
Distributed Geospatial Data

Access on the WWW

by

Lushu Li

M.E., Nanjing University of Sciences and Technology (China), 1993

PhD., Southeast University (China), 1998

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Computer Science
in the Graduate Academic Unit of Computer Science

Supervisor: Bradford G. Nickerson, Ph.D., Computer Science

Examining Board:

Patricia Evans, Ph.D., Computer Science

Przemyslaw Pochec, Ph.D., Computer Science

Adam Chrzanowski, Ph.D., Geodesy and Geomatics Engineering

This thesis is accepted.

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

April, 2001

c©Lushu Li, 2001

Dedication

To my seven-month-old son Anthony J. Li, whose smiles always cheer me up!

ii

Abstract

This thesis investigates the design and implementation of a Web-based distrib-

uted geospatial data warehouse (WDGSDW) system which allows a user to query ge-

ographical information and access the geospatial data services across multiple servers

over the Internet.

A multi-tiered client/server architecture was used to implement WDGSDW. The

CORBA-based (for Java and C++), Java RMI-based and Java servlet-based imple-

mentations of the server-side components of DWGSDW are tested and compared for

the contextual data service, which providing the user interface of WDGSDW. The

comparison showed that the performance of servlets-based implementation is much

better than those of other implementations. The servlets technique was chosen to

implement an experimental catalog server and geospatial data servers. An integrated

tool to visualize the Canada Land Inventory data (in Arc/Info Export .E00 format)

and raster image data was also implemented in this research. The search engine,

which is the kernel of WDGSDW, supports combined text search and geographical

search with an adjustable match factor. The search engine was built using R-Tree

and AVL-Tree indexes.

WDGSDW system was tested using test data sets containing 6979 CEONet meta-

data files, 1690 CLI vector data sets and 45 CCRS raster data sets. For the contextual

data server, CORBA and RMI techniques are 2 to 2.5 time slower compared to the

Java servlet and a performance of 85 bytes/ms was observed for the latter, on average.

The keyword searches can take up to 4.9 seconds compared to bounding box searches

times of less than 2.5 seconds on a catalogue containing 8188 entries. A combined

keyword and bounding box search requires an average of 1.2 times more than the in-

dividual searches. For a fixed bounding box [200, 350; 20, 84], the variation of match

factor from 0.90 to 10−8 resulted in a change of the number of returned items from 4

to 5673. Search time per item found varied from 0.17 ms to 0.83 ms. The Fat-client

via Thin-server architecture for CLI data service achieved the best performance of

349 bytes/ms, about 23 times as fast as the Thin-client via Fat-server architecture.

iii

Acknowledgments

I would like to thank my supervisor, Dr. Bradford G. Nickerson, for his insight

and knowledgeable guidance and great support throughout the process of working on

this thesis.

Many thanks are due to Dr. Fuqun Zhou of the CCRS Department of Natural

Resources Canada for his providing some of the test data.

Thanks to my wife Liqin Yong and my daughter Chen Li for their support, en-

couragement and consideration.

iv

Contents

Dedication ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables ix

List of Figures x

List of Abbreviations and Acronyms xiii

1 Introduction 1

1.1 Geospatial Information Systems and OpenGIS 1

1.1.1 Geospatial Information System (GIS) 1

1.1.2 OpenGIS . 2

1.2 Data Warehousing and Metadata . 3

1.2.1 Data Warehousing . 3

1.2.2 Metadata . 4

1.3 Web-based Internet Technologies and Distributed Programming . . . 5

1.3.1 Web-based Internet Technologies 5

1.3.2 Distributed Programming . 7

1.4 Thesis Objectives . 9

v

2 Web-based Distributed Programming and Architectures 11

2.1 Client/Server Model . 11

2.1.1 Two-tier Client-Server Architecture 11

2.1.2 Three-tier Client-Server Architecture 14

2.2 Object-based Model . 17

2.3 Distributed Object Schemes: CORBA and Java RMI 19

2.3.1 CORBA . 20

2.3.2 Java RMI . 22

2.3.3 RMI vs. CORBA . 25

2.4 Java Applet and Java Servlet . 25

2.4.1 Java Applets . 25

2.4.2 Java Servlets . 26

3 Geospatial Metadata Standards and XML Metadata Files 28

3.1 FGDC Geospatial Metadata Standards 28

3.2 ISO Geospatial Metadata Standards 30

3.3 XML Metadata files for ISO 19115 Standards 33

4 Data Sets for Testing Distributed Geospatial Systems 35

4.1 GSHHS and GMT Contextual Data for User Interface of Catalog Server 35

4.2 CEONet XML Metadata for Metadata Service 36

4.3 CCRS Imagery Data for Geospatial Data Services 38

4.4 Canada Land Inventory Data for Geospatial Data Services 39

4.4.1 Introduction to CLI data . 39

4.4.2 Format Analysis for CLI Arc/Info Export (E00) Data 40

4.4.3 CLI Data Structures and Pre-processing 45

5 Geospatial Data Index Structures and Search Engine 47

5.1 AVL-Tree and R-Tree Index Structures 47

5.1.1 AVL-Tree Index Structure . 48

vi

5.1.2 R-Tree Index Structure . 49

5.2 Hierarchy Indexing Scheme for Heterogeneous Geospatial Databases . 52

5.2.1 Building Phases of the GSD Index 52

5.2.2 Architectural Overview and UML Diagram of the GSD Index

Scheme . 57

5.3 GSD Search Engine . 57

6 System Design and Implementation 63

6.1 Architetural Overview of WDGSDW 63

6.2 The Client-tier Components . 65

6.2.1 GSDWApplet for User Interface of Geospatial Queries 66

6.2.2 CLIMapApplet for CLI Data Visualization 70

6.2.3 TiffyApplet for Viewing CCRS Imagery Data 73

6.2.4 Communications between Client-tier Components 75

6.3 Contextual Data Server . 77

6.3.1 Servlet-based Contextual Data Server 78

6.3.2 CORBA-based Contextual Data Server 78

6.3.3 RMI-based Contextual Data Server 85

6.4 Query Server . 90

6.4.1 Implementation Scheme . 91

6.4.2 Applet–Servlet Communication 93

6.5 Geospatial Data Servers . 93

6.5.1 ShowCLIMap Servlet and CLI Data Server 94

6.5.2 CCRS Data Server . 96

7 Testing and Evaluation 97

7.1 The Test Environment . 97

7.1.1 Hardware and Software Settings 97

7.1.2 Distributing the Test Data Sets 99

7.2 Performance Test Results and Analysis 99

vii

7.2.1 Test Results of Building and Loading the GSDIndex 99

7.2.2 Test Results of the Contextual Data Server 101

7.2.3 Test Results of the Query Server 105

7.2.4 Test Results of the Geospatial Data Services 110

8 Conclusions and Future Work 111

8.1 Conclusions . 111

8.2 Future Work . 113

References 114

Appendices 118

Appendix A: UML Diagrams of Metadata Schemas 118

Appendix B: A Sample of ISO 19115 Metadata File 132

Appendix C: A Sample of CEONet ISO XML Metadata File 137

Appendix D: A Sample of CLI ARC/Info (.E00) File 142

viii

List of Tables

3.1 Summary of the ISO/TC 211 Metadata entity set information. 32

3.2 Summary of the Identification information. 33

4.1 Contents of the CCRS Imagery Data Files. 39

4.2 Summary of the CLI Arc/Info Export(E00) data files. 40

5.1 The areas of the rectangles in Figure 5.1. 51

5.2 The relation between the match factor k and the returned data sets. . 52

6.1 Generated .java Files by idl2java Compiler. 81

6.2 Generated C++ Files by idl2cpp Compiler. 81

7.1 The hardware settings of the test environment. 98

7.2 The software settings of the test environment. 98

7.3 The test results for building the R-Tree and AVL-Tree for CEONet data.100

7.4 The test results for building the R-Tree and AVL-Tree for CLI data. . 101

7.5 The test results (time in ms) for building the GSDIndex. 101

7.6 The summary of the selected contextual test data sets. 102

7.7 The test results (time in ms) for the contextual data servers. 103

7.8 The ratio of the pair-comparison. 104

7.9 The search time for keywords only. 106

7.10 The search time for bounding boxes only. 106

7.11 The search time for combining keywords and bounding boxes. 107

7.12 The effect of the match factor k on the search results. 108

7.13 Test results of the CLI data service. 110

ix

List of Figures

2.1 2-tier distributed client/server architecture. 13

2.2 A WWW client/server model. 14

2.3 Three-tier distributed client/server architecture. 15

2.4 General architecture for distributed object systems (from [9]). 18

2.5 Remote object transactions at runtime (from [9]). 19

2.6 Client program acting on an object. 22

2.7 RMI system architecture. 23

4.1 The source code of Java program RenameFile.java. 37

4.2 A UML diagram of the CLI data structure. 45

4.3 The algorithm for creating a CLIData object. 46

5.1 The effect of match factor on the search result. 51

5.2 Architectural overview of the GSD index scheme. 53

5.3 A UML class diagram of the GSD index scheme. 58

5.4 GSD Search Architecture. 59

5.5 The AVL-Tree algorithm for GSDIndex intersection (from [43]). . . . 61

6.1 Architectural overview of WDGSDW. 64

6.2 Three-tier implementation of the geospatial query and data services. . 65

6.3 User interface of the geospatial query and data services. 67

6.4 A sample of the GSDW search result frames. 69

6.5 Visualization of the CLI data set “Land Capability for Forestry - F021G”. 70

6.6 Visualization of the CLI data set “Land Use - L021G”. 71

6.7 Zoom In result of Figure 6.5. 72

x

6.8 The window of class descriptions . 73

6.9 Visualization of the Radarsat (mosaic) imagery data Canada Momosaic. 74

6.10 Zoom In result of the Figure 6.9. 75

6.11 Zoom In result of the Figure 6.10. 76

6.12 Communications between Client-tier Components. 77

6.13 Architecture of the Contextual Data Server (from [49]). 78

6.14 Development process with VisiBroker (from [20]). 80

6.15 The IDL interface for the distributed object DataProvider. 80

6.16 Part of the Java code of GSDWCorbaAppletClient class. 82

6.17 Java code for the GSDW server class. 83

6.18 C++ code for the GSDW server class. 84

6.19 The Remote interface DataManager 86

6.20 The java code for the GSDWRMIServer class. 87

6.21 Part of the Java code of GSDWCorbaAppletClient class 89

6.22 The activity diagram of the query server. 91

6.23 The sequence diagram of the query server. 92

6.24 The java code for the Applet–Servlet communication. 94

6.25 The implementation scheme of the CLI data server. 95

6.26 The implementation scheme of the CCRS data server. 96

7.1 Distribution of the CLI data sets. 100

7.2 Performance comparison of the 4 types of contextual data servers . . 105

7.3 The effect of match factor k on the number of returned items. 108

7.4 The effect of match factor k on the logarithm (base 10) of the number

of returned items. 109

A.1 Metadata entity set information . 118

A.2 Identification information . 119

A.3 Resource constraint information . 120

A.4 Data quality information . 121

A.5 Lineage information . 122

A.6 Data quality classes and subclasses 123

xi

A.7 Maintenance information . 124

A.8 Spatial representation information . 125

A.9 Reference system information . 126

A.10 Content information . 127

A.11 Portrayal catalogue information . 128

A.12 Distribution information . 129

A.13 Metadata extension information . 130

A.14 Application schema information . 131

xii

List of Abbreviations and Acronyms

API Application Programming Interface

ASP Active Server Page

AVHRR Advanced Very High Resolution Radiometer

CCRS Canada Centre for Remote Sensing

CEONet Canada Earth Observation Network

CLI Canada Land Inventory

CGI Common Gateway Interface

CORBA Common Object Request Broker Architecture

CSDGM Content Standards for Digital Geospatial Metadata

DBMS Database Management System

DCOM Distributed Component Object Model

DII Dynamic Invocation Interface

DSS Decision Support System

EJB Enterprise Java Bean

FGDC Federal Geographic Data Committee

GIS Geospatial Information System

GML Geography Markup Language

GMT Generic Mapping Tools

GSD Geospatial Data

GSHHS Global, Self-consistent, Hierarchical, High-resolution Shoreline database

GUI Graphic User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

IDL Interface Definition Language

IIOP Internet Inter–ORB Protocol

IS Information System

ISO International Standards Organization

JDBC Java Database Connectivity

JPEG Joint Photographic Experts Group

xiii

JSP Java Server Page

NOAA National Oceanic and Atmospheric Administration

OGC Open GIS Consortium

OMG Object Management Group

ORB Object Request Broker

RMI Remote Method Invocation

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

TIFF Tag Image File Format

URL Uniform Resource Locater

WDGSDW Web-oriented Distributed Geospatial Data Warehouse

WWW World Wide Web

XML Extensible Markup Language

xiv

Chapter 1

Introduction

The Internet and especially the World Wide Web (WWW) provide a promising

approach to make all kinds of data and information available publicly and privately

(using an Intranet). There is a growing awareness that the WWW has changed for-

ever the way data, information and knowledge is collected, analyzed and distributed.

