational

models, respectively.
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We tested the four indexing methods by performing various range searches on the test
data. We tested using both primary range query (based on the bounding box of the objects
only) and a secondary range query (based on the real data). Ten differently sized query
windows (i.e. 1%, 4%, 9%, 16%, 25%, ..., 100% of the data extent) were used. For each
size of query window, we ran 50 random searches. According to the results, the R-tree
outperforms the other three methods, and the grid file outperforms Oracle &i Spatial. The

Oracle 81 Spatial object-relational model outperforms the relational model.

For the query windows with size less than or equal to 49% of data extent, R-tree and the
modified grid file take approximately same amount of time to perform a range search.
The R-tree with order m=50 required an average of 0.497 seconds for a query window
size of 49% on dataset test2 whereas the modified grid file required an average of 0.628
seconds under the same condition. As the query window increases, the modified grid file
takes more time to perform a range search than the R-tree (see Figure 8.1). To perform
the same range search with a query window size of 49% on dataset test2, Oracle object-
relational and Oracle relational required approximately 220, 400 times more time, on

average.
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secondary range search using rtree and grid file on test2
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Figure 8.1 Secondary range search using the R-tree (m=50)

and the modified grid file on dataset test2.

From what we have experienced, the R-tree and grid file seem to be very good for our
spatial datasets. Oracle8i Spatial data cartridge and O, Spatial are very difficult to set up
and get running. There are quite a few spelling mistakes in the Oracle documentation that
are misleading, and their technical support is limited. It took me three months to get any
results. For O,, it seems that the system is not stable, and the documentation and technical

support is very limited.

This research has given rise to the following open questions:
. Will the performance for Oracle 8i be better if we use OCI instead of ProC/C++?
2. How well does the same range search perform if we use a GIS database or other

database system with spatial option, such as ArcInfo or Jasmine I1?
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. There is a new spatial data structure called data replication [Kanth, 1998]; how well
does this new method perform for indexing non-point spatial objects?
. As the number of objects increases by orders of magnitude, will the modified grid file

be faster than the R-tree?
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Appendix 0

Histograms of the object size and plots of the objects for two datasets
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Figure A0.1. Cumulative histogram of the non-point object sizes for dataset testl

number of objects
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Figure A0.2. Cumulative histogram of the non-point object sizes for dataset test2

{nts21g).
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Figure A0.4. Plot of objects for dataset test2 (nts21g).
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For the data in Figures AO.1 and A0 .2, we bin objects into 12 categories according to
their ratio { r = 100* object bounding box area / data extent area). We have the count of
objects for each of the following bins: 0% <r < 1*10%%, 1¥10%% < r < 1*10™%, 1*10™
% <1< 1*107%, 1%107% <5 < 1%10°%, 1¥10%% <1 < 1*¥107%, 1*¥107% <r < 1*10°
Yo, 1¥107% < r < 1¥107%, 1%107% < r < 1%1070%, 1*107 % < r < 1*¥107%, 1%107 % <
r< 1¥10"%. 1%¥10%% < r < 1*10'%, 1%10'% < r < 1*¥10%%. The count of object in each
b are plotted (cumulatively) against r, where r is labeled on the histogram as -9, -8, -7, -
6,-5,-4,-3,-2,-1, 0, 1, 2. Each label corresponds to the power of ten of the upper bound

for each of the 12 bins.
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Appendix 1

Email Contacts Made with Ardent Support Stuff

*** Email number 1%***

----- Original Message-----

From: Liping Xie [mailto:g93c(@unb.ca)
Sent: Monday, February 01, 1999 6:44 PM
To: o2support@ardentsoftware. com

Cc: bgn@iunb.ca
Subject; O2 spatial

Hello,

I am a graduate student at the University of New Brunswick doing the research with spatial data under the direction
of Dr. Nikerson, we have choosen to use O2 for spatial index testing. However, I have two questions about 02
spatial:

1) Where can I find a simple example for creating spatial index for few objects and performing range search on
them.

2) Could you please give me some explanation for R-Quad tree which is used for the spatial indexing.

