
Support Ordered Resolution

Bruce Spencer and J. D. Horton

Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

bspencer@unb.ca, jdh@unb.ca, http://www.cs.unb.ca

Abstract. In a binary tree representation of a binary resolution proof,

rotating some tree edge reorders two adjacent resolution steps. When

rotation is not permitted to disturb factoring, and thus does not change

the size of the tree, it is invertible and de�nes an equivalence relation on

proof trees. When one resolution step is performed later than another

after every sequence of such rotations, we say that resolution supports

the other.

For a given ordering on atoms, or on atom occurrences, a support ordered

proof orders its resolution steps so that the atoms are resolved consistent-

ly with the given order without violating the support relation between

nodes. Any proof, including the smallest proof tree, can be converted

to a support ordered proof by rotations. For a total order, the support

ordered proof is unique, up to rotation equivalence. The support ordered

proof is also a rank/activity proof where atom occurrences are ranked in

the given order.

Procedures intermediate between ordered resolution and support ordered

resolution are considered. One of these, 1-weak support ordered resolu-

tion, allows a resolution on a non-maximal literal only if it is immediately

followed by both a factoring and a resolution on some greater literal. In

a constrained experiment where ordered resolution solves only six of 408

TPTP problems with diÆcultly between 0.11 and 0.56, 1-weak support

ordered resolution solves 75.

1 Introduction

Automated theorem provers, in their search for a proof, must balance the de-

ductive power of a calculus, telling what can be derived from a given point in

the search, with restriction strategies, telling which deductions are to be avoided.

Clearly the restriction strategy must not remove all of the choices that eventually

lead to a proof, at least not without the user's being aware of its incompleteness.

But even so, the restriction strategy may remove all shortest proofs, leading

to another undesirable e�ect: the theorem prover takes longer to �nd a longer

proof. An ideal restriction strategy would reduce the space to one richly popu-

lated with only short proofs, be simple to implement and quick to check. This

is an unrealistic ideal. In this paper we give a reduction strategy is that is quick

to check, simple to implement, admits smallest proofs trees, and is almost as

restrictive as ordered resolution.



In our setting we represent proofs as binary trees, labeled by clauses according

to Robinson's resolution method[5]. A node is labeled both by a clause, referring

to the conclusion drawn at this point by the resolution, and if it is not a leaf,

by the atom that was resolved upon to give this conclusion. Our measure of

size is the number of nodes in this tree. Often theorem provers build sequences

of formulae where each deductively follows from previous ones. This sequence

represents a traversal of a directed acyclic graph (dag) that underlies the tree.

The size of an underlying dags is a more natural measure of proof size than the

size of the tree. But often if one tree is smaller than another tree then the dag

underlying the �rst tree is smaller than the dag underlying the other. Moreover,

only the dag, not the tree, is constructed by the prover.

The main contribution of this paper is the support ordered restriction. When

compared with the ordered restriction, support ordered resolution is less restric-

tive, in that it admits a very speci�c additional resolution step. On the other

hand the support ordered restriction does not increase the size of the smallest

tree, unlike ordered resolution which may restrict all smallest trees, and in some

cases admit only exponentially larger trees and dags, as shown in Example 3

below.

Rotating some tree edge reorders two adjacent resolution steps. When ro-

tation is not permitted to disturb factoring, and thus does not change the size

of the tree, it is invertible and de�nes an equivalence relation on proof trees.

For a given total order on atoms, there is a single support ordered tree in each

rotation equivalence class. Since the equivalence classes typically contain an ex-

ponential number of trees, support ordered resolution substantially reduces the

search space.

It is interesting to �nd a restriction of a resolution calculus that admits

a smallest deduction (tree) while substantially reducing the search space, as

support ordered resolution does. It is also interesting in that it brings together

two apparently di�erent restrictions, the rank/activity restriction[4] and ordered

resolution. A given ordering on atoms can be used to set the ranks of literals in

each clause, and then the rank/activity proof is the support ordered proof.