Using the WWW together with other elaborate distributed computing techniques,

the general public will be able to access, retrieve, merge, and analyze complex sets

of geospatial information and data [36]. This thesis investigates web-based distrib-

uted computing technologies and XML standards to see how best to provide access

to geospatial data which are available around the world.

1.1 Geospatial Information Systems and OpenGIS

1.1.1 Geospatial Information System (GIS)

According to the International GIS Dictionary, a GIS is a “computer system

for capturing, managing, integrating, manipulating, analyzing and displaying data

which is spatially referenced to the Earth.” [25]. What distinguishes a GIS from

1

other forms of information systems, such as databases and spreadsheets, is that a

GIS deals with geospatial information. A GIS has the capability to relate layers

of data for the same points in space, combining, analyzing and, finally, mapping

out the results. Geospatial information uses location, within a geodetic coordinate

system, as its reference base. Most geospatial information and data have been stored

in heterogeneous systems which are found within and across organizations. Modern

solutions to storing and handling complex heterogeneous information in distributed

systems include specialized tools for web-based geographical data integration. In

the USA [39], GIS is a $2 billion dollar per year high technology industry that drives

decision-making in the public sector and business. Nearly 80,000 government agencies

are involved in the creation of geographic information using taxpayer funding to

gather, compile, and store data. Agencies are now beginning to make these stores of

data directly available to the publics through GIS applications using the Internet and

the World Wide Web (e.g. Oakland Unified School District Map Center [29] and San

Diego regional SanGIS [37]).

1.1.2 OpenGIS

Much geospatial data is available on the web and in off-line archives, but it is

complex, heterogeneous, and incompatible. OpenGIS is a standardization effort by

the Open GIS Consortium (OGC) [33] as transparent access to heterogeneous geo-

data and geo-processing resources in a networked environment. Hence, the OpenGIS

can be defined as “Open and interoperable geo-processing” or “The ability to share

2

heterogeneous geo-data and geo-processing resources transparently in a networked

environment”. The goal of the OpenGIS is to promote the use of interoperable

geo-processing throughout the Information Technology marketplace and provide a

comprehensive suite of open interface specifications that enable developers to write

interoperating components that provide these capabilities. So far, several OpenGIS

implementation specifications have been completed. They include the Geography

Markup Language (GML) v.1.0 [21], the OpenGIS Abstract Specification v.4.0 [30],

the OpenGIS Simple Feature Specification for SQL rev. 1.1 [31] and the OpenGIS

Web Map Server Interface Implementation Specification rev. 1.0.0 [32].

1.2 Data Warehousing and Metadata

1.2.1 Data Warehousing

Data warehousing has become very popular among organizations seeking com-

petitive advantage by getting strategic information quickly and easily. Since William

Inmon coined the phrase “data warehouse” in 1990, it began attracting the attention

from IS managers and vendors. As defined by William Inmon [19], a data warehouse

is a subject oriented, integrated, time-varying, non-volatile collection of data in sup-

port of management’s decision making process. Basically data warehouses are large,

special-purpose databases that contain data integrated from a number of independent

sources, supporting clients who wish to analyze the data for trends and anomalies.

The process of analysis is usually performed with queries that aggregate, filter, and

group the data in a variety of ways. Processing the queries quickly is a critical issue

3

in the data warehousing environment, since the queries are often complex and the

warehouse database is often very large. The query throughput and response times

are more important than transaction throughput in a data warehouse. Chaudhuri [7]

has more details about the tools, utilities and services in a data warehouse.

1.2.2 Metadata

Metadata is “data about data” which contains data describing the operational

environment. It plays a very important role in the data warehouse and is used as:

• a directory to help the DSS analyst locate the contents of the data warehouse,

and

• a guide to the mapping of data as the data is transformed from the operational

environment to the data warehouse environment.

In GIS, geospatial metadata are simply that type of descriptive information ap-

plied to a digital geospatial file. They are a set of common terms and definitions

to use when documenting geospatial data. In essence, metadata answer who, what,

when, where, why, and how about every facet of the data that are being documented.

Metadata can be organized into several levels ranging from a simple listing of basic

information about available data to detailed documentation about an individual data

set.

Metadata may exist in forms other than ones compliant with the Content Stan-

dards for Digital Geospatial Metadata (CSDGM). CSDGM compliant digital meta-

data may be created, stored, and used in a variety of formats. The most basic is

4

an ASCII text document. An ASCII document is easy to transfer to other users

independent of the hardware/software platform they use. Another common format

is Hypertext Markup Language (HTML). HTML provides an attractive way to view

metadata using a browser such as Netscape Navigator, Mosaic, or Microsoft Internet

Explorer. Recently, there has been strong interest in creating metadata in Stan-

dard Generalized Markup Language (SGML). SGML provides an effective way to tag

metadata elements. The ISO geospatial metadata standard [23] uses XML (Exten-

sible Markup Language) [46], a subset of SGML, as the metadata file format. This

standard provides the starting point for indexing and searching metadata and pro-

vides a definition of how to exchange metadata between metadata users, metadata

databases, and metadata tools.

1.3 Web-based Internet Technologies and Distrib-

uted Programming

1.3.1 Web-based Internet Technologies

A network is a collection of computers and other devices that are connected

together by some medium and can send data to and receive data from each other.

The Internet is made up of many separate but interconnected networks. The different

devices on the Internet communicate with each other through a protocol, a precise

set of rules that two or more computers must follow to exchange messages. There are

many different kinds of protocols defining different aspects of network communication.

The important communication protocols used in the Internet are the suite of protocols

5

TCP/IP, which are commonly run on TCP (Transmission Control Protocol) and IP

(Internet Protocol).

The World Wide Web (Web or WWW, for short) is a hypermedia-based system

that provides a simple “point and click” means of exploring the immense volume of

information residing on the Internet. In web technology, a basic client-server archi-

tecture underlies all activities. Information is stored on computers designed as web

servers in publicly accessible shared files encoded using HyperText Markup Language

(HTML). Information on the web is organized according to a Uniform Resource Loca-

tor (URL) and exchanged using the HyperText Transport Protocol (HTTP) between

the web servers and web browsers. Popular web browsers include Internet Explorer

from Microsoft and Netscape Communicator.

Today’s technology has been moving rapidly from static to dynamic web pages. In

the Internet world, the need to deliver dynamically generated content in a maintain-

able fashion is extremely important. Common Gateway Interface (CGI), a standard

for external gateway programs to interface with information servers such as HTTP

servers, was the first response to this need. This interface allows web servers to call

scripts to obtain data from (or send data to) a database, documents, and other pro-

grams, and present that data to viewers via the web. However, CGI technology has

a number of limitations. First, the code within a CGI script that accesses resources,

such as a file system or database, must be specific to the server’s platform. This limits

their utility in distributed environments where web applications may need to run on

multiple platforms. Second, CGI scripts are interpreted (not compiled), which makes

6

them resource intensive and slow and thus tend not to scale well. A new process must

be created each time a CGI script is invoked. Finally, CGI applications are difficult

to maintain because they combine content and display logic in one code base.

To overcome the limitations of CGI technology, Java servlets and JavaServer

Pages (JSP) provide alternate solutions. Java servlets are a means of extending the

functionality of a web server. Servlets can be viewed as applets that run on the server.

Servlets are a portable, platform independent means of delivering dynamic content. A

browser-based application that calls servlets need not support the Java programming

language because a servlet’s output can be HTML, XML, or any other content type.

JSP technology was designed to provide a declarative, presentation-centric method of

developing servlets. Along with all the benefits servlets offer, JSP technology offers

the ability to rapidly develop servlets where content and display logic are separated,

and to reuse code thorough a component-based architecture.

In summary, currently CGI scripts are widely used to provide dynamic content.

Technologies such as servlets and JSP technology that are scalable and easy to write

and maintain can be used instead of CGI scripts. This is driven by the need to provide

dynamic content in a platform-independent, scalable way.

1.3.2 Distributed Programming

A distributed system is a collection of computers connected by a network; the

network is equipped with distributed system software that enables computers to co-

ordinate activities and to share the resources of the system. The resources can be

7

hardware, software, or data. The wide-spread use of distributed systems is due to the

price-performance revolution in microelectronics, the development of cost effective

and efficient communication networks, the development of resource sharing software,

and the increased user demands for communication, economical sharing of resources,

and productivity.

Resources in a distributed system are physically encapsulated within some of the

computers; other computers can only access them via communication networks. The

resources are managed by a resource manager, which is an important component

of a distributed system. In a distributed system, resource users communicate with

resource managers to access the shared resources of the system. The WWW represents

a good example of a distributed system. Many web servers run on various computers,

and each server holds a wide range of documents and information in other media on

diverse topics. These web servers act as resource managers.

The major types of application of distributed system are distributed computing

and parallel computing. In distributed computing, a set of computers connected by

a network are used collectively to accomplish a distributed job. On the other hand,

in parallel computing, a solution to a large problem is divided into many small tasks.

The tasks are distributed to and executed on multiple computers to achieve high

performance. Parallel computing usually requires more interprocessor communication

than distributed computing.

Distributed systems can be implemented using two models: The client/server

model and the object-based model. In Chapter 2, we will discuss more details about

8

these two models and distributed programming techniques.

1.4 Thesis Objectives

The primary goal of this thesis is to design and implement a Web-oriented Distrib-

uted Geospatial Data Warehouse (WDGSDW) system which allows a user to query

globally distributed geographic information and to access geospatial data services

running on multiple servers through the Internet using a web browser. A multi-tiered

client-server architecture was used in the implementation, and the performance of

different approaches (i.e. Java Servlet, Java RMI, CORBA) to implement the mid-

dleware (middle tier) were compared.

The objectives of this thesis include:

(a) Design and test the multi-tier client-server architecture to implement a web-

oriented distributed geospatial data warehouse system over multiple servers.

(b) Implement and compare the performance of the various middleware techniques,

such as Java Servlet, Java RMI, and CORBA (for Java and C++).

(c) Investigate if Java servlet, Java RMI can compete with CORBA (for Java and

C++) in delivering contextual geospatial data to build the user interface of the

WDGSDW system.

(d) Investigate how heterogeneous geospatial databases distributed across multiple

servers can be effectively indexed, queried and updated from a web browser.

9

(e) Build search engine for searching distributed geospatial information in a geospa-

tial data warehouse on the web, which supports the combined text queries and

geographical queries with fuzzy match restriction.

(f) Implement some client-server applications which provides the actual geospatial

data services across multiple servers over the Internet.

(g) Test and evaluate the implemented system quantitatively.

The thesis is organized as follows. In Chapter 2 we present an overview of the

models and technologies of distributed computing, the foundation for the rest of the

thesis. The FGDC CSDGM and ISO 19115 standards for XML geospatial metadata

are introduced in Chapter 3. In Chapter 4, we describe the test data sets and construct

a data structure for the CLI data. Chapter 5 shows the architectural overview of

the indexing scheme and building the search engine using ISO standard geospatial

metadata files. Chapter 6 and Chapter 7 are dedicated to the design, implementation

and evaluation of the WDGSDW system. Finally, we close with conclusions and

discussions of future extensions to DWGSDW in Chapter 8.

10

Chapter 2

Web-based Distributed
Programming and Architectures

Distributed computing is one of the major types of application of distributed

systems. It allows business logic and data to be reached from remote locations. In

this chapter, we give an overview of the web-based distributed computing models,

architectures and programming techniques.

2.1 Client/Server Model

Distributed systems can be implemented using two models: the client/server

model and the object-based model. This section introduces the client/server model

of distributed computing. The distributed object-based model is discussed in section

2.2.