Thanks for the early reply
Liping Xie

Date: Tue, 2 Feb 1999 14:44:24 0700

From: 02 Support <o2support(@ardentsoftware com:
To: 'Liping Xie' <g23c{@unb,.ca>

Subject: Case 102638; O2 spatial

Hello Liping,
We received your request for support. Unfortunately, our O2 expert analyst is out sick today but we'll make you
obtain a quick response. If you need any additional information please contact us at 1-800-729-3553 or send e-mail

to oZsupporti@ardentsofiware com.
Regards,

Ardent Software Inc
O2 Support
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*** Email number 2***

>> From: Reynal Cocaign <revnal cocaign(@ardentsoftware.com™>

>> To: 'Liping Xie' <g93¢c@unb.ca>

>> Date: Tuesday, February 16, 1999 6:31 PM

>> Subject: RE; O2 spatial

>

P

=>>>Hi Liping,

>

>>>> Hello,

S>>

>>>>1 am a graduate student at the University of New Brunswick doing the research with spatial data under the
direction of Dr. Nikerson, we have choosen to use O2 for spatial index testing. However, I have two questions
>>>> about O2 spatial:

> >

>>>> 1} Where can I find a simple example for creating spatial index for few objects and performing range search
on them.

P

=>>There are no samples delivered with the O2spatial index however please find enclosed a short example.
5= 4

>>>> 2) Could you please give me some explanation for R-Quad tree which is used for the spatial indexing.
>3

>>

>> >R-Quad Trees mix R-Tree representation for easy storage and QuadTree representation for fast retrieval.
P .

>> »The QuadTree divides the space into Quadran each quadran being itself in Quadrans.

>> >The R-Tree (Rectangle Tree) is a set of rectangle (Which can be assimilated to the bounding box of some
objects) that contains a set of spatial object.

p

>>>I hope these explanation and the sample found in attachment will help

=»> >Regards,

> >

>> >Reynal Cocaign

From: Brad Nickerson <bgn@unb.ca>
To: o2supposti@ardentsoftware.com <oZsupport{@ardentsoftware.com>; Reynal Cocaign

<reynal.cocaigni@ardentsoftware.com>
Ce: Liping Xie <g93c{@unb.ca>

Date: Friday, February 19, 1999 9:15 AM
Subject: O2 spatial

>Reynal:

=

> Thanks for your response to Liping Xie, a graduate student working with me. We need more explanation about
the R-Quadtree. I fuliy understand the R-tree and the many variations of the quadtree that are in the literature. Can
you point us to¢ a paper or patent that explains the R-Quadtree? Your explanation below is very vague, and does not
explain how the R-tree and quadtree are "mixed". Do the R-tree and quadtree act independently? If you are indexing
with a quadtree, how do you index linear and areal objects? Do you use a version of the PM-quadtree?
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Thanks in advance for any light you can shed on the R-Quadtree.
>

>Regards, Brad Nickerson

>Dr. Brad Nickerson

>Professor and Director of the Information Technology Centre
>University of New Brunswick

>Faculty of Computer Science

>P.0. Box 4400

>Room GE-119, Gillin Hall, 540 Windsor Street

>Fredericton, N.B. E3B 5A3

>Canada

>phone: (506) 458-7278 fax: (506) 453-3566 E-mail: bgn@unb.ca
=

>
>0n Wed, 17 Feb 1999, Liping Xie wrote:

-]

>> 9:00am on Friday is ok with me, and the following is what I got from O2 support:
>
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**%* Email number 3%**

b Original Message-—---

> From: Liping Xie [mailto:g93c(@unb.ca)

> Sent: Sunday, April 11, 1999 2:40 PM

> To; Reynal Cocaign

> Subject: RE: O2 spatial

-

>

> Hi Reynal,

>

> I was running the sample code you sent to me, it worked once, and T got some part of the results printed out. But
when I tried to run it again one week ago, it gave the error 71256. Do you have any idea about this? Would you
please tell me where I can find the reference for the error messages?

e

> Thanks in advance for your reply

-

> Liping

>

From: Reynal Cocaign <revnal.cocaign(@ardentsoftware.com>
Ta: "Liping Xie™ <g93¢@unb.ca>

Subject: RE: O2 spatial

Date: Mon, 12 Apr 1999 12:15:12 -0600

Hi Liping,

Usually the error message would display the text associated to it. If not you can find the label of the message as
follows:

teksun{reynal}:cd $O2HOME/message//disk3/02/5.0/message
teksun{reynal}:grep 71256 * eom_error.e: 71256 Deletion of an indexed object is not allowed

Can you be a bit more precise about what you are doing and when it oceurs while running the spatial index a second
time. Do you select any special options from the menu?