Viewed as a generalization of other restrictions, we can identify a number

of other special cases of support ordered resolution. These suggest themselves

as candidates for experiments. One set of these experiments has been done for

the special case called 1-weak support ordered resolution, or 1-wso. This proof

format depends on a restriction that can be quickly checked on partially closed

binary resolution trees. It can be expressed in an intuitively clear way: Recall

that the ordered restriction allows a resolution only on a maximal atom in each

clause; 1-wso allows these and also allows a resolution on some non-maximal

atom but then requires an immediate merge on a greater atom from di�erent

parents followed by a resolution step on that merged atom. Our experiments

indicate that 1-wso provides deductive / reductive tradeo� that is worth taking.

In the following sections we provide necessary background including the re-

cent notion of support between nodes in a binary resolution tree[6]. This is

followed by the introduction of support ordered resolution, the restriction of res-

2



olution closely related to ordered resolution but weakened in those situations

where it con
icts with the support of one node for another. We also describe

support ordered resolution as a generalization of both rank/activity and ordered

resolution. This suggests a space of possible theorem provers. We describe one

proof procedure in this space, 1-weak support ordered resolution which is a slight

addition to a typical ordered resolution theorem prover. We also give the results

of our experiments.

2 Background

A binary tree is a set of nodes and edges, where each edge joins a parent node to

a child node, and where each node has one child or has zero and is then called

the root, and each node has two parents or has zero and is then called a leaf.

The descendant (ancestor) relation is the re
exive, transitive closure of child

(parent).

Fig. 1. A binary tree rotation

Given the binary tree fragment T on the left of Figure 1, a rotation is the

reassignment of edges so that the tree T 0 on the right of Figure 1 is produced.

The parent C of E becomes the child of E and the parent B of C becomes the

parent of E. In other words, the edges (B;C) and (C;E) are replaced by (B;E)

and (E;C). If E has a child F in T , then C takes that child in T 0, or equivalently

the edge (E;F ) is replaced by (C;F ).

We use standard de�nitions [2] for atom, literal, substitution, uni�er and

most general uni�er. A clause is a multiset of literals. The clause C subsumes

the clause D if there exists a substitution � such that C� � D (as sets, not as

multisets). A variable renaming substitution is one in which every replacement

of a variable maps to another variable, and no two variables map to the same

variable. Two clauses C and D are equal up to variable renaming if there exists a

variable renaming substitution � such that C� = D (as multisets). Two clauses

are standardized apart if no variable occurs in both. Given two parent clauses

3



C1_a1_: : :_am and C2_:b1_: : :_:bn which are standardized apart (a variable

renaming substitution may be required) their resolvent is the clause (C1 _ C2)�

where � is a most general uni�er of fa1; : : : ; am; b1; : : : ; bng. The atom resolved

upon is a1�, and the set of resolved literals is fa1; : : : ; am;:b1; : : : ;:bng.

De�nition 1. A binary resolution tree, or brt on a set S of input clauses is a

binary tree where each node N in the tree is labeled by a clause label, denoted

cl(N). The clause label of a leaf node is an instance of a clause in S, and the

clause label of a non-leaf is the resolvent of the clause label of its parents. A

non-leaf node is also labeled by an atom label, al(N), equal to the atom resolved

upon. The clause label of the root is called the result of the tree, result(T ). A

binary resolution tree is closed if its result is the empty clause, 2.

Our resolution is based on Robinson's original resolution, which we use to

de�ne resolution mapping and history path. The resolution mapping tells what

happens to each literal in a given resolution step, and the history path tells what

happens to it from the leaf where it is introduced to the node where it is resolved

away.

The resolution mapping � at an internal node in a brt maps each resolved

literal, a1; : : : ; am;:b1; : : : ;:bn, to the atom resolved upon and maps each un-

resolved member c of C1 or C2 to the occurrence of c� in the resolvent.