2.1.1 Two-tier Client-Server Architecture

The most widely used model of distributed computing is currently the ’Client-

Server’ model. A client is defined as a requester of services and a server is defined as

the provider of services. Client/server is an architecture for distributing the functions

11

of an application across the most suitable combination of user workstations, networks

and shared computers. It contains a set of server processes, each one acting as a

resource manager for resources of a given type. It also contains a collection of client

processes, each one performs a task that requires access to some shared hardware

and software resources. Resource managers may themselves need to access resources

managed by another process, so some processes are both client and server processes.

However, in the client/server model, all shared resources are held and managed by

server processes. The client communicates with the server for the purpose of ex-

changing information. Both the client and server usually speak the same language–a

protocol that the client and server both understand–so they are able to communicate

with each other.

Traditionally, most client/server models use a 2-tier software architecture. Two-

tier software architectures consist of three components distributed in two layers: client

(requester of services) and server (provider of services). The three components are:

• User System Interface (such as session, text input, dialog, and display manage-

ment services).

• Processing Management (such as process development, process enactment, process

monitoring, and process resource services).

• Database Management (such as data and file services).

The two tier design allocates the user system interface exclusively to the client.

It places database management on the server and splits the processing management

12

between client and server, creating two layers. Figure 2.1 depicts the 2-tier software

architecture.

Figure 2.1: 2-tier distributed client/server architecture.

Most modern network programming is also based on a 2-tier client/server archi-

tecture (see Figure 2.2). A client-server application typically stores large quantities of

data on an expensive, high-powered server, while most of the program logic and the

user-interface is handled by client software running on relatively inexpensive personal

computers. In most cases, a server primarily sends data, while a client primarily re-

ceives it, but it is rare for one program to send or receive exclusively. A more reliable

distinction is that a client initiates a conversation, while a server waits for clients to

start conversations with it. Some servers process and analyze the data before sending

the results to the client. Such servers are often referred to as application servers,

to distinguish them from the more common file servers and database servers. The

latter exist only to send out chunks of information, but do not do anything with that

information. The most popular client/server system is the World Wide Web. Web

13

servers respond to requests from web clients using the protocol HTTP. Data is stored

on the web server and is sent out to the clients that request it. Aside from the initial

request for a page, almost all data is transferred from the server to the client, not

from the client to servers. Web servers that use CGI or servlet programs double as

application and file servers.

Figure 2.2: A WWW client/server model.

In a 2-tier client-server architecture, the data logic resides on the server and the

presentation function on the client; the business logic runs both in the client and the

server, with each processor doing an appropriate level of processing and exchanging

inter-process communication messages across the network. Detailed readings on two

tier architectures can be found in [38].

2.1.2 Three-tier Client-Server Architecture

Unfortunately, the 2-tier model shows striking weaknesses in the scalability, in-

teroperability, system administration and configuration [38]. The limitations of the

14

2-tier model make the development and maintenance of distributed applications much

more expensive. Three-tier and n-tier architectures endeavour to overcome these lim-

itations. This goal is achieved primarily by moving the application logic from the

client back to the server.

A 3-tier architecture is used when an effective distributed client/server design

is needed that provides (when compared to the two tier) increased performance,

flexibility, maintainability, reusability, and scalability, while hiding the complexity of

distributed processing from the user. These characteristics have made three layer

architectures a popular choice for Internet applications and net-centric information

systems.

Figure 2.3: Three-tier distributed client/server architecture.

A three tier distributed client/server architecture (as shown in Figure 2.3) includes

a Client-tier (user system interface), middle tier or Application-Server-tier (process-

ing management) and Data-Server-tier (database management). The Client-tier is

15

responsible for the presentation of data, receiving user events and controlling the user

interface. The actual business logic has been moved to an application-server. The

third tier or Data-Server-tier provides database management functionality and is ded-

icated to data and file services that can be optimized without using any proprietary

database management system languages. The data management component ensures

that the data is consistent throughout the distributed environment through the use

of features such as data locking, consistency, and replication. It should be noted that

connectivity between tiers can be dynamically changed depending upon the user’s

request for data and services.

The middle tier or Application-Server-tier provides process management services

that are shared by multiple applications. Business-objects that implement the busi-

ness rules ”live” here, and are available to the client-tier. This level now forms the

central key to solving 2-tier problems. This tier protects the data from direct access

by the clients. The middle tier server improves performance, flexibility, maintainabil-

ity, reusability, and scalability by centralizing process logic. Centralized process logic

makes administration and change management easier by localizing system function-

ality so that changes must only be written once and placed on the middle tier server

to be available throughout the systems. With other architectural designs, a change

to a function (service) would need to be written into every application [38].

Sometimes, the middle tier is divided in two or more units with different functions;

in these cases the architecture is often referred to as multi layer. This is the case, for

example, of some Internet applications. These applications typically have light clients

16

written in HTML and application servers written in C++ or Java. The gap between

these two layers is too big to link them together. Instead, there is an intermediate

layer (web server) implemented in a scripting language. This layer receives requests

from the Internet clients and generates HTML pages using the services provided

by the business layer. This additional layer provides further isolation between the

application layout and the application logic.

It is important to note that boundaries between tiers are only logical. It is quite

easily possible to run all three tiers on one and the same (physical) machine. The

main importance is that the system is neatly structured, and that there is a well

planned definition of the software boundaries between the different tiers.

2.2 Object-based Model

A more recent development in distributed computing is distributed object-based

systems. A distributed object-based system is a collection of objects that isolates

the requestors of services (client) from the providers of services (servers) by a well-

defined encapsulating interface. In the object-based mode, a client sends a message

to an object, which in turn interprets the message to decide what service to perform.

This service selection can be performed by either the object or a broker. Distributed

object technologies such as Java RMI, CORBA, and Microsoft’s DCOM allow objects

running on one machine to be used by client applications on different computers.

The goal of most distributed object systems is to let any object reside anywhere on

the network, and allow an application to interact with these objects exactly the same

17

way as they do with a local object. Additional features found in some distributed

object schemes are the ability to construct an object on one host and transmit it to

another host, and the ability for an agent on one host to create a new object on another

host. These features, plus some others, are illustrated in Figure 2.4 [9]. An object

interface specification is used to generate a server implementation of a class of objects,

an interface between the object implementation and the object manager, sometimes

called an object skeleton, and a client interface for the class of objects, sometimes

called an object stub. The skeleton will be used by the server to create new instances

of the class of objects and to route remote method calls to the object implementation.

The stub will be used by the client to route transactions (mostly method invocations)

to the object on the server. On the server side, the class implementation is passed

through a registration service, which registers the new class with a naming service

and an object manager, and then stores the class in the server’s storage for object

skeletons.

Figure 2.4: General architecture for distributed object systems (from [9]).

18

Figure 2.5: Remote object transactions at runtime (from [9]).

With an object fully registered with a server, the client can now request an in-

stance of the class through the naming service. The runtime transactions involved in

requesting and using a remote object are shown in Figure 2.5. The naming service

routes the client’s request to the server’s object manager, which creates and initial-

izes the new object using the stored object skeleton. The new object is stored in

the server’s object storage area, and an object handle is issued back to the client

in the form of an object stub interface. This stub is used by the client to interact

with the remote object. Refer to [9] for the details about each element of the general

distributed object architecture illustrated in Figure 2.4.

2.3 Distributed Object Schemes: CORBA and Java

RMI

There are several distributed object schemes that can be used to build distributed

computing system. In this section we present a brief overview of CORBA and Java

RMI technologies.

19

2.3.1 CORBA

CORBA, the Common Object Request Broker Architecture, is an industry dis-

tributed object standard developed by the Object Management Group (OMG). CORBA

itself is simply a generic framework (specification) for building systems involving dis-

tributed objects. The framework is meant to be platform- and language-independent

and it is implemented by CORBA-compliant products, such as Inprise’s VisiBroker,

Iona’s OrbisWeb and Sun Microsystem’s Java IDL. This standard allows CORBA

objects to invoke one another without knowing where the objects they access reside

or in what language the requested objects are implemented. The OMG-specified In-

terface Definition Language (IDL) is used to define the interfaces to CORBA objects.

It is important to note that CORBA objects differ from typical programming objects

in three ways:

1. CORBA objects can run on any platform.

2. CORBA objects can be located anywhere on the network.

3. CORBA objects can be written in any language that has an IDL mapping.

The CORBA framework for distributing objects consists of the following elements:

• An Object Request Broker (ORB), which provides clients and servers of distrib-

uted objects with the means to make and receive requests of each other. ORBs

can also provide object services, such as a Naming Service that lets clients look-

up objects by name, or Security Services that provide for secure inter-object

20

communications.

• Methods for specifying the interfaces that objects in the system support. These

interfaces specify the operations that can be requested of the object, and any

data variables available on the object. CORBA offers two ways to specify

object interfaces: an Interface Definition Language (IDL) for static interface

definitions, and a Dynamic Invocation Interface (DII), which lets clients ac-

cess interfaces as first-class objects from an Interface Repository. The DII is

analogous in some ways to the Java Reflection API.

• A binary protocol for communication between ORBs, called the Internet Inter-

ORB Protocol (IIOP).

A client program acting on an object is illustrated in Figure 2.6. The Object

Request Broker (ORB) in Figure 2.6 connects a client application with the objects

it wants to use. The client program does not need to know whether the object

implementation it is in communication with resides on the same computer or is located

on a remote computer somewhere on the network. The client program only needs to

know the object’s name and understand how to use the object’s interface. The ORB

takes care of the details of locating the object, routing the request, and returning the

result.

CORBAORBs usually communicate using the Internet Inter-ORB Protocol (IIOP).

Other protocols for inter-ORB communication exist, but IIOP is fast becoming the

most popular, first of all because it is the standard, and second because of the popu-

21

Figure 2.6: Client program acting on an object.

larity of TCP/IP (the networking protocols used by the Internet), a layer that IIOP

sits on top of. CORBA is independent of networking protocols, however, and could

(at least theoretically) run over any type of network protocol. Another protocol,

Simple Object Access Protocol (SOAP) [5], is a competitor to IIOP.

Vinoski [44] and the OMG CORBA web site (http://www.corba.org/) both have

more details on the CORBA architecture.

2.3.2 Java RMI

The Java Remote Method Invocation (RMI) [42] is an alternative approach for

developing distributed applications. RMI is a Java-centric scheme for distributed ob-

jects that is now a part of the core Java API of the JDK1.1 and above. RMI offers

some of the critical elements of a distributed object system for Java, plus some other

features that are made possible by the fact that RMI is a Java-only system. RMI has

22

object communication facilities that are analogous to CORBA’s IIOP, and its object

serialization system provides a way to transfer or request an object instance from

one remote process to another. Instead of creating and instantiating objects on local

machines, you create some of the objects on other remote machines, and you commu-

nicate with those objects as you normally would with local objects. Unlike CORBA,

your objects can only communicate with one another if they are all implemented in

Java.

Figure 2.7: RMI system architecture.

The RMI system consists of three layers: the stub/skeleton layer, the remote

reference layer and the transport layer, as shown in Figure 2.7. The boundary at each

layer is defined by a specific interface and protocol, each layer is independent of the

next, and can be replaced by an alternate implementation without affecting the other

layers in the system.

RMI is a layer on top of the Java Virtual Machine which leverages the Java

system’s built-in garbage collection, security and class-loading mechanisms. The ap-

plication layer sits on top of the RMI system. A Remote Method Invocation from a

23

client to a remote server object travels down through the layers of the RMI system

to the client-side transport. Next, the invocation is sent - potentially via network

communication - to the server-side transport, where it then travels up through the

transport to the server. A client invoking a method on a remote server object actually

uses a stub or proxy as a conduit to the remote object.

A client-held reference to a remote object is a reference to a local stub, which is an

implementation of the remote interfaces of the object and which forwards invocation

requests to it via the remote reference layer.

The remote reference layer in the RMI system separates out the specific remote

reference behavior from the client stub. Any call initiated by the stub is done directly

through the reference layer, enabling appropriate reference semantics to be carried

out.

Transparent transmission of objects from one address space to another is achieved

through Object Serialization, a technique that supports the encoding of objects - and

the objects they can reach - into a stream of bytes. Object Serialization also supports

the complementary reconstruction of the object graph from the stream.

Another technique - known as dynamic stub loading - is used to support client-

side stubs that implement the same set of remote interfaces as a remote object. When

a stub of the exact type is not already available to the client, dynamic stub loading

allows the client to use the Java Platform’s built-in operators for casting and type-

checking.