Thanks,
Reynal

Reynal Cocaign

Customer Support Analyst
revnal.cocaign@ardentsoftware.com

Tel: 303-294-4768

The Art of Data Management... and All That Jazz
Register today for Ardent's 1999 Customer Conference
Qctober 19 - 23, 1999

New Orleans, Louisiana, USA
http:/fwww.ardentsoftware . com/conference
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*** Email number 4***
Tuesday, April 13, 1999 5:08PM

Hi Liping,

>

> Thank you for your quick response on my last message.
-

> 1 have a few questions regarding the compilation and execution of the sample program you sent me,

=

> 1. In the file o2spatial_sample.cf, two of the three lines below apparently are wrong since the makegen program
complained about ImpBag and ImpList. I figured the colons are supposed to be equal signs so I changed it and
everything seemed fine. Could you tell me if this was an appropriate thing to do.

-

> ImpFiles= Point2D.hxx GeoObject.hux GeoPolygon.hxx GeoEllipse hxx

> ImpBag: GeoObject

> ImpList; Point2D

Yes that's exactly what you have to do. In ealier versions of O2 the separator was colons. Having ported O2 to
windows we had to change the separator to avoid conflict with drive specification, ie C:

> 2. In the source code, the macro

> #if defined(0O2_NEED_TMPL_CODE) || defined{(02_NEED_TMPL_SRC)

> # include <o2template_CC.ce>

> #endif

>

> seemed to be true and as such, the file o2template_cc.cc is required. However, I did not find that file in the sample
program you sent. I commmented the line #include out just so that the compilation process passes. Is this file needed
for a sucessful run of the sample? If yes, could you please sent me a copy.

=

This file is part of the standard O2 delivery when needed. You should find the file in O2ZHOME/include if it really is
needed. This should only be the case on HPUX 10,

The macro should be:

#if defined(02_NEED_TMPL_SRC)

#include <o2template_CC.cc>

#endif

-

> 3. During the building process, the compiler complained about unconfirm classes. Is this significant ?

=Y

Yes, once you are making modification on a class you have to confirm this modification otherwise you can not set a
base, open a base in C++.

Confirming classes enables to create a class history internal to the O2 system so that type convertion can applied if
necessary. You can add the directive +UseConfirmClasses in the configuration file.

> 4.1 have sucessfully run the program severaj times before (or so it seemed 1:-). Now, what I get is an error message
saying that the spatial index could not be created along with the error code 71256. From the documentation, "71256
Delete unallowed for indexed objects”. I feel like T am missing some steps in making the sample program or there is
> something I should have done before remake the program from scratch.

> Could you please suggest me as to what to do?

If you could track down at which line of code of the sample program this happens I might be able to help. I cannot
reproduce it by running this sample twice.

> T would greatly appreciate any help I can get.
>

Reynal
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**% Email number §%**

B moee Original Message-----

> From; Liping Xie [mailto:g93¢@unb ca]

> Sent: Tuesday, April 13, 1999 9:05 PM

> To: Reynal Cocaign

> Subject: RE: O2 spatial

=3

> Hi Reynal,

=

> I will try my best to described what I did and the error occur... Since I could not run the shell script on WinNT so I
just created a batch file that basically does the same thing, I created the directory QutputDIr manually before
running the batch file. I paste the result of the run below so you can see everything that went on during

> the process. I modified the 02spatial_sample cf so that +UseComfirmClass is not commented out anymore and I
got rid of the warning about unconfirmed class. I also put some more cout so that it is easier to trace the

> execution of the program. The source code is appended at the end of this message. I know this is long but it is the
only way I can make things clearer,

>

> Thanks.

=

> Liping

Thursday, April 15, 1999

Hi Liping,

Thanks for sending all the details this helped me orientating my research. Actuaally the error message is not clear (I
have create an improvement request for engineering so that they change it). What hapens is that we are checking for
any existing spatial index and the error corresponds to O2E_IS_INDEXED as described in the spatial manual.

In your case this error should not happen since you have restarted by creating a new schema and a new base!

I would suggest to delete your base/schema once again and restart from scratch to see if you still have the same
behavior. Please let me know if you have any changes!