Let the nodes (N0; : : : ; Nn) occur in a binary resolution tree T such that N0

is a leaf whose clause label contains a literal a, and for each i = 1; : : : ; n, Ni�1

is a parent of Ni. Let �i be the resolution mapping from the parents of Ni to

Ni. Also let �i : : : �2�1a occur in cl(Ni), so that a is not resolved away at any

Ni. Suppose Nn either is the root of T , or has a child N such that �n : : : �1a is

resolved upon. Then P = (N0; : : : ; Nn) is a history path for a. The history path

is said to close at N if N exists.

Let T be a binary resolution tree as in Figure 1 with an edge (C;E) between

internal nodes such that E has a parent C and C has two parents A and B.

Further, suppose that no history path through A closes at E. Then the result

of a rotation on this edge is the binary resolution tree T 0 de�ned by resolving

cl(B) and cl(D) on al(E) giving cl(E) in T 0 and then resolving cl(E) with cl(A)

on al(C) giving cl(C) in T 0. Any history path closed at C in T is closed at C in

T 0; similarly any history path closed at E in T is closed at E in T 0. Also, the

child of E in T , if it exists, is the child of C in T 0.

Two trees T1 and T2 are rotation equivalent if T1 is the result of a rotation

of an edge in T2, or if T1 and T2 are both rotation equivalent to another tree.

The calculus of binary resolution trees consists of the following:

{ A node labeled by (an instance of) an input clause is a brt.

{ If T is a brt and � is a variable substitution then T� is a brt formed by

replacing each label l in T by l�.

{ Suppose T1 and T2 are brts and no variable appears in both, R1 and R2 are

the clause labels of the roots of T1 and T2 respectively, and R is the clause

formed by resolving R1 and R2 on atom A with substitution �. Then T is a

4



brt formed by creating a new node N with atom label A, clause label R and

the roots of T1� and T2� are R's parents.

{ If T is a brt and (C;E) is an edge then T 0 formed by rotating an edge (C;E)

is a brt (shown in Figure 1).

Because not all rotations are allowed, sometimes a node N in a brt T remains

below another node M , under all sequences of rotations. When this occurs, we

say that N supports M . Support is a transitive relation. Although it is not

exploited in this paper, support can be determined from the history paths of

T [6].

3 Support Ordered Resolution

The internal nodes of a brt are ordered by applying an atom ordering to the

atom labels of the nodes.

De�nition 2. Given an ordering � of atoms and a binary resolution tree T , we

say that a node N is support ordered if no descendant of N has higher order

than N unless it supports N . T is support ordered if all its nodes are.

In e�ect, support ordering is the lexical composition of support and atom

ordering.

Theorem 1. For a given partial ordering � on atoms and a given brt T , some

proof tree T �
is rotation equivalent to T is support ordered. If � is total, T �

is

unique.

Proof. We proceed by induction on the size of T . If T has one or three nodes, T

is trivially support ordered. Suppose T has k nodes. Consider N a node ordered

highest in � not supporting any other node in T . Rotate edges above N so that

both parents of N are leaves. Let CN be the clause label of N in the resulting

tree T0. From this tree, remove the parents L1 and L2 of N , so that N is a leaf,

and call the resulting smaller tree T1. By induction there exists T �

1
, a support

ordered binary resolution tree of k � 2 nodes that is rotation equivalent to T1.

N is a leaf of T �

1
. Construct T � by replacing the parents L1 and L2 of N in T �

so that the resolution done at N is the same as in T0. Because T and T � are

rotation equivalent, the support relations in T � and T are the same. All nodes

in T � that are also in T �

1
are support ordered, with the possible exception of N .

But since any descendants of N ordered higher in � than it are supports of it,

N is support ordered.

To argue uniqueness, we note that the selection of N is uniquely determined

if the ordering is total. From then there are no choices in the construction. 2

Although the support ordering restriction admits a unique proof among the

trees rotation equivalent to T , it is hardly easy for a theorem prover to compute.