Sun [42] and other Sun RMI web sites contain more details on RMI techniques.

24

2.3.3 RMI vs. CORBA

We have seen many similarities between the two in terms of functionality. There

are also some critical differences between the two technologies. In general, CORBA

differs from RMI in the following areas:

• CORBA is designed to be language-independent. CORBA objects run in a

heterogeneous environment. On other hand, RMI is a Java-centric distributed

object system and it is designed for the Java language only. RMI objects run

in a homogenous language environment.

• CORBA interfaces are defined in IDL, while RMI interfaces are defined in Java.

• CORBA objects are not garbage collected. Once it is created, a CORBA object

exists until you get rid of it. RMI objects, on the other hand, are garbage

collected automatically.

• Relatively speaking, RMI can be easier to master than CORBA.

• CORBA is a more mature standard than RMI, and has had time to gain richer

implementations.

2.4 Java Applet and Java Servlet

2.4.1 Java Applets

Applets are Java-based GUI components that typically execute in a Web browser.

Applets can provide a powerful user interface for Web-based distributed applications.

25

Applets have access to all the features and advantages of the Java platform technol-

ogy. In a heterogeneous Web environment, it is especially important that client-side

components be portable. For the protection of the client machine, it is important

to be able to place security restrictions on these components and detect security

violations. Java applets serve both these needs.

2.4.2 Java Servlets

Java servlets are a means of extending the functionality of a Web server. Servlets

can be thought of as an applet that runs on the server. They provide a portable,

component-based, platform and Web server independent means of delivering dynamic

content. Servlets are written in the Java programming language. This allows servlets

to be supported on any platform that has a Java virtual machine and a Web server

that supports servlets. Servlets have access to the entire family of Java APIs, includ-

ing the JDBC API to access enterprise databases. Servlets can also access a library of

HTTP-specific calls, and have all the benefits of the mature Java language, including

portability, performance, reusability, and crash protection. Servlets perform better

than CGI (Common Gateway Interface) scripts. A servlet can be loaded into memory

once and then called as many times as needed and scale well without requiring ad-

ditional hardware. Once a servlet is loaded into memory it can run on a lightweight

thread while CGI scripts must be loaded in a different process for every request.

Another benefit of servlets is that, unlike a CGI script, a servlet can maintain and

or pool connections to databases or other necessary Java objects which saves time

26

in processing requests. Hence, servlets are a popular choice for building interactive

web applications today. Hunters [18] has more detail about the servlet lifecycle and

servlet–applet communication.

27

Chapter 3

Geospatial Metadata Standards
and XML Metadata Files

Geospatial metadata support spatial data infrastructures by allowing users to

locate, evaluate, extract, and employ geospatial data. It plays a special and very

important role in a geospatial data warehouse. A geospatial metadata standard is

simply a common set of terms and definitions that describe geospatial metadata. In

this chapter, we discuss briefly the Federal Geographic Data Committee (FGDC)

and the International Organization for Standardization (ISO) geospatial metadata

standards.

3.1 FGDC Geospatial Metadata Standards

The Federal Geographic Data Committee approved the Content Standard for Digital

Geospatial Metadata (CSDGM) (FGDC-STD-001-1998) in June 1998 [10]. The ob-

jectives of the standard are to provide a common set of terminology and definitions

for the documentation of digital geospatial data. The standard establishes the names

of data elements and compound elements (groups of data elements) to be used for

28

these purposes, the definitions of these compound elements and data elements, and

information about the values that are to be provided for the data elements [10].

The standard CSDGM is designed to describe a long list of geospatial data. There

are 334 different elements in the CSDGM standard, 119 of which exist only to con-

tain other elements. These compound elements are important because they describe

the relationships among other elements. For example, a bibliographic reference is

described by an element called Citation Information which contains both a Title and

a Publication Date. You need to know which publication date belongs to a particular

title; the hierarchical relationship described by Citation Information makes this clear.

CSDGM uses both SGML and XML for structuring information.

A typical CSDGM metadata file contains the following sections:

Metadata (Mandatory) CONTAINS

1. Identification Information (Mandatory) AND

2. Data Quality Information (Mandatory if Applicable) AND

3. Spatial Data Organization Information (Mandatory if Applicable) AND

4. Spatial Reference Information (Mandatory if Applicable) AND

5. Entity and Attribute Information (Mandatory if Applicable) AND

6. Distribution Information (Mandatory if Applicable) AND

7. Metadata Reference Information (Mandatory).

29

FGDC [1998] has more details about the FGDC geospatial metadata standards

and the tools to create metadata and check the structure of metadata.

3.2 ISO Geospatial Metadata Standards

The International Organization for Standardization Technical Committee for Global

GIS Standards (ISO/TC 211) is developing an integrated suite of standards to pro-

mote global interoperability. ISO/TC 211 issued a third Committee Draft, ISO/CD

19115.3, for review on metadata in June 2000 [22] and the final text, ISO/DIS 19115,

for submission to ISO as Draft International Standard in December 2000 [23]. The

objective of the standard is to provide a clear procedure for the description of digital

geospatial datasets so that users will be able to locate geographic data, to deter-

mine whether the data in a holding will be of use to them, and how to access the

data. By establishing a common set of metadata terminology, definitions, and exten-

sion procedures, the standard will promote the proper use and effective retrieval of

geospatial data. Supplementary benefits of this standard for metadata are to facili-

tate the organization and management of geospatial data, and to provide information

about an organization’s database to others. This standard for the implementation

and documentation of metadata furnishes those unfamiliar with geospatial data the

appropriate information to characterize their geospatial data and it makes possible

dataset cataloguing which enables data discovery, retrieval and reuse.

This International Standard defines metadata elements, provides a schema and

establishes a common set of metadata terminology, definitions, and extension pro-

30

cedures. Following ISO Directives, the standard is divided into two major parts: a

normative section which users must follow to be compliant with the standard; and an

informative section which helps guide them in its uses and provides examples to aid

in understanding. Due to the diversity of geographic data, no single set of metadata

elements will satisfy all requirements. For this reason the ISO metadata standard

provides a standard way for users to extend their metadata and still ensure interop-

erability. By using standard methods other users will be able to understand and use

this extended metadata. In the normative section the standard defines the schema

required for describing geographic information. It defines the mandatory metadata

elements and the characteristics required to provide information about the identifica-

tion, the extent, the quality, the spatial and temporal schema, spatial reference, and

distribution of digital geospatial data. The standard applies to all geographic data, it

is applicable to datasets in series, datasets, individual geographic features, and their

attributes. It also defines and standardizes a comprehensive set of optional metadata

elements and characteristics, necessary to fully and extensively document a dataset.

For ease of understanding these metadata elements are divided into 11 sections as

shown in Table 3.1. Among these metadata entity sections, the Identification entity

is the only mandatory one. It contains mandatory, conditional, and optional elements

to uniquely identify the data. The Identification entity includes information about

the citation for the resource, an abstract, the purpose, credit, the status and points

of contact. Table 3.2 summarizes the Identification information. It may be specified

(subclassed) as DataIdentification when used to identify data and as ServiceIdentifi-

31

cation when used to identify a service. The ServiceIdentification provides a high level

description of a service. For further information see [23].

The other entity sections also can contain some optional sub-entities. The UML

diagrams illustrating all of the metadata schemas are given in Appendix A.

Table 3.1: Summary of the ISO/TC 211 Metadata entity set information.

Entity Name Description Max.

No.

MD Metadata Aggregate of the entities below

MD Identification Information to identify the data N

MD Constraints Constraints placed on the data N

MD DataQuality Overall quality of the data N

MD MaintenanceInformation Information about the frequency 1

and scope of metadata updates

MD ReferenceSystem Description about the reference N

systems used in the dataset

MD SpatialRepresentation Digital representation N

of spatial information

MD PortrayalCatalogueReference Information about the catalogue N

for the portrayal of a resource

MD Distribution Information about the 1

distributor of the data

MD MetadataExtensionInformation information describing N

metadata extensions

MD ApplicationSchemaInformation Information about the N

conceptual schema of a dataset

MD ContentDescription Information about the catalogue N

for image data characteristics

32

Table 3.2: Summary of the Identification information.

Entity Name Description Maximum

Occurrence

MD Identification Aggregate of the entities below N

MD Format Format of the data N

MD BrowseGraphic Graphic overview of the data N

MD Usage Specific uses of the data 1

MD Constraints Constraints placed on the resource N

MD Keywords Keywords describing the resource N

MD Maintenance Frequency and scope of the data updates N

3.3 XML Metadata files for ISO 19115 Standards

XML (Extensible Markup Language) [46] is a subset of SGML (Standard Gener-

alized Markup Language), the international standard for defining descriptions of the

structure and content of different types of electronic document on the World Wide

Web. XML is not a single, predefined markup language (such as HTML, which defines

a way to describe web pages). XML is a metalanguage – a language for describing

other languages. XML lets you define your own customized markup languages for

limitless different document classes.

XML shows great promise for the definition, exchange, and processing of struc-

tured information on the WWW, including geospatial data in general. Fortunately,

geospatial metadata have been encoded in SGML, the parent form of XML, so the

availability of free and commercial general-purpose XML tools to process metadata

shows great benefit for the GIS community without the need to create and maintain

33

special-purpose parsers and presentation schemes. Teng [43] investigated the use of

XML for query processing in Web-based geospatial data warehouses. It is evident

that XML is a powerful tool to define and exchange geospatial metadata, since it is

a platform and vendor independent, software-independent, extensible, reliable docu-

ment exchange. XML metadata files for ISO 19115 standard can be easily created

using the short names of the metadata entities (elements) provided in the standard.

A sample of the XML ISO 19115 metadata file is given in Appendix B.

34

Chapter 4

Data Sets for Testing Distributed
Geospatial Systems

This chapter describes the data sets used for testing the distributed geospatial sys-

tems developed in this research. The data sets include GSHHS and GMT contextual

data, CEONet geospatial metadata, CCRS raster data and CLI vector data.

4.1 GSHHS and GMT Contextual Data for User

Interface of Catalog Server

In Xiao’s work [49], two kinds of contextual data were used for building the

user interface of a catalog server: polygon data and polyline data. The polygon

data include shorelines, lakes, and islands in lakes, which comes from the Global,

Self-consistent, Hierarchical, High-resolution Shoreline database (GSHHS)[47]. The

polyline data include political borders and rivers, which comes from the Generic

Mapping Tools (GMT) [48]. Both of them are used in this research for the same

purpose, i.e. to build the user interface of the catalog server.

In this research, the GSHHS database provides the polygon data of shorelines,

35

lakes, and islands in lakes for the entire world to build the user interface of catalog

server. The details about processing and assembly of the GSHHS data are described

in [47]. The GMT database is a free, open source collection of approximately 60

UNIX tools that allow users to manipulate (x, y) and (x, y, z) data sets (including

filtering, trend fitting, projecting, etc.) and produce Encapsulated PostScript File

(EPS) illustrations ranging from simple x-y plots through contour maps to artificially

illuminated surfaces and 3-D perspective views in black and white, grey tone, hachure

patterns, and 24-bit colour. GMT supports 25 common map projections plus linear,

log, and power scaling, and comes with support data such as coastlines, rivers, and

political boundaries. GMT can also dump ASCII polyline data into a file. In this

research, the GMT database provided the polyline data of political borders and rivers

for the entire world to build the user interface for the catalog server.

4.2 CEONet XMLMetadata for Metadata Service

As we discussed in Chapter 3, metadata is the “data about data” describing the

content, quality, condition, and other characteristics of data and there are many dif-

ferent standards. Teng [43] dealt with the FGDC CSDGM XML metadata set from

the Canada Earth Observation Network (CEONet). There are a total of 6979 meta-

data files in this metadata set and they require about 100 MB of disk space. Teng [43]

transformed these FGDC CSDGM standard XML metadata files to ISO/CD 19115.2

standard XML metadata files. In this research, we use these ISO/CD 19115.2 stan-

dard XML metadata files as the test data set to perform metadata query processing

36

on the catalog.

The names of the original metadata files are very long and it is not convenient

to manipulate them. For example, isr==United Nations Environment Programme

@FSL@Global Resource Information Database @HYP@ SIOUX FALLS==United

Nations Environment Programme @FSL@ Global Resource Information Database

@HYP@ SIOUX FALLS.xml is one of the file names. Some of them even have more

than 255 characters which causes difficulty in the Windows operating system environ-

ment. We wrote a small Java program called RenameFile.java using the API File in

the package Java java.io to change the metadata file names into shorter names, such

as CEONET7777.xml. The source code of this Java program is shown in Figure 4.1.

