
Detecting Cascade Vulnerability

in Linear Time

J. D. Horton�

Faculty of Computer Science

University of New Brunswick

Fredericton, N. B., E3B 5A3

Canada

email: jdh@unb.ca

July 25, 2000

�
supported by a research grant from NSERC

1



Abstract

The cascade vulnerability detection problem asks whether an op-

ponent can use interconnections to pass data improperly across a net-

work of individually accredited systems without having to defeat any

single system that is rated high enuf to be judged safe for the particu-

lar data ow. In the most general setting, an algorithm is given of time

complexity O(CD2U2 +LDU), where C is the number of computers,

D is the number of di�erent classes of data, U is the number of dif-

ferent classes of user, and L is the number of links in the network. In

the case with a linear data classi�cation, the time complexity reduces

to O(CD2+LD), which improves on the previous best complexity of

O(C3D). The case with parallel linear data classes is also solved in

O(CD2 + LD) time.

Keywords: algorithm, network security, cascade vulnerability de-

tection problem

2



1 The problem

Cascade vulnerability can occur when using the interconnected accredited

system approach of the Trusted Network Interpretation, as de�ned in the Red

Book [7], section C3.2, pp.249{259. Can a penetrator use the connections of

a network to compromise information across a range of security levels that

is greater than the accreditation range of the component systems one must

defeat to do so?

For example, suppose that system A has both Top Secret and Secret data

on it, and has some users who are cleared to only to read Secret but not Top

Secret data. For this to be allowed, the system must have an accredited

Trusted Computing Base (TCB) rating of B2[6]. Similarly, a second system

B could have both Con�dential data and Secret data on it, with some users

who are only cleared to a Con�dential level. System B needs to be accredited

with a TCB rating of B1 for this to be allowed[6]. Suppose further that the

two systems are connected in such a way that it is possible for Secret data

on system A to be read by users on system B who have been cleared to

the Secret level. Now if a penetrator could break both systems, it would be

possible for Top Secret data on system A to be treated like Secret data, and

to be sent to system B on the network. Then a user with only a Con�dential

clearance on system B would have access to the Top Secret data on system

A if both systems have been pentrated. But a system with Top Secret data

and Con�dential users is supposed to have an accreditation rating of at least

B3[6]. Breaking both a B1 and a B2 TSB accredited system should not be

as di�cult as breaking a single B3 accredited system.

Two problems arise regarding cascade vulnerability: detection and correc-

tion. The detection problem, deciding whether a network contains a cascade

vulnerability, is the problem tackled in this paper. The correction problem,

deciding the cheapest way in which to modify the network so as to remove all

cascade vulnerabilities, is shown to be NP-hard in [4]. A simulated annealing

approach to the correction problem is proposed in [3].

2 A generalization

The linear order of the classi�cation of data (Con�dential is less than Secret

is less than Top Secret) is not the only way that data (and users) may be

3



classi�ed. Typically the linear order (called hierarchical in the security lit-

erature) implies that a user cleared to a certain level also is automatically

cleared for all lower levels. Sometimes the classes are also split into sets of

parallel classes. For example, in a company a user may be cleared to read

secret engineering data but not secret personnel data, or vice versa. For the

much of this paper, no restrictions on the classi�cation scheme is given. It

is assumed only that the data to which each user is allowed to access is well

de�ned. Thus the classi�cation scheme forms a relation between the set of

data, and the set of users. One simpli�ction which can be done, is to con-

sider two users to be equivalent if they are allowed access to exactly the same

data. Similarly two pieces of data can be considered equivalent if they can

be accessed by the same users. This gives use data classes and user classes

de�ned by the equivalence relations.

A classi�cation scheme now becomes a relation on the sets of these classes.

In a linear (hierarchical) scheme with D data classes, the number of data

classes is D, and so is the number of classes of user, since the classes of

user perfectly mirror the data classes in this case. In a security classi�cation

scheme with K levels of data and P parallel streams, the number of data

classes is KP , while the number of possible user classi�cations is KP , as a

user could be cleared to di�erent levels in the di�erent streams. For example,

a sales manager might have top secret clearance on sales data, secret clearance

on personnel data, con�dential data on accounting information, but only

unclassi�ed clearance on engineering data. For the rest of this paper we

assume that the number of data classes is D, while the number of user classes

is U .

Operating systems can be given trusted computer base or TCB ratings,

so that a user can have access to a computer on which is stored data to which

the user is not cleared, along with data to which he is cleared, and requires

access. In the usual totally ordered security scheme, the required TCB rating

of a computer system is determined by the highest data classi�cation on the

machine, and the lowest clearance of a user[6]. In the more general setting

considered in this paper, one can note that a rating is determined by a

relation R on the set of data classes and the set of user classes. We de�ne

this relation R by de�ning (a,b) to be in R, if both data class a and user b

are allowed to be on the same machine rated R.