Support cannot be determined until after a proof is complete. To be useful, a

restriction must be applicable to a partial proof. Also the check should require

5



only a simple computation, preferably one with low complexity (constant or

linear time) and requires information that is local to the proof step. Therefore

we de�ne weak support ordered resolution.

De�nition 3. Given an ordering � and a brt T , an edge between a parent N1

and its child N2 in a brt is weak support ordered if the N1 is ordered higher than

N2 or if the edge is not rotatable. T is weak support ordered if every edge of T

is.

Support ordered resolution is strictly more restrictive than weak support

ordered. Consider the branch of nodes (N0; N3; N6; N4; N5; N7) where each is a

parent of the next in a binary resolution tree, N0 is a leaf and N7 is the root.

Suppose the support relation includes (N7; N5); (N7; N6); (N5; N4); (N6; N3) and

these are the only supports on the branch. If the ordering on nodes conforms

to the subscripts, N3 � N4 � : : : � N7 all edges are weak support ordered;

the only rotatable edge is (N6; N4) and that conforms to the ordering without

being rotated. A rotation equivalent tree has the branch (N0; N4; N5; N3; N6; N7)

which is also weak support ordered, since the only rotatable edge (N3; N5) and

it also conforms. Only the branch (N0; N4; N5; N3; N6; N7) is support ordered,

however, because N4 is the highest ordered node that supports no other.

4 Relation to the Rank/Activity Restrictions

The rank/activity restriction [4], or r/a, can be stated in terms of history paths

and where they close.

Given a rank function r that orders atoms in each clause, a brt T is de�ned

to be r-compliant if for each leaf L of T the literals of L are resolved away

either in r-order, or in the opposite order only if there is another history path

that closes with the higher ordered literal's history path, but does not intersect

lower ordered one. That is, for each pair l1; l2 of literals in L that close at

descendants d1 and d2 respectively, if r(l2) < r(l1) then either (maximal case)

d2 is a descendant of d1 or (non-maximal case) d1 is a descendant of d2 and

some history path that does not intersect the path for l2 also closes at d1. This

is illustrated in Figure 2. The ovals represent nodes in the brt's and the lines

with ground symbols represent history paths and where they close. The tree on

the left illustrates a maximal resolution, where l2 � l1 so that l1 is maximal

and should be resolved �rst. The tree on the right is a non-maximal resolution,

where l1 is resolved later, only after it shares nodes with another history path

for l1.

Alternately one can state the r/a restriction in terms of an activity level

associated with each literal. Initially all literals are active, i.e. are available for

resolution. When a literal of a given rank is resolved, all literals of higher rank

are turned o�, and are turned back on only if merged at this or some later

resolution step. In the de�nition above, if l1 is resolved before l2, l2 is turned o�,

and then the other history path closing at d2 is the one that re-activates l2.

6



l1l2

l1

l1l2

d1

d1

d2

d2

Fig. 2. A maximal and a non-maximal resolution

Note that in [4] it is the lower ranked literal that gets turned o�. This ar-

bitrary decision was reversed for this paper to be more consistent with ordered

resolution.

Thus the ordered resolution restriction is a special case of the rank/activity

restriction, in which the ranks of literals in a clause are speci�ed according to

an ordering on the atoms, and non-maximal resolutions is not used. Since there

is no reactivation of literals, there is no chance that a resolution step on a non-

maximal literal will end in a refutation proof { it can never be resolved away.

Thus a procedure to compute ordered resolution proofs needs to consider only

maximal literals and has much less deductive power at each step; this leads to

a much reduced search space, and accounts for the speed and success of such

procedures. R/A procedures have considerable fan out since non-maximal literals

are often active as well.

Yet in terms of proof size, the reduced deductive power of ordered resolution

can lead to the elimination of all proofs rotation equivalent to smallest proof tree.