Figure 4.1: The source code of Java program RenameFile.java.

37

4.3 CCRS Imagery Data for Geospatial Data Ser-

vices

In this research we used some of the Canada Centre for Remote Sensing (CCRS)

imagery data as test data set for actual raster data services of our system. We

downloaded 40 JPEG image files of Canada with a total size of 3MB from the CCRS

website [6] which show some of the images of Canada from different space sensors and

satellites. These image data allow one to look at the mountains of Kluane National

Park in 3-D, see ice in the waters off Ranklin Inlet in July, and to visit Quebec City,

Summerside, Trepassey, Calgary, and Fredericton.

We downloaded the National Oceanic and Atmospheric Administration (NOAA)

Advanced Very High Resolution Radiometer (AVHRR) composite image data Canada

Noaa and the Radarsat (mosaic) image data Canada Mosaic from the CCRS Ge-

ogratis website [13]. The NOAA AVHRR composite of Canada is in JPEG format

and contains 3 channels of 5700 pixels by 4800 lines, with a size of 2, 475 KB. Re-

search has been conducted at the CCRS by the Environmental Monitoring Section to

study the use of the NOAA image for various projects such as: estimating Net Pri-

mary Productivity, measuring the albedo at the top of the atmosphere, and detecting

forest fires. The Radarsat images of Canada (mosaic) cover the whole Canada and

have multiple resolutions (pixel sizes of 250m, 500m, 750m, and 1000m). They are

in geotiff format with a total size of 609, 410 KB. Table 4.1 summarizes the CCRS

imagery data files.

38

Table 4.1: Contents of the CCRS Imagery Data Files.

Raster Data File Name Coverage No. of Files File Size (KB)

Images of Canada Places of Canada 40 3,100

Canada NOAA Whole Canada 1 2, 475

Canada Mosaic1000 Whole Canada 1 26, 757

Canada Mosaic750 Whole Canada 1 47, 551

Canada Mosaic500 Whole Canada 1 106, 951

Canada Mosaic250 Whole Canada 1 427, 651

Total 45 612,510

4.4 Canada Land Inventory Data for Geospatial

Data Services

In this research we used the Canada Land Inventory (CLI) data as test data sets

for the vector data services of our system.

4.4.1 Introduction to CLI data

The Canada Land Inventory (CLI) is a comprehensive survey of land capability

and use designed to provide a basis for resource and land use planning. It includes

assessments of land capability for agriculture, forestry, recreation, wildlife, and land

use planning projects in each province.

The CLI covers the settled portions of rural Canada and adjoining areas which

affect the income and employment opportunities of rural residents. Thus it covers

the area of Canada where questions of alternative use of land have a strong bearing

on sustainable rural development.

39

The broad objectives of the CLI are to classify lands as to their capabilities, to

obtain a firm estimate of the extent and location of each land class, and to encourage

use of CLI data in planning. Lands are classified according to their physical capability

for use in agriculture, forestry, recreation, and wildlife, and their present use.

We downloaded 1:250,000 scale Canada Land Inventory data in Arc/Info Export

(‘.E00’) format free of charge from the Geogratis website [13]. This data set con-

tains 1,232 zipped ASCII Arc/Info Export files covering the thematic layers of Soil

Capability for Agriculture, Soil Capability for Forestry, Land-Use Capability, Land

Capability for Recreation, Land Capability for Ungulate Wildlife, Land Capability

for Waterfowl Wildlife plus 458 zipped ASCII Arc/Info Export files for the Roads

and place Names. Table 4.2 summarizes the CLI ASCII data file contents.

Table 4.2: Summary of the CLI Arc/Info Export(E00) data files.

No. Theme Number of Files Size (MB)

1 Agriculture 193 860

2 Forestry 180 785

3 Land-Use 202 1,040

4 Recreation 224 941

5 Ungulate 227 527

6 Waterfowl 206 644

7 Roads and Place Names 458 12.2

Total 1690 4809.2

4.4.2 Format Analysis for CLI Arc/Info Export (E00) Data

The CLI data we downloaded are ASCII files in Arc/Info Export (‘.E00’) format.

40

The Geographic Information System designed by Environmental Systems Research

Institute (ESRI) considers the Arc/Info export/import file format to be proprietary.

Here we give a brief format analysis for the Arc/Info Export (E00) file [27].

Overall Organization

The export file begins with a line with three fields: 1- an initial ‘EXP’; 2- what

appears to be a constant of ‘0’ for uncompressed files, and 1 for compressed files

(FULL or PARTIAL); 3- the pathname for the creation of the export file. The export

file ends with a line beginning with ‘EOS’.

The ARC sections are included first, in the following order (note that all these

sections are not always present): ARC (arc coordinates and topology), CNT (Polygon

Centroid Coordinates), LAB (Label Points), PAL (Polygon Topology), TOL (Toler-

ance Type), TXT (Annotations), SIN (Spatial Index), LOG (Coverage History), PRJ

(Projection Parameters), RXP (Specific to Regions), RPL (Region Coverages). These

are followed by the INFO sections, which contains descriptive information about the

arcs and polygons described in the ARC sections.

The beginning of each ARC section is indicated by the section name (a three-

character identifier) followed by ‘2’ for single- precision or ‘3’ for double-precision.

Floating point values carry 8 digits (e.g. -1.0000000E+02) in single-precision coverage,

and 15 digits (e.g. -1.19299887000023E+02) in double-precision coverage.

Each ARC section ends with a line of seven numbers beginning with a -1 and

followed by six zeros, except the SIN, LOG, and PRJ sections which end in ‘EOX’,

41

‘EOL’, and ‘EOP’, respectively. The LAB section uses a slight variation of this -1

ending line (see below). The format for each ARC section is specific to that type of

section.

The beginning of the INFO sections is indicated by ‘IFO 2’, and its end is indicated

by ‘EOI’. Each INFO section begins with the file name. For example, the polygon

attribute table would begin with ‘A021G.PAT’ on a line by itself. The format is the

same for every INFO section (see The INFO Section Formats below). A sample of

parts of the A021G.E00 CLI Arc/Info file is given in Appendix D.

The ARC Section Formats

Formats are given for the four most common ARC sections, i.e. ARC, CNT ,

LAB and PAL.

ARC: The ARC (arc coordinates and topology) section consists of repeating

sets of arc information. The first line of each set has seven numbers: 1. coverage#; 2.

coverage-ID; 3. from node; 4. to node; 5. left polygon; 6. right polygon; 7. number

of coordinates. The subsequent lines of a set are the coordinates with two x-y pairs

per line, if the coverage is single-precision. If there are an odd number of coordinates,

the last line will have only one x-y pair. Double-precision puts one coordinate pair

on each line.

CNT: The CNT (Polygon Centroid Coordinates) section contains the centroid

of each polygon in the coverage. It has sets of centroid information with an initial

coordinate line and, if there are labels, the label ids will follow, with up to 8 label

42

ids per line. The coordinate line has three fields: 1. number of labels in polygon; 2.

centroid x; 3. centroid y.

LAB: The LAB (Label Points) section consists of repeating sets of label point

information. The first line of each set has four numbers: 1. coverage-ID; 2. Polygon

ID; 3. x coordinate; 4. y coordinate. The second and final line of the set gives the

label box window. This information contains repetitions of the x and y coordinates.

Note that the LAB section ends with a different ‘-1’ line than the other sections.

PAL: The PAL (Polygon Topology) section consists of repeating sets of polygon

information. For single-precision, the first line of each set has five numbers: 1. number

of arcs in polygon; 2. x min of polygon; 3. y min of polygon; 4. x max of polygon;

5. y max of polygon. The subsequent lines of a set give information on the arcs which

comprise the polygon. There are three numbers per arc with information for two arcs

per line: 1. Arc Id (negative if reversed); 2. From Node Id (if arc is reversed, then

this is the arc’s To Node Id); 3. Adjacent Polygon Id (Id of the polygon that shares

this arc with the current polygon). The first polygon given is the universal polygon,

i.e. the polygon containing the whole data set.

The information in the ARC and PAL sections is extremely important for every

application since it provides the basic geospatial coordinate data for all polyline and

polygon objects.

The INFO Section Formats

Formats are given for the three most common INFO sections, i.e. AAT (Arc

43

Attribute Table), BND (Coverage Min/Max Coordinates), and PAT (Polygon or Point

Attribute Table).

AAT: The AAT (Arc Attribute Table) contains seven basic fields whose at-

tribute names are as follows: FNODE # (start-node number); TNODE # (end-

node number); LPOLY # (left-polygon number); RPOLY # (right-polygon number);

LENGTH (arc length); COVER # (arc number); COVER ID (arc ID). Additional

attributes may be added as desired, after the COVER ID attribute. For example,

in the CLI data for the thematic layer Roads, there is an additional attribute LEG-

END which takes one of the values of ROADS, RAILROAD or TRAIL for each arc.

This information is very useful in our research since it gives us the type of the road

represented by this arc when we visualize the CLI data.

BND: The BND (Coverage Min/Max Coordinates) table contains four fields

whose attribute names are self-explanatory: XMIN; YMIN; XMAX; YMAX. The in-

formation in the BND table is very useful in our research since it gives us the geospatial

BoundingBox of each data set. We use it to create the entity of geographicBox in the

XML metadata for the purpose of boundary search.

PAT: The PAT (Polygon or Point Attribute Table) contains four basic fields

whose attribute names are as follows: AREA (polygon area); PERIMETER (polygon

perimeter); COVER # (polygon number); and COVER ID (polygon ID). Additional

attributes may be added as desired, after the COVER ID attribute. In the CLI

data for the thematic layer Agriculture, Forestry, Land-use, Recreation, Ungulate and

Waterfowl, there are several additional attributes which characterize the classification

44

of the physical capability for each polygon area. The first 4 additional attributes are:

CLASS A (The primary and/or dominant CLI class), PERCENT A (The proportion

(% base 10) of the polygon in Class A), SUBCLAS A1 (The primary limitation for the

proportion of the polygon in Class A), and SUBCLAS A2 (The secondary limitation

for the proportion of the polygon in Class A). We use these attributes to determine

the fill-colour of the polygon when we visualize the CLI data. In the CLI data for

the thematic layer PlaceNames, there is an additional attribute PPPTNAME which

gives the place name for the area represented by this polygon.

4.4.3 CLI Data Structures and Pre-processing

In this research, we provide a service of CLI data visualization as requested by

a client. In order to process the CLI E00 data efficiently, we built a data structure

to represent the CLI data called the CLI Data Structure. The CLI data structure is

shown with a UML diagram in Figure 4.2.

Figure 4.2: A UML diagram of the CLI data structure.

45

Each CLI data file for thematic layer Agriculture, Forestry, Land-use, Recreation,

Ungulate and Waterfowl corresponds to a CLIData object. The attribute values of

each CLIData object are assigned using the algorithm shown in Figure 4.3.

Figure 4.3: The algorithm for creating a CLIData object.

To create a CLIData object, one needs three CLI thematic files: one for the the-

matic layers of Agriculture, Forestry, Land-use, Recreation, Ungulate and Waterfowl;

one for the corresponding thematic layer of Road and the other for the corresponding

thematic layer of PlaceName.

46

Chapter 5

Geospatial Data Index Structures
and Search Engine

In this research, we employ the R-Tree index structure for spatial objects and

AVL-Tree index structure for string objects initially developed by Teng [43] to build

the Geospatial Data (GSD) search engine. Correspondingly, there are two search

types that have been implemented in this research: geospatial coordinates search and

string (keyword) search. In this chapter, we discuss the approaches implemented that

use geospatial metadata to catalog, query and browse geospatial data.

5.1 AVL-Tree and R-Tree Index Structures

In this research we implement the combined geospatial coordinates and strings

(keywords) indexing and search scheme. The geospatial coordinates represent the

geographic areal domain of the data set: western-most/eastern-most longitudes and

northern-most/southern-most latitudes of the limit of the dataset expressed in decimal

degrees. Strings represent the theme and place name keywords which are the common-

use words or phases used to describe the theme or place names involved in the dataset.