When two computers are allowed to be connected together by some com-

munication link, the situation becomes more complicated. We assume that

4



the link is only one way, and that only data in a given data class can be sent

on the link. Any user who can read the given data class on the head of the

link can obtain data of the given class on the link.

3 The algorithm

There have been several algorithms suggested which can detect whether a

given computer network has a cascade vulnerability [2, 4, 5] but all make

assumptions about the types of user and data classes, and all have time

complexity which is cubic in the number of nodes in the network. Let C

be the number of computers in the network, and let L be the number of

communication links. We assume that the network is connected, so that C

is at most L+ 1. In the next section an algorithm is given which has a time

complexity linear in the size of the network, that is linear in C+L, assuming

that D and U are constants.

The idea of the algorithm is to create a graph from the network in which

paths correspond to the way that data can ow legally. Then for each data-

user pair (d; u) modify the graph to correspond with all computers, whose

TCB ratings are too low to have both data class d and user class u on them,

being compromised. This is followed by searching the graph for a possible

data ow from d to u. If such a path is found, then a cascade vulnerability

exists.

The programmer has many choices in building the algorithm, due to

symmetries in the problem de�nition. First we give one de�nition, and then

we give some alternatives and some possible improvements in particular cases.

Constructing the graph For each machine c in the network, for each data

class and user class on it, x, de�ne a vertex of the graph, (c; x). Connect

each data class vertex (c; d) to each user class vertex (c; u) if that user class

u is allowed to read that data class d. In addition, for each data link in the

graph from machine c to machine b at data class d, add an edge from (c; d)

to (b; d). The graph now gives all the single step legal data ows in the whole

computer network. The number of vertices is O(C(D + U)), the number of

edges is O(CDU + L).

The modi�cation of the graph: For each pair (d; u), where d is a data class

and u is a user class, the graph is modi�ed for each computer c which has

a TCB rating which does not include the pair (d; u) in its de�ning relation.

5



Edges are added in such way that paths are formed between all the vertices

(c; e) where e is any data class, so that all users can read all data on computer

c. In e�ect we are "breaking" all those computers which do not have a strong

enuf accreditation rating to have both d and u on them. One way to do this,

assuming that every user class is allowed to read some data class on the

machine, is to connect all the data nodes (c; d) in a cycle, so at most d new

edges are needed per computer. The total number of edges added is O(CD),

which does not a�ect the asymptotic upper bound on the number of edges

in the graph. Adding these edges in e�ect simulates the "breaking" of the

security system of computer c.

The search for a cascade vulnerability: The graph is now searched starting

at the vertices (n; d) where n represents any machine with data class d on it.

If a vertex (m;u) can be reached, where m is any machine, then a cascade

vulnerability has been found. Since a graph search can be done in time linear

in the size of the graph (number of edges plus the number of vertices), this

step takes O(CDU + L) time (see any text on graph algorithms such as [1,

chapter 23].

The asymptotic complexity: The modi�cation and search can be done

for each pair (d; u), which is O(DU) times. Then the overall complexity is

O(CD2U2+LDU). This is linear in the number of computers plus the num-

ber of communication links, and hence is linear in the size of the computer

network. However the number of classes occurs to the fourth power, which

in the general case suggested above could be rather large.

4 Alternatives and improvements

One symmetry in the problem statement is that of interchanging the roles

of data classes and user classes. The modi�cation of the graph now consists

of connecting nodes between pairs of user classes, instead of pairs of data

classes. One point which must be checked is that every data class on a given

machine also has a user class on it which can read it. Otherwise there could

be data which is not readable by any user. In addition, any links between

two di�erent computers c1 and c2 at a level d now must be connected from a

pair (c1; u) to (c2; d), where u is a user class on computer c1. Also the graph

search algorithm could start from the user class and search for the data

class, instead of the other way around. The resulting asymptotic complexity

6



is still the same in the worst case. It is also possible to treat each computer

separately depending on whether the number of data classes or user classes

is greater, but no asymptotic improvement is made.

A more important alternative, which can result in a faster algorithm, is

to order the way in which the data-user pair searches are done. Suppose

that the TCB ratings are linearly ordered by inclusion, which is a reasonable

assumption. If all the (d; u) pairs are done one after the other for a given

d, and the u's are ordered in such a way that the TCB ratings which are

broken occur in order, then a factor of U can be removed from the upper

bound time-complexity, as each edge needs to be searched only once over U

di�erent searches. Each of the U searches (other than the �rst one) starts

from all the nodes found by the previous search. New edges are added to the

list to be searched when they are created by the graph building procedure.