In Example 3 the smallest proof, found when reverse alphabetical ordering of

the atoms is used, has 15 resolutions, but the proof has 32,767 resolutions when

the order is alphabetical. This example, for n=4, generalizes to 2n clauses with

n literals each, which can take from 2n � 1 to 22
n

�1 � 1 resolutions depending

on the ordering.

In terms of deletion strategies, both rank/activity and ordered resolution

retain completeness when used with tautology deletion. In fact, rank/activity can

also be used with the regular and the surgery-minimal restrictions [6] which are

strictly more restrictive. Ordered resolution with the surgery-minimal restriction

is not complete.

Subsumption deletion works well with ordered resolution, but only a weak-

ened form works with rank/activity { if a clause with some inactive literals is

used as the subsuming clause, it must have all of its literals reactivated. This

can be seen just by observing that otherwise the subsuming clause would not be

7



f a; b1; c11; d111g
f a; b1; c11;:d111g
f a; b1;:c11; d112g
f a; b1;:c11;:d112g
f a;:b1; c12; d121g
f a;:b1; c12;:d121g
f a;:b1;:c12; d122g
f a;:b1;:c12;:d122g
f:a; b2; c21; d211g
f:a; b2; c21;:d211g
f:a; b2;:c21; d222g
f:a; b2;:c21;:d222g
f:a;:b2; c22; d211g
f:a;:b2; c22;:d211g
f:a;:b2;:c22; d222g
f:a;:b2;:c22;:d222g

Fig. 3. Proof requires 32767 alphabetical resolutions

able to draw a (non-strictly stronger) conclusion in cases where the subsumed

clause could. We conjecture that only those inactive literals corresponding to

active literals need be reactivated.

With respect to the ordering on literals, the r/a restriction does not require

that the ordering (or rank) of literals in a clause is consistent with an overall

literal ordering. Thus the ordering can be total without being liftable. An order-

ing is said to be liftable if a � b i� a� � b� for all substitutions �. In ordered

resolution, the orderings must be liftable to maintain completeness. Since liftable

orderings are often are not total (but see [3]), in these cases the restriction cannot

choose a unique maximal literal, leading to fan out in the search space.

Lock resolution [1], incidentally, is closely related. In lock resolution, as in

rank/activity, the ranks of literals in the clause are chosen in any order, not

according to an overall literal ordering. Like ordered resolution, lock resolution

uses only the maximal case of the resolutions in Figure 2. Unfortunately lock

resolution does not retain completeness with either tautology deletion or sub-

sumption.

From this discussion we imagine a space of theorem provers, shown in Fig-

ure 4, where the systems on the top all depend on orderings that can not in

general be liftable, thus are not total, and those on the bottom depend on arbi-

trary ranks within a clause, which can be total. Those on the left depend only

on the maximal case of the resolutions in Figure 2, and those on the right, sup-

port ordered and rank/activity, use both cases. The system labelled 1-wso is one

system in this space, where a very restrictive form of the non-maximal case is

permitted: a non-maximal atom may be resolved on, but then a merge and a

resolution on a greater atom must follow.

8



lock rank/
activity

support
ordered

1-wsoordered

Fig. 4. A space of theorem prover, X axis is use of non-maximal resolutions and Y axis

is ordering de�ned arbitrarily and liftable vs. ordering de�ned on the literal set which

may not be liftable

5 Building Support Ordered Proofs

One should not construct support ordered proofs directly from the de�nition,

since support part of the restriction cannot be determined until the tree is com-

pleted. The rank/activity calculus with the ranks set according to the literal or

atom ordering should be used instead. It then computes support ordered proofs.

Even so, the number of allowable deductions at each stage may be too high,

especially in the early stages when all literals are active.

On the other hand the advantages of r/a may be useful: preservation of the

smallest proof and compatibility with the surgery-minimal restriction.

The 1-weak support ordered resolution keeps some of the advantages of both.

It is uses the maximal case and a restricted form of the non-maximal case, from

Figure 2. Because the maximal case is suÆcient to ensure completeness of the

procedure, we are free to further restrict the non-maximal case. In the 1-wso non-

maximal case, a non-maximal atom may be resolved but only if some greater

atoms occur in each parent and those greater atoms can be merged or factored.