47

The strings (keywords) are indexed with the AVL-Tree data structure [45] and the

geospatial coordinates are indexed with the R-Tree data structure [14]. Based on their

well-known characteristics, these two indexing structures give fast search performance.

5.1.1 AVL-Tree Index Structure

Binary search techniques require time O(logN) to search a balanced binary tree,

where N is the number of elements in the tree. If data are inserted in order using a

naive algorithm, binary search degenerates to sequential search if the binary tree is

not balanced. This problem can be solved by rebalancing the tree after each insertion

or deletion. In rebalancing, nodes are rearranged via transformations called rotations

using an algorithm that tends to minimize the tree’s height. There are several schemes

for rebalancing binary trees. A common type of balanced binary search tree is the

AVL-Tree. An AVL-Tree [45], invented by Russian mathematicians G. M. Adelson-

Velskii and E. M. Landis [1], ensures that the time for a search, insertion or deletion

is O(logN).

In this research, we implemented the AVL-Tree data structure using Java. In our

implementation of the AVL-Tree data structure, each binaryNode is a quadplex of

(Keyword, Vec file Name, Left, Right), where Keyword is a string object and acts

as the key of AVL-Tree, Vec file Name is an object of Java class Vector which holds

all the names of the ISO XML metadata files (will be discussed below) that own the

same keyword, Left and Right are the left and right children of this binaryNode. The

insertion algorithm implemented ensures that if several metadata files have the same

48

keyword, then all of these metadata file names will be put in the same node of the

AVL-Tree. The search algorithm of the AVL-Tree is the typical search algorithm of

binary search trees and requires an exact match. The returned search result will be

a collection of metadata file names.

5.1.2 R-Tree Index Structure

The R-Tree [14] is an object hierarchy which is applicable to arbitrary spatial

objects. It is a multi-dimensional generalization of the B-Tree, that preserves height-

balance, and can be used to store multi-dimensional geometric objects, such as points,

lines, polygons and polyhedrons.

In this research, we implemented the R-tree index structures using Java. In our R-

Tree implementation, each data object is a duplex of (Vec file Name, Bound), where

Bound is an object of the class BoundingBox which has four attribute members of

xMin, xMax, yMin, yMax representing the minimum bounding rectangle of the data

object, Vec file Name is an object of Java class Vector which holds all the names of

the ISO XML metadata files (will be discussed below) that own the same minimum

bounding rectangle Bound. We used the linear node splitting method for R-tree in-

sertion. That is, we pick up the two bounding boxes with the greatest normalized

separation along both axes as the splitting seeds when splitting the node [14]. It is

notable that we improved the insertion algorithm by using an object Vec file Name

of the Java class Vector to hold the names of metadata files with the same bounding

rectangle. That is, if there are several metadata files have the same bounding rec-

49

tangle, then only one data object is created and all of their file names are put in the

vector Vec file Name of the data object.

Traditionally, the R-Tree supports both range search and point search. In order to

locate all objects which intersect a query rectangle, the search algorithm descends the

tree from the root. The algorithm recursively traverses down the subtrees of bounding

rectangles that intersect the query rectangle. When a leaf node is reached, bounding

rectangles are tested against the query rectangle and their objects are fetched for

testing if they intersect the query rectangle. For the GSD system, this traditional

R-Tree search algorithm usually returns too many search results, especially for a very

large number of datasets being catalogued. This situation happens when the size of

the overlap of the query rectangle and the dataset bounding rectangle is quite small

relative to that of query rectangle or dataset bounding rectangle.

We improved the R-Tree search algorithm by introducing a match factor k which

takes a real value in the range of (0, 1]. With the match factor k, the improved R-Tree

range search algorithm only returns data objects satisfying the condition

min

{
S(O)

S(D)
,
S(O)

S(Q)

}
≥ k, (5.1)

where S(D) is the size (area) of the minimum bounding rectangle of data object, S(Q)

is the size (area) of the query rectangle and S(O) is the size (area) of the overlap of the

query rectangle and the minimum bounding rectangle of the data object. Figure 5.1

illustrates how k controls which data sets are returned from a search that uses the

match factor k. Suppose the sizes (areas) of the query rectangle Q, the minimum

50

Figure 5.1: The effect of match factor on the search result.

bounding rectangle of data sets Di and their overlap Oi = Di
⋂

Q (i = 1, 2, ..., 6) are

given in Table 5.1. The relation between the match factor k and the returned data

sets can be shown in Table 5.2.

Table 5.1: The areas of the rectangles in Figure 5.1.

(Oi = Di
⋂

Q)

i S(Q) S(Di) S(Oi) S(Oi)/S(Q) S(Oi)/S(Di) min{S(Oi)/S(Di),

S(Oi)/S(Q)}
1 10 1 1 0.1 1 0.1

2 10 16 10 1 0.625 0.625

3 10 4 2 0.2 0.5 0.2

4 10 1 0 0 0 0

5 10 7 5 0.5 0.714 0.5

6 10 3 0.25 0.025 0.083 0.025

Obviously, the smaller the match factor k is, the larger the number of found

items returned. The end-user (GSD Client) can control the number of found items

51

Table 5.2: The relation between the match factor k and the returned data sets.

Range of k Returned Data Sets

0 ≤ k ≤ 0.025 D1, D2, D3, D5, D6

0.025 < k ≤ 0.1 D1, D2, D3, D5

0.1 < k ≤ 0.2 D2, D3, D5

0.2 < k ≤ 0.5 D2, D5

0.5 < k ≤ 0.625 D2

k > 0.625 null

returned by setting the match factor k in the range (0, 1]. The returned search result

is a collection of metadata file names.

5.2 Hierarchy Indexing Scheme for Heterogeneous

Geospatial Databases

We developed a hierarchy search engine for our GSD system using the AVL-Tree

and R-Tree index structures described above. This section introduces this indexing

scheme.

5.2.1 Building Phases of the GSD Index

The building of the hierarchical search engine for heterogeneous geospatial data-

bases in this research involves the three phases shown in Figure 5.2.

Phase 1: Creating ISO XML Metadata files

In order to index and search the heterogeneous geospatial databases effectively,

we use metadata tools to create the corresponding geospatial metadata for each type

of the geospatial data. The ISO standard (see Chapter 3 for the ISO XML metadata

52

Figure 5.2: Architectural overview of the GSD index scheme.

standards) is necessary to meet “international” requirements since numerous organi-

zations plan to use the ISO metadata standard once it has been approved by the ISO

Standards Committee. In Teng’s work [43], a metadata tool called XMLMetadata-

Translator was developed to translate from CEONet FGDC XML metadata files to

ISO XML metadata files (ISO/TC 211 CD 2). In this research, we developed two

metadata tools called CLIMetadataBuilder and CCRSMetadataBuilder using Java to

create ISO XML metadata files (ISO/TC 211 CD 3) for the Canada Land Inventory

(CLI) vector data and the Canada Centre for Remote Sensing (CCRS) raster data.

53

For other types of geospatial data, a metadata tool to create the corresponding ISO

XML metadata files is required. For the purpose of indexing and searching the GSD

system, when creating the ISO XML metadata files, we emphasized the following

attribute entities of the ISO XML metadata files:

• geographicBox in the Identification Information section of ISO XML meta-

data files, and surrounded by the XML tag pair of <geoBox> and </geoBox>

which are nested within the XML tag pair of <DataIdent> and </DataIdent>

(see Appendices B and C). This attribute entity gives the minimum bounding

rectangle within which data is available. The information given in this entity is

used to build the R-Tree index of the geospatial objects.

• keyword in the Identification Information section of ISO XML metadata files,

and surrounded by the XML tag pair of <Keywords> and </Keywords> (see

Appendices B and C). This attribute entity gives the commonly used word(s)

or formalised word(s) or phrase(s) used to describe the subject of the data. The

information given in this entity is used to build the AVL-Tree index of the string

objects (keywords).

• onLine in the Distribution Information section of ISO XML metadata files, and

surrounded by the XML tag pair of <onLineRes> and </onLineRes> which are

nested within the XML tag pair of <Distrib> and </Distrib> (see Appendices

B and C). This attribute entity provides information about online sources from

which the resource can be obtained. The information given in this entity is used

54

to return search results to the client about the online linkage of the found data

resource.

For all other types of geospatial data service of the GSD system, one should

provide corresponding ISO XML metadata files which define the above three attribute

entities.

Phase 2: Creating or Updating R-Tree Index and AVL-Tree Index

After being created with appropriate metadata tools, the ISO XML metadata

files are used to build or update the bounding box R-Tree index with the information

given in the attribute entity geographicBox and the keywords AVL-Tree index with the

information given in the attribute entity keyword. To extract the required information

from the entity sections of ISO XML metadata files, one can use the XML parser

packages (e.g. Microsoft MSXML Parser 3.0 [26]) to parse entity values of XML

metadata file or read the corresponding lines from the ASCII XML metadata file.

In this research, we developed two Java programs called R-TreeBuilder and AVL-

TreeBuilder to create or update the BoundingBox R-Tree index and keywords AVL-

Tree index. First, for simplicity, we read the lines of <westBL> ... </westBL>,

<eastBL> ... </eastBL>, <southBL> ... </southBL> and <northBL> ...

</northBL> from the attribute entity section geographicBox of an ASCII ISO XML

metadata file, which represents a geospatial data set, and used a string tokenizer

“<>” to parse the values of the bounding rectangle of the data set. Using these

values of bounding rectangle and the name of the metadata file, we created an object

of the class DataObject and then inserted this object into the R-Tree. If several

55

metadata files have the same bounding rectangle, as mentioned above, then only

one object of the class DataObject is created and therefore there is only one R-Tree

leaf-node corresponding to these metadata files. Secondly, we read all the lines of

<keyword> ... </keyword>’s from the attribute entity section keyword of a ASCII

ISO XML metadata file, and used a string tokenizer “<>” to parse the string values

of keywords (including place names) of the data set. Using these string values and

the name of the metadata file, we created an object of the class binaryNode and then

inserted this object into the object of AVL-Tree. Finally, the objects of R-Tree index

and AVL-Tree index created from all the currently available metadata files are saved

as persistent files using Java object serialization techniques.

Phase 3: Composing the GSD Index

Using the objects of R-Tree index and AVL-Tree index created in Phase 2, we

developed a Java program called GSDIndexBuilder to compose the GSD index. The

GSDIndexBuilder consists of a GSDIndex class definition and a main program which

loads objects of the R-Tree index and AVL-Tree index from the persistent files, and

creates a GSDIndex object. The GSDIndex object then is also saved as a persistent

file using Java object serialization techniques. This allows it to be loaded by the query

servlet in the catalog server. The GSDIndex class implements the combined search

algorithm which supports the string keywords query and/or boundary BoundingBox

query with a match factor k. The details about the combined search algorithm are

described in the next section.

56

5.2.2 Architectural Overview and UML Diagram of the GSD
Index Scheme

The UML diagram of the Java classes structure for the hierarchy indexing scheme

is illustrated in Figure 5.3.

It is worth pointing out that this hierarchical GSDIndex is created in incremental

fashion. That is, if new geospatial data are available and expected to be provided

as the data service of the GSD system, we simply load the current objects of R-Tree

index and AVL-Tree index and enlarge them by inserting the corresponding bounding

rectangles and keywords of the new data following the steps in Phase 2. The updated

R-Tree index and AVL-Tree index are then used to create a new GSDIndex. This

incremental update capability enables the GSD system to add new geospatial data

sets automatically.

5.3 GSD Search Engine

In this research, we implemented the GSD search engine using Java servlet tech-

niques. Figure 5.4 below gives an architectural overview of the implementation of the

GSD search engine.

First, the GSD client sends a query request through the user interface of GSD

(initially developed by Xiao [49]) by using mouse selection and/or filling in the cor-

responding text fields. The query request consists of a query rectangle (western-

most/eastern-most longitudes and northern-most/southern-most latitudes in decimal

degrees) with a match factor k ∈ (0, 1] or a string of keywords to search or both.

57

Figure 5.3: A UML class diagram of the GSD index scheme.

58

Figure 5.4: GSD Search Architecture.

59

By default, the match factor k has the value of 0.5. The string of keywords search

supports the logical AND function to reduce the number of returned items. If there

is more than one keywords to search, the addition sign “+” is used to logical combine

the keywords in a string. For example, if one wants to find data about the Canada

land inventory in the Fredericton area, he or she just fills in the keywords text field

with “Canada land inventory + Fredericton”. The string search is not case-sensitive.