This can always be done for all data classes d giving an upper bound of

O(CD2U + LD). A similar speedup is possible in the symmetric situation

by searching from a user class u and searching for the data classes in order

consistent with the TCB ratings. The complexity becomes O(CDU2 + LU).

In the special case when the data classes are linearly ordered, then the al-

gorithm can be improved further. Here the user classes can now be identi�ed

with the highest data class which the user can read, so D = U . Thus the data

classes and the user classes can be identi�ed with 1; 2; : : : ;D. The graphs

can now be constructed somewhat di�erently. Instead of needing nodes for

both users and data, we can just have pairs (c; i) where c is a computer and

i is a data class or user class on it. Let h(c) be the class of the highest

data on a computer c, and let l(c) be the class of the lowest user on c. We

only need to let i range from l(c) to h(c). The only edges that we need are

(c; i) to (c; i+ 1) assuming both nodes meet the above requirement, that is,

l(c) <= i < h(c). Of course we still need the edges corresponding to the

links between computers. The number of edges is now O(CD + L).

We now must do a graph search for each pair (d; u) where d > u. When

a pair (d; u) is searched, for each computer whose TCB rating which does

not allow this pair, a single edge is added, from (c; h(c)) to (c; l(c)). Now all

the nodes of c are connected in a simple circuit. Thus at most C new edges

are added, leaving a graph with O(CD + L) edges. Doing
�
n

2

�
searches now

requires O(CD3+LD2) time. If the TCB ratings are linearly ordered as well,

as is the usual case, then again D searches can be done in the time of one

7



search and the time complexity is reduced to O(CD2 +LD). This compares

favorably with the complexity of O(C3D) of the algorithm in [4], the fastest

published algorithm, unless the number of computers is very small compared

to the number of data classes. Below we call this the linear case.

5 The case of parallel data classes

Consider the case where there are P parallel data classes of size K, so that

D = KP and U = KP . We assume that the TCB ratings of the computers

are independent of the parallel classes, and are dependent only on theK levels

of security. Thus if Top Secret engineering data is stored on one machine,

and a user who is cleared only to con�dential on the engineering parallel class

is allowed access to that machine, then that machine must have a B3 TCB

accreditation. This is a practical assumption, because it would be di�cult to

develop new accredition schemes for di�erent parallel classes. We also assume

that the TCB rating system is linear under set inclusion. The di�culty is

that the number of user classes is too large for the direct application of the

algorithm developed above, if the number of parallel classes is very large.

However within each parallel class, the situation is exactly like that of the

linear case considered above. Note that each user class is the union of at

most P classes, one for each parallel data class. So instead of running the

algorithm on all the data classes at once, one can run the algorithm on each

parallel class independently. The number of user classes becomes exactly the

number of data classes, thereby avoiding the exponential complexity.

One step in the algorithm for the linear case must be modi�ed. When the

computers are being "broken", it is assumed that all users on the machine

can read some data on the machine. This assumption may not be true in this

case, because a machine may not be used for some parallel class, or used only

for a restricted set of data levels in some parallel class. In this case when the

machine is "broken", all user classes must also be joined to the cycle of data

classes. This does not a�ect the overall complexity of the algorithm.

The time complexity for each parallel class is O(CK2), so the overall

complexity is now O(CK2P + LKP ). Assuming that all parallel classes

actually use all the data classi�cations, so that D = KP , this simpli�es to

O(CKD + LD), which is also O(CD2 + LD).

8



References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms,

MIT Press and McGraw-Hill, 1990.

[2] J. Fitch, L. Ho�man, The cascade problem: graph theory can help, Pro-

ceedings of the 14th National Computer Security Conference, 1991, 88{

100.

[3] S. Gritzalis and D. Spinellis, The cascade vulnerability problem: the

detection problem and a simulated annealing approach for its correction,

Microprocessors and Microsystems, 21(1998), 621{627.

[4] J. D. Horton, R. Harland, E. Ashby, R. H. Cooper, W. F. Hyslop, B.

G. Nickerson, W. M. Stewart, O. K. Ward, The cascade vulnerability

problem, J. Computer Security, 2(1993), 279{290.

[5] J. K. Millen, Algorithm for the cascading problem, In Internet IEEE

Cipher News Group, J.P. Anderson, Ed., June 25 IEEE Cipher Forum on

DOCKMASTER.NCSC.MIL 1990.

[6] National Computer Security Center, Technical Rational Behind CSC-

STD-003-85: Computer Security Requirements, Yellow Book CSC-STD-

004-85, 1985.

[7] NCSC Trusted network interpretation of the trusted computer system

evaluation criteria Red Book NCSC{TG{005, Library No. S228,526, Ver-

sion 1 July 1987.

9