Then the factoring is performed, even if a substitution is required. Moreover, the

resulting clause is forced to resolve in a conventional way on this factored literal,

whether or not it is maximal in the clause and whether or not a non-maximal

resolution would otherwise be permitted.

This system does not maintain the activity bit on literals that rank/activity

prescribes. Thus it computes only weak support ordered resolution and not sup-

port ordered resolution that r/a would guarantee. Because the distance from

the resolution producing the merge or factor is one (1) resolution away from the

resolution on the merged literal, and we call the resulting system 1-weak support

ordered resolution.

Another result of not having activity levels is that the system inherits full

subsumption from ordered resolution, with one minor change. We want to not

allow a clause to subsume another if they are forced on di�erent literals unless

the �rst subsumes the unforced literals of the second.

9



6 Experiments

The experiments were conducted on a 400MHz Pentium II with 64 Mb RAM

running RedHat Linux 6.0 with a theorem prover called pBliksem written by

the �rst author in 5000 lines of Prolog. The experiments depended on SWI-

Prolog 3.2.8. pBliksem borrows heavily from the design of Bliksem, but as it is

written in Prolog it has no claims to Bliksem's speed. Nevertheless it is possible

to overhaul the underlying data structures in a matter of minutes or hours, and

to experiment with unconventional resolution steps. Written in Prolog it has

a degree of dependability and clarity. It relies mainly on forward calls, instead

of backtracking, so it makes heavy demands on Prolog's garbage collection and

tail recursive optimization. Overall it can manage about 5000 inferences in ten

minutes, but seldom manages signi�cantly more inferences, because of memory

usage. The inference rate varies from 150 inferences per second initially, to under

ten per second after ten minutes.

There is nothing to suggest that the results we have obtained with this ex-

perimental system would not also be obtained by a better theorem prover. (It is

our intention to run experiments with a better prover before a �nal submission

of this paper to CADE, if it is accepted.)

The experiments were performed on the problems in TPTP-v2.3.0 [7] with

diÆculties in the range strictly above zero and strictly below 0.6. It was con�g-

ured to use Bliksem's liftable literal order, in which lexicographical ordering is

used, but literals that are lexically identical up to a variable are not comparable.

The clause ordering depends �rst on the complexity of the clause, which is the

sum of the number of function symbols, predicate symbols and variables. If the

complexity of clauses is identical then the sizes of the underlying brts are com-

pared. Two con�gurations of the theorem prover were tried: ordered resolution

and 1-wso resolution. Ten minutes of computing time was given to each problem.

Ordered resolution solved only six problems, where as 1-wso solved 75, in-

cluding the six. 1-wso used about 10% more time than ordered resolution to solve

those six. The numbers of non-maximal resolutions used are given in Table 1.

This table shows that non-maximal resolutions were used in most proofs, except

the six ones solved by the ordered resolution system. Most did not require many

non-maximal resolutions but a few did: BOO035-1 required 20 and SYN074-1

required 19.

The 1-wso program did best on the problems with diÆculty between 0.2 and

0.3 and worst on the problems between 0.3 and 0.4, as shown by Table 2. Both

above and below these ranges almost 20% percent of the problems were solved,

indicating that the correlation between the diÆculty measure and the success of

the algorithm is rather small. Perhaps this is because the diÆculty of a theorem

is a very hard property to measure.

The times taken to solve the problems, reported in Table 3, were scattered

somewhat logarithmically with more toward the upper end of the time allocated.

Each factor of two allowed about 10 more problems to be solved.