The “Begin Search” button is pressed to send the query request to the GSD search

engine which resides in the GSD Catalog server as a Java servlet called QueryServer.

Secondly, the servlet QueryServer receives the query request and decides if it is a

boundary search or a string search or a combination search. If it is the first time for

QueryServer to receive a query request, then the Query Servlet will load the GSDIn-

dex from a persistent file located at the GSD catalog server (servlet initialization).

Otherwise, the GSDIndex already resides in the memory of the catalog server. Then

the QueryServer passes the search parameters (query rectangle with match factor and

keywords string) to the boundary R-Tree index and/or keywords AVL-Tree index to

perform the corresponding search and obtain the search results (vectors containing

metadata file names as their elements), respectively.

Thirdly, if both the R-Tree search result and AVL-Tree search result are non-

empty, then the intersection (the common elements) of these two results is taken as

the GSD search result. If either of the R-Tree search result or AVL-Tree search result

is empty, the non-empty set is taken as the GSD search result. In this research, a

modified insertion method of AVL-Tree [43] is used to implement the intersection

60

algorithm (see Figure 5.5). The modified AVL-Tree insertion method puts the du-

plicates in the AVL-Tree’s class attribute member CommonV (a vector). When we

insert all the items of the two separate search results into an AVL-Tree, the intersec-

tion of the two search results is stored in the class attribute member CommonV. The

time complexity of this algorithm is O(N), where N is the size of the largest search

result set.

Figure 5.5: The AVL-Tree algorithm for GSDIndex intersection (from [43]).

Finally, if the GSD search result is empty, the QueryServer sends back to the client

a dynamic HTML document which shows a message of “No Match”. Otherwise, the

QueryServer will post-process the GSD search result before sending the client the

query result. For each item of the GSD search result (a name of a metadata file), the

post-processing performs the following tasks:

(a) Read the corresponding ISO XML metadata file;

(b) Extract the information about Data Type, The Title of Data Set, On-Line Link-

age (if applicable), Data Service Linkage (if applicable) using the XMLmetadata

tags from the metadata file;

61

(c) Using the above information, create a record for the dynamic HTML document.

Sometimes the number of found items in the GSD search result is quite large.

For example, if we search the keyword “Canada”, there are 716 items found. The

post-processing of all found items and the transfer of the entire dynamic HTML

document takes time and sometimes is not necessary. To increase the efficiency of

the query process and to reduce the network traffic, the post-processing is designed

in batch fashion, like other web search engines. That is, if the number of found

items in the GSD search result is larger than a certain predetermined integer, say 20,

then currently the QueryServer only post-processes the first 20 found items, sends

the corresponding created dynamic HTML document to the client, informs the client

how many items are found, and asks the client if he/she wants to see the next or

previous 20 items. Upon receiving the client’s further request of seeing the next or

previous 20 items, the QueryServer then post-processes the next or previous 20 items

and sends the result back to the client.

If the client issues a new query request, the QueryServer clears the vectors of

the R-Tree search result and the AVL-Tree search result, and performs a new query

process as described above.

62

Chapter 6

System Design and
Implementation

The Web-oriented Distributed Geospatial Data Warehouse system (WDGSDW)

developed in this research is a web-based information system and allows a user to

query geographical information of the world and access to the geospatial data services

the system provides using a web browser. This chapter describes the details of the

design and implementation of WDGSDW.

6.1 Architetural Overview of WDGSDW

This research aims to develop a web-based multi-tier client/server architectural

solution for the geographical data in distributed systems. The servers are distributed

around the world and provide individual geospatial data services by connecting to

some geospatial databases. The geospatial metadata is indexed by a catalog server.

The users can then issue queries to this catalog server to look for the geospatial data

services and/or resources using web browsers. These geospatial queries are fundamen-

tally different from traditional string queries issued by web browsers on a standard

63

search engine such as Lycos, Google or Yahoo [28]. Besides the traditional string

querying function, geospatial data queries usually include a spatial context, such as

“find all collections of geospatial data intersecting query window [(φ, λ)SW , (φ, λ)NE]”,

where φ = latitude, λ = longitude and SW and NE refer to the southwest and north-

east corners of the query window, and we call them geographical queries or boundary

queries. For geospatial information, the geographical queries usually find many re-

sults. To increase the search accuracy and the network traffic efficiency, some query

restrictions can be imposed to further limit the number of search results (e.g. by

date when the data was collected, by specific agency that produced the data, or by a

specific data type (e.g. satellite imagery)).

Figure 6.1: Architectural overview of WDGSDW.

Figure 6.1 illustrates the three-tier client/server overview architecture of our web-

based geospatial data integration system and Figure 6.2 shows the three-tier imple-

64

mentations of the geospatial query and data services.

Figure 6.2: Three-tier implementation of the geospatial query and data services.

6.2 The Client-tier Components

A user’s perception of the WDGSDW application is tied to the behaviour of the

application’s client tier. A client request is made to the server, and presents the

outcome of those requests to the user. Therefore, it is important to choose a client

configuration that best addresses the requirements of the application and empowers

the user with a rich interface. Web clients use HTTP or HTTPS as the transport

protocol and usually run inside a browser and use the services of the browser to render

content provided by the web server. A stand-alone web browser is the web client of

choice on the Internet. It is widely available, users are familiar with using it and

65

there are no issues with deployment. Applets are GUI components that typically

execute in a web browser and they are used to enhance the browsing interface so that

the web clients can use any Java-capable web browser to run the client Java-based

components.

In this research, we choose the web client configuration by combining stand-alone

web browsers and applets.

6.2.1 GSDWApplet for User Interface of Geospatial Queries

Xiao [49, Chapter 5] presents some requirements and implements the client applet,

GSDWApplet, to provide the user interface for the geospatial query user interface in

the client tier. We adapted Xiao’s implementation of the GSDWApplet by imposing

some further requirements on the applet to enhance the user interface.

Figure 6.3 shows the implementation of the GSDWApplet. Two subsystems are

designed and implemented in this research. The first subsystem, originally imple-

mented by Xiao [49], is an applet user interface which is designed as an information

system of the world that provides a user the information about the shorelines, polit-

ical borders, rivers, lakes, and islands in a lake of the whole world. This subsystem

also helps a user to locate the data sets that they are interested in and helps them

to define a geospatial query in the second subsystem. It enables a user to create and

submit a geospatial query combining latitude, longitude boundaries, match factor and

searching keyword(s). This subsystem provides the following services:

1. Shows a map on a view window.

66

Figure 6.3: User interface of the geospatial query and data services.

2. Allow a user to select different thematic layers of the map information, and

overlay any thematic layers.

3. Allow a user to zoom in the map shown in the view window by using mouse

drag or to zoom out on the map.

4. Provide a global view to help a user find the location on the world map of the

area which they select to zoom in or zoom out.

5. Allow a user to set a search region by filling-in the text fields of Westernmost,

Easternmost, Southernmost and Northernmost or dragging the mouse on the

map screen. The region search supports the query restriction by user’s choosing

an appropriate match factor k ∈ (0, 1], which represents a degree to which the

67

query region area overlaps the data boundaries. The larger the match factor is,

the more the search result returns. By default, the match factor is set as 0.5.

6. Allow a user to set the keyword(s) to search. The logical conjunction operation

AND for keyword search is supported to narrow the search results. The logical

AND operation of the keywords are represented as a addition sign “+”. For

example, if a user is interested in the datasets with keywords “Canada” and

“Land use”, he/she can type the keywords as “Canada + Land use” in the text

field.

7. Provide a reset service to allow a user to reset all geospatial query criteria. All

the text fields of Set Search Region and Set Keyword to Search will be set to

empty and the text field of the Set Match Factor will be set the default value,

0.5.

The services 1 – 4 above are implemented by Xiao [49] and Teng [43]. Services 5

and 6 allow specification of a combined geospatial query.

The second subsystem of GSDWApplet displays the geospatial query results and

allows a user to access the corresponding geospatial data service servers which provide

the services the user is interested in. This subsystem provides the following services:

1. Provide the user a command button “Begin Search” to start the query process

once a geospatial query is defined.

2. The datasets that meet the query criteria are returned and automatically dis-

played in a second frame within the same web page where the user interface

68

Figure 6.4: A sample of the GSDW search result frames.

applet is embedded. “No Match” is displayed in the frame if there is no geospa-

tial data set satisfying the query criteria.

3. Each record of the query result contains information about the type, title, on-

line service linkages (if applicable), and on-line linkage to the XML metadata

file of the geospatial data. A user can access the data services by clicking the

corresponding link.

4. The query result is displayed in a small-batch fashion. That is, if the number

of the records of the query result is larger than a predetermined integer, say

20, only display the current 20 records of the result. Then user can be able to

choose to display the next or previous 20 records if it is applicable.

Figure 6.4 shows a sample of the GSDW search result frames.

69

6.2.2 CLIMapApplet for CLI Data Visualization

In this research we use the Canada Land Inventory (CLI) data as one collection

of test data sets for actual vector data services of our system (refer to Chapter 4).

When a user sends a query about the CLI data service and gets the query result (e.g.,

see Figure 6.4), there is an on-line link called Show Map or Image. If the user clicks a

Show Map or Image link, the user is able to access the CLI data visualization service

automatically. On the client side, the actual vector data service is implemented via

an applet called CLIMapApplet.

Figure 6.5 and Figure 6.6 show the function of the applet which is invoked by

clicking the Show Map or Image link for a data set with title “Land Capability for

Forestry - F021G” and “Land Use - L021G”, respectively.

Figure 6.5: Visualization of the CLI data set “Land Capability for Forestry - F021G”.

70

Figure 6.6: Visualization of the CLI data set “Land Use - L021G”.

The CLIMapApplet receives a file name of the CLI data set as a parameter.

Then it communicates with the CLI data server and gets the corresponding CLI data.

The data transmission between applet and server can be implemented in two ways:

raw data transmission and serialized object transmission. In raw data transmission,

the server sends the raw data (ASCII Arc/Info file) through the network upon the

client’s request. The applet creates a CLIData object using the received data and

then renders the CLIData object. In serialized object transmission, the server reads

the CLI raw data from the CLI database upon the client’s request, creates a CLIData

object using that raw data and then sends the serialized object through the network.

The applet renders the received CLIData object directly. In this research, we used the

raw data transmission approach to achieve a higher data transmission rate, since the

71

experimental result in Chapter 7 shows that the raw data transmission can achieve

the best performance of 349 bytes/ms, about 23 times as fast as the serialized object

transmission.

The CLIMapApplet allows a user to perform the Zoom In, Zoom Out, Global View

and Refresh operations. Figure 6.7 shows the “Zoom In” result of the Figure 6.5.

Figure 6.7: Zoom In result of Figure 6.5.

In CLI data services, different data sets have different classifications and different

colouring schemes. For example, the CLI data sets of “Land Capability for Forestry”

have 7 classes using 8 colours, while the CLI data sets of “Land Use” have 13 classes

using 12 colours. The applet receives a file name of a CLI data set as a parameter,

then goes to the CLI data server to get the vector data (in Arc/Export (.E00) format),

create an object of CLIData on-the-fly, and finally use this CLIData object to visualize

72

the CLI data by selecting the colour scheme dynamically. The user can view the

corresponding class descriptions in a new web browser window by clicking the on-line

link “See Class Description” (see Figure 6.8).

Figure 6.8: The window of class descriptions
obtained by clicking on “See Class Description” link in Figure 6.7.

6.2.3 TiffyApplet for Viewing CCRS Imagery Data

In this research we also use Canada Centre for Remote Sensing (CCRS) imagery

data as test data sets for actual imagery data services of our system. On the client

side, the imagery data service is implemented via applet TiffyApplet.

TiffyApplet is a demo applet within the TIFFY Toolkit for Java 2.0.2 that was

produced by a Germany company Art&Computer Hackbarth. The TIFFY Toolkit

allows Java developers to develop their own intra-/internet applets and applications

73

with a compact (only about 115KB code) component for fast viewing, image process-

ing and printing capabilities for images. The TiffyApplet of the TIFFY Toolkit for

Java demonstrates how to implement a modern, platform-independent viewer with

printing capabilities for the following formats: TIFF, BMP, GIF, JPG and option-

ally PNG. It can be used on any system for which a Java-capable browser and/or a

Java Virtual Machine is available (e.g. Windows 95/98/NT, MacOS, OS/2, Solaris,

LINUX). We downloaded the free TIFFY Toolkit for Java 2.0.2 from [2], and embed-

ded the TiffyApplet into our system as one of the client components to visualize the

CCRS imagery data. Since it supports multiple image formats, the TiffyApplet can

also be used to provide other geospatial imagery raster data services.