Reynal
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**% Email number 6%**

on April 15,1999 Reynal Cocaign wrote:

Hi Liping,

Thanks for sending all the details this helped me orientating my research. Actually the error message is not clear (I
have create an improvement request for engineering so that they change it). What hapens is that we are checking for
any existing spatial index and the error corresponds to O2E_IS_INDEXED as described in the spatial manual.

In your case this error should not happen since you have restarted by creating a new schema and a new base! [
would suggest to delete your base/schema once again and restart from scratch to see if you still have the same

behavior.

Please let me know if you have any changes!

Reynal

From: Liping Xie

Date: Monday, May 17, 1999
To: Reynal Cocaign

Cc: bgn@unb.ca

Subject: O2spatial

Reynal,

Ok, I have gone over the files (attached) many times but I could not see why the same executable would work one
iime and not another time. At first I thought it was because the file .Geo*list, .Geo*bag, .Geo*set changed during the
compilation process. However, this seems unlikely because they only contain the string "ECHOQ is on." (13 byte-
files). I believe the executable itself is ok. However, something must have changed during the compilation process
since the same executable will not run anymore if T run _make_ again,

Attached are all the files relevant to the problem. Could you please take a look at them? Maybe something just snap
out from your experience with O2 database.

The file Copy of exec.bat is basically 2 DOS version of the run_all shell script that you provided along with the
sample code.

Thank you so much for your time,

Liping
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*** Fmail number 7***

From: Liping Xie
Date: Friday, June 235, 1999
To: Reynal Cocaign

Cc: bgni@unb.ca
Subject; O2spatial

Hi, Reynal

I'am wondering if you got my email on May 17, I am still waiting for your reply. Besides, I would like te know if
you have any nunning sample code under Windows NT with visual c++. If $0, would you please send me a copy?
then I can do some testing after reinstalling O2.

Thanks in advance

Liping

*** Email number 8***

From: Reynal Cocaign

To: 'Liping Xie'

Subject; RE: O2 spatial

Date: Friday, June 25, 1999 4:14 PM

> I am wondering if you got my email on May 17, I am still waiting for your reply, Besides, I would like to know
> if you have any running sample code under Windows NT with visual ¢++. If s0, would you please send me a
> copy? then I can do some testing after reinstalling O2.

I did not receive your email! Could you resend it please? Regarding the Windows NT/Visual C++, I guess that you
wish to have a sample that that includes the spatial index. I do not have that. However we have example of

VC projects which explains the settings required to be able to use together with O2. This can be found in the
following directory:

O2HOME\samplesio2¢plusplusiVCProjects.

There you have 2 different project (one console and one MFC project). In each case you have README files that
gives you lots of information.

Reynal

*** Email number 9***

From: Reynal Cocaign

To: 'Liping Xie'

Subject: RE: 02 spatial

Date: Friday, June 25, 1999 4:14 PM

HiT just noticed that email you sent on May, 17th was attached to your email. I am looking into it.

Reynal
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Appendix 2

The code for Overlap(), Contained() and twoline_intersect()

float A[3)[3]:;

struct P

{
float x,y:
};

void Inversel(}

{
float det = A{21([21*A[1]([1] - A[1]([21*A([2]([1);
float save = Af[1]1[1];

A[1)I1] = a(21(2] / det;
A[11[2] = -A[1l]([2]/det;

A[2][1] = -A[2][1]/det;

A[2]1[2) = save/det;

}

// determine if two line intersect
// uses parametric line segment intersection (from spatial data
// structure class notes)
int twoline_intersect{pl, p2, gl, g2)
struct P pl;
struct P p2:
struct P gl;
struct P g2;
{
struct P gi{3]:
struct P p(3];
struct P g _p(3]1;

fleoat u;

float v;

pll].x = pl.x;

pill.y = pl.y;

pl2].x = p2.x;

pi2l.y = p2.y;

gll]l.x = gql.x;

qll]l.y = ql.y;

ql2].x = qg2.x;

qal2].y = g2.v;

A[1]1[1) = pl2] .%x-pl1].x;
Al1]([2) = g[l].x-gl2].x;
A[2]1[1]) = pl2].y-pl(l1].¥v:
Al2] (2] = ql[l1].y-ql2].v;
a_pll]l.x qll] .x-pfl}.x;

apr(ll.y = qll]l.y-pfl].v;