Table 4 shows the number of inferences generated by the prover, which would

not be a�ected by the ineÆciency of our implementation. The e�ect of allowing

10



Number of Number of Percentage

non-maximal resolutions solved

in the tree

0 6 8%

1 32 43%

2 14 19%

3 11 15%

>3 12 16%

Table 1. Counting non-maximal resolutions used by 1-wso

DiÆculty d Number of Problems Solved %

0:1 � d < 0:2 66 12 18%

0:2 � d < 0:3 84 32 38%

0:3 � d < 0:4 170 15 9%

0:4 � d < 0:5 48 8 17%

0:5 � d < 0:6 40 8 20%

Total 408

Table 2. DiÆculty of problems and number solved by 1-wso

Time range (seconds) Number of problems

0 � t � 1 13

1 � t < 2 4

2 � t < 4 2

4 � t < 8 1

8 � t < 16 11

16 � t < 32 2

32 � t < 64 6

64 � t < 128 13

128 � t < 256 9

256 � t < 512 12

512 � t < 600 2

Table 3. Times taken to solve problems

11



more inferences is similar to allowing more time, but there is a slightly larger

shift to the upper end of the range. Each factor of two allowed about 12 more

problems to be solved.

Inferences Generated g Number of problems

0 < g < 10 1

10 � g < 20 0

20 � g < 40 2

40 � g < 80 9

80 � g < 160 7

160 � g < 320 6

320 � g < 640 11

640 � g < 1280 11

1280 � g < 2560 16

2560 � g < 5120 11

5120 � g � 5357 1

Table 4. Number of inferences required to solve problems

Table 5 shows the number of problems of each category solved. The 1-wso

procedure seems to be much better at some categories than other. Note that

there is no special treatment of the equality literal in out implementation.

7 Conclusions

To have a good automated theorem prover, one must balance the economy of

choice with the economy of cuts. Pure ordered resolution often cuts away too

many proofs, sometimes leaving only very big proofs. Support ordered resolution,

or rank/activity, leaves the minimum amount of choice without cutting away any

proofs, up to rotation equivalence. 1-weak support ordered resolution is one step

away from ordered resolution toward support ordered resolution, allowing only a

few more operations, but leaving a good many more proofs, some of which can be

a great deal smaller. The balance here is in favor of increasing choice to increase

the number of possible proofs, compared to ordered resolution. This leaves open

the question whether it could be better to increase the choices further toward

support ordered resolution to leave more and smaller proofs in the search space.

References

1. R. S. Boyer. Locking: A Restriction of Resolution. PhD thesis, University of Texas

at Austin, 1971.

2. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical

Theorem Proving. Academic Press, New York and London, 1973.

12



Category Number of problems Solved Percent

BOO 5 1 20%

CAT 11 0 0%

COL 15 2 13%

FLD 26 0 0%

GEO 57 19 33%

GRP 20 7 35%

HEN 5 5 100%

LCL 33 23 70%

LDA 6 1 17%

NUM 3 1 33%

PLA 15 0 0%

PUZ 1 0 0%

RNG 6 0 0%

ROB 1 0 0%

SET 113 11 10%

SYN 91 15 5%

408 75 18%

Table 5. Problems solved in each category

3. Hans de Nivelle. Resolution games and non-liftable resolution orderings. Collegium

Logicum, Annals of the Kurt G�odel Society, 2:1{20, 1996.

4. J. D. Horton and B. Spencer. Rank/activity: a canonical form for binary resolution.

In C. Kirchner and H. Kirchner, editors, Automated Deduction { CADE-15, number

1421 in Lecture Notes in Arti�cial Intelligence, pages 412{426. Springer-Verlag,

Berlin, July 1998.

5. J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,

12:23{41, 1965.

6. B. Spencer and J. D. Horton. EÆcient procedures for detecting and restoring min-

imality, an extension of the regular restriction of resolution. Journal of Automated

Reasoning, to appear.

7. G. Sutcli�e, C. Suttner, and T. Yemenis. The TPTP problem library. In D. Kapur,

editor, Automated Deduction CADE-12, number 814 in Lecture Notes in Arti�cial

Intelligence, pages 252{266. Springer-Verlag, Berlin, 1994.

13