Figure 6.9: Visualization of the Radarsat (mosaic) imagery data Canada Momosaic.

When a user issues a query about the CCRS imagery data service and gets the

74

Figure 6.10: Zoom In result of the Figure 6.9.

query result, there is an on-line link called Show Map or Image. If the user clicks

this link, then the user is able to access the CCRS imagery data service by invoking

the TiffyApplet and passing to it the corresponding name of the data set. The server

transfers the imagery data to the applet and then the applet can view the imagery data

and perform some operations. Figure 6.9 shows the function of the TiffyApplet for

the Radarsat (mosaic) imagery data Canada Momosaic (GeoTiff format). Figure 6.10

and Figure 6.11 show the results of two Zoom In operations for Figure 6.9.

6.2.4 Communications between Client-tier Components

As illustrated in Figure 6.2, there exist communications between the pair of ap-

plets: GSDWApplet–CLIMapApplet and GSDWApplet–TiffyApplet. Usually, ap-

plets can communicate with each other except for the following security restriction:

75

Figure 6.11: Zoom In result of the Figure 6.10.

many browsers require that the applets originate from the same server. Many browsers

further require that the applets originate from the same directory on the server (the

same code base). The Java API requires that the applets be running on the same

page, in the same browser window.

To overcome these limitations, we used a middle-bridge to implement the com-

munications between GSDWApplet–CLIMapApplet and GSDWApplet–TiffyApplet.

The two middle-bridges used in this research are two servlets – ShowCLIMap and

ShowCCRSMap. The GSDWApplet sends a geospatial query to the query server and

gets the result back. The result contains an entry which gives the filename of the

data set interested. The GSDWApplet then issues a request to the servlet Show-

CLIMap or ShowCCRSMap with the filename as a parameter. Upon receiving the

76

request, the servlet ShowCLIMap or ShowCCRSMap creates a dynamic HTML doc-

ument in which the CLIMapApplet or TiffyApplet is embedded with the filename as

a parameter. Figure 6.12 illustrates this process.

Figure 6.12: Communications between Client-tier Components.

6.3 Contextual Data Server

The middle tier serves as the application server or web server. The components

of the middle tier are the kernel of the system, since they provide all the business

logic of the system. In this section and the following sections, we describe the design

and implementation of the middle-tier components: Contextual Data Server, Query

Server, CLI Data Server and CCRS Data Server.

As illustrated in Figure 6.2, the Contextual Data Server communicates with the

GSDWApplet and handles the proper display of the map which is made of the GSHHS

and GMT contextual data. The Contextual Data Server works with GSDWApplet

77

together to provide a user interface for creating or defining geospatial queries.

The Contextual Data Server can be implemented using different distributed com-

puting architectures and techniques. For the purpose of comparison, three types of

implementations are considered in this research. They are described below.

6.3.1 Servlet-based Contextual Data Server

Xiao [49] implemented the Contextual Data Server based on the Java servlet

techniques. In this research, we used Xiao’s Thin-client via Fat-server architectural

implementation as that of the Servlet-based Contextual Data Server. This architec-

tural implementation is illustrated in Figure 6.13. Xiao [49] has the full details of the

implementation.

Figure 6.13: Architecture of the Contextual Data Server (from [49]).

6.3.2 CORBA-based Contextual Data Server

Xiao [49] implemented the Contextual Data Server based on the CORBA tech-

niques using VisiBroker for Java 3.0 and investigated whether the CORBA perfor-

mance will be improved or not if the server side program is written in C++. In

78

this research, we adapted Xiao’s implementation using VisiBroker for Java 4.1 and

re-implemented it using VisiBroker for C++ 4.1.

VisiBroker for Java and C++ [20] provides a complete CORBA 2.3 ORB runtime

and supporting development environment for building, deploying, and managing dis-

tributed Java applications that are open, flexible, and inter-operable. Objects built

with VisiBroker for Java are easily accessed by Web-based applications that commu-

nicate using OMG’s Internet Inter-ORB Protocol (IIOP) standard for communication

between distributed objects through the Internet or through local intranets.

There are a number of steps for developing a CORBA-based application using

VisiBroker for Java or C++. Figure 6.14 illustrates the CORBA application devel-

opment paradigms for Java or C++.

Defining Object Interfaces

The first step in creating an application with VisiBroker is to specify all of the ob-

jects and their interfaces using the OMG’s Interface Definition Language (IDL). Then

the IDL can be mapped to Java and C++ programming languages in this research.

Figure 6.15 shows the IDL interface for the distributed object called DataProvider

[49].

Generating Client Stubs and Server Servants

Once we finish defining the IDL interface, we are ready to compile it. VisiBroker

for Java (C++) comes with an IDL compiler, idl2java (idl2cpp), which is used to

map IDL definitions into Java (C++) declarations and statements. From the Dat-

aProvider.idl file, the idl2java compiler generates 7 .java files and the idl2cpp compiler

79

Figure 6.14: Development process with VisiBroker (from [20]).

Figure 6.15: The IDL interface for the distributed object DataProvider.

80

Table 6.1: Generated .java Files by idl2java Compiler.

Filename Description

DataProvider.java The DataProvider interface declaration.

DataProviderHelper.java Declares a class defining helpful utility methods.

DataProviderStub.java Stub code for the object on client side.

DataProviderHolder.java Declares a class providing a holder for the object.

DataProviderOperation.java Declares the method signatures.

DataProviderPOA.java POA servant code (implementation-base code).

DataProviderPOATie.java Class implementing the object using tie mechanism.

Table 6.2: Generated C++ Files by idl2cpp Compiler.

Filename Description

DataProvider c.hh The definition for the DataProvider class.

DataProvider c.cpp The internal stub routines used by the client.

DataProvider s.hh The definition for the DataProviderPOA servant classes.

DataProvider s.cpp The internal routines used by the server.

generates 4 C++ files. These generated files are listed in Table 6.2 and Table 6.1,

respectively.

Implementing the Client

Many of the classes used in implementing the CORBA version applet client (GS-

DWCorbaAppletClient.java) are contained in the GSDWCORBA package generated

by the idl2java compiler. Figure 6.16 shows part of the java code of the GSDWCor-

baAppletClient class.

81

Figure 6.16: Part of the Java code of GSDWCorbaAppletClient class.

Implementing the Distributed Object

The implementation class DataProviderImpl of the distributed object DataProvider

should inherit from the server skeleton class, i.e. the POA (Portable Object Adapter)

servant class DataProviderPOA.java for the Java version or include the header file

DataProvider s.hh for the C++ version. We also need to write code to implement

the methods defined in the IDL file DataProvider.idl.

Implementing the Server

Just as with the client, many of the classes used in implementing the GSDW

server are generated by the idl2java or idl2cpp compiler. Figure 6.17 and Figure 6.18

show the java code and C++ code for the GSDW Server class, respectively.

Starting the Server

Once we finish implementing the client and server programs, we can compile them

82

Figure 6.17: Java code for the GSDW server class.

83

Figure 6.18: C++ code for the GSDW server class.

84

to create the class files or executable.

Before attempting to run VisiBroker client programs or server implementations,

you must first start the Smart Agent, which provides a fault-tolerant object location

service and runtime licensing of VisiBroker applications, on at least one host in your

local network using the command

prompt> osagent (For MS Windows) or prompt> osagent & (for Unix)

Once the Smart Agent is running, we can start the server program as a background

process. To start the Java version server, we use the vbj command, which invokes the

JVM and offers other special services such as setting paths:

prompt> start vbj CORBAJavaServer (For MS Windows) or

prompt> vbj CORBAJavaServer& (for Unix).

To start the C++ version server, we use the command

prompt> start CORBACPPServer (For MS Windows) or

prompt> CORBACPPServer & (for Unix).

6.3.3 RMI-based Contextual Data Server

Like any other application, a distributed application built using Java RMI is made

up of interfaces and classes. The interfaces define methods, and the classes implement

the methods defined in the interfaces. Building a RMI-based application involves the

following steps.

6.3.3.1 Defining the remote interfaces

A remote interface specifies the methods that can be invoked remotely by a client.

85

It provides the connection between the client and the server. Objects that have

methods that can be called across virtual machines are remote objects. The remote

interface for the GSDW server we are using is shown in Figure 6.19. It must extend

the interface java.rmi.Remote and be declared public. The interface DataManager

contains two methods: generateData and getData; both return a string and must

declare java.rmi.RemoteException in its throws clause.

Figure 6.19: The Remote interface DataManager

6.3.3.2 Implementing the remote interfaces

In general the implementation class of a remote interface should at least

(a) Declare the remote interfaces being implemented:

public class DataManagerImpl extends UnicastRemoteObject
implements DataManager

This declaration states that the DataManagerImpl class implements the DataMan-

ager remote interface (and therefore defines a remote object) and extends the class

UnicastRemoteObject in the package java.rmi.server.

(b) Define the constructor for the remote object:

86

public The DataManagerImpl() throws RemoteException { super(); }

(c) Provide an implementation for each remote method in the remote interfaces.

There are two remote methods called generateData and getData specified in the re-

mote interfaces DataManager. These two methods are implemented in the class

DataManagerImpl.

6.3.3.3 Implementing the server

The server needs to create and to install the remote objects. This procedure is

included in a separate class GSDWRMIServer, which is shown in Figure 6.20.

Figure 6.20: The java code for the GSDWRMIServer class.

(a) Create and install a security manager. The security manager determines

whether downloaded code has access to the local file system or can perform any other

privileged operations.

87

(b) Create one instances of a remote object:

DataManager dm = new DataManagerImpl();

Note that the type of the variable dm is DataManager, not DataManagerImpl. This

declaration emphasizes that the interface available to clients is the DataManager

interface and its methods, not the DataManagerImpl class and its methods.

(c) Register the remote objects with the RMI remote object registry. The java.rmi.

Naming interface is used as a front-end API for binding, or registering, and looking

up remote objects in the registry. The registry can be shared by all servers running on

a host, or an individual server process may create and use its own registry, if desired.

The implementations can be complied using the javac compiler to create the class

files DataManagerImpl.class and GSDWRMIServer.class.

6.3.3.4 Implementing the client

The client GSDWRMIApplet program performs these steps:

(a) Install an RMI security manager.

(b) Look up a DataManager remote object.

(c) Obtains data using the object.

(d) Draw the map on the screen.

Figure 6.21 shows part of the java code of the GSDWRMIApplet class.

6.3.3.5 Generating stubs and skeletons:

Once all the code is written, we are ready to generate the stubs and skeletons. A

skeleton for a remote object is a server-side entity containing a method that dispatches

88

Figure 6.21: Part of the Java code of GSDWCorbaAppletClient class

calls to the remote object implementation. A stub is a proxy for a remote object that

is responsible for forwarding method invocations on remote objects to the server where

the actual remote object implementation resides. The stubs and skeletons are used

to connect the client and server together.

RMI stubs and skeletons are generated easily using the rmic compiler which takes

the class name DataManagerImpl as an argument:

prompt> rmic DataManagerImpl

This command will generate the two files DataManagerImpl Skel.class and DataMan-

agerImpl Stub.class. The DataManagerImpl Skel.class file is a server skeleton, and

89

the DataManagerImpl Stub.class file is a client proxy or stub.

6.3.3.6 Starting the RMI registry and running the server

The RMI registry is a naming service that acts as a manager for RMI remote

object reference and allows a client to obtain a reference to a remote object. Therefore,

before the server and the client are run, the RMI registry must be started. The RMI

registry can be started in a Window environment as follows:

prompt> start rmiregistry

This will, by default, run the RMI registry and start it listening on the port 1099.

Once the RMI registry is running and everything else is in place, we can fire up our

server as follows:

prompt> start java GSDWRMIServer

6.4 Query Server

In the Internet world, the need to deliver dynamically generated content in a

maintainable fashion is extremely important. Common Gateway Interface (CGI),

Servlets and JavaServer Page (JSP) are the three most commonly used techniques.

In this research, we choose Servlets to implement the middle-tier components. The

Query Server, CLI Data Server and CCRS Data Server are all servlets. Servlets can

handle complex logic processing, give access to enterprise data and are a portable

(platform and Web server independent) means