Inversel);
u=A[l}[li*qg pl[l]).x + A[1][2]*g p[1].y;
v = A[2][11*q.pl[l]l.x + A(2]([2]*gq pl[l].y:

if {u>=0 && u<=1 && v>=0 && wv<=1 }

return 1;
else
return 0;
}
/* _____________________________________________________________________
| Decide whether two rectangles overlap. [Guttman,1984)
_____________________________________________________________________ */
int Overlap(Rect *r, Rect *s)
{
int i, i;
for (i=0; i<NUMDIMS; i++) // NUMDIMS=2 for two-dimensiocnal data
{
J =1 + NUMDIMS; /* index for high sides */
if {r->boundary(i] > s->boundary[j] || s->boundary{i] > -
>boundary[j]) -
return FALSE;
}
return TRUE;
}
/* _____________________________________________________________________
| Decide whether rectangle r is contained in rectangle s.[Guttman,1984]
_____________________________________________________________________ *

int Contained{Rect *r, Rect *s}
{
int 1, j, result;

/* undefined rect is contained in any other */
if (Undefined(r))
return TRUE;

/* no rect {except an undefined one) is contained in an undef rect */
if (Undefined{s})
return FALSE;

result = TRUE;
for (i = 0; i < NUMDIMS; i++)
{
j =1 + NUMDIMS; /* index for high sides */
result = result
&& r-»boundary([i] »= s->boundary[i]
&& r-rboundarvi{j] <= s->boundarvy([j];
}
return result;
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Appendix 3

Space cost for Oracle8i relational and object-relational model

Relational model
Dataset test]:

Data table: layer3 sdogeom
Space per record: number {(4bytes) x 8 = 32 bytes
Number of records: 343827
Space cost: 343827 x 32 = 11002464 bytes = 1 1 Mbytes

Index table: laver3 _sdoindex
Space per record: number (4bytes) + raw (255bytes) = 259 bytes
Number of records: 1,000,000
Space cost: 1,000,000 x 259 = 259 Mbytes

Data and index: 11Mbytes + 259 Mbytes = 270 Mbytes

Dataset test2:

Data table: laver2 sdogeom
Space per record: number (4bytes) x 8 = 32 bytes
Number of records: 523613
Space cost: 523613 x 32 = 16753616 bytes = 16.8 Mbytes

Index table: fayer2 sdoindex
space per record: number (4bytes) + raw (235bytes) = 259 bytes
number of records: 1,000,000
space cost: 1,000,000 x 259 = 259 Mbytes

Data and index: 16 8Mbytes + 259 Mbytes = 275.8 Mbytes

Note: The number of records in the two datasets are approximate since | could not
regenerate the index table using the relational model (see chapter 7). The number of

records are what I recall when 1 first generated the index tables.
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Object-relational model

Dataset test1:
Data table: layer 17kk
varchar2 (32bytes)
sdo_geomtry
number {4bytes) x 2 = 8 bytes
sdo_point_type
number (4bytes) x 3 =12 bytes
sdo_elem_info_array
number (4bytes) x 200 = 800 bytes
sdo_ordinate_array
number (4bytes) x 200 = 800 bytes
space per record: 32 + 8 + 12 + 800 + 800 = 1652 bytes
number of records: 16998
space cost: 16998 x 1652 = 28080696 bytes = 28.1 Mbytes

Index table: layer_17kk_index_hl5n4$
space per record: raw (1 1bytes) x 4 + rawid (256bytes)=300bytes
number of records: 69027 '
space cost: 69027 x 300 = 20708100bytes = 20.7 Mbytes

Data and index: 28.1Mbytes + 20.7 Mbytes = 48.8 Mbytes

Dataset test2:
Data table: layer_20k
varchar2 (32bytes)
sdo_geomtry
number (4bytes) x 2 = 8 bytes
sdo_point_type
number (4bytes) x 3 =12 bytes
sdo_elem_info_array
number (4bytes) x 200 = 800 bytes
sdo_ordinate_array
number (4bytes) x 200 = 800 bytes
space per record: 32 + 8 + 12 + 800 + 800 = 1652 bytes
number of records: 20104
space cost: 20104 x 1652 = 33211808 bytes = 33.2 Mbytes

Index table: layer_20kk_index_hl7n4$
space per record: raw (12bytes) x 4 + rawid (256bytes)=304bytes
number of records: 97106
space cost: 97106 x 304 = 29520224bytes = 29.5 Mbytes

Data and index: 33.2Mbytes + 29.5 Mbytes = 62.7 Mbytes
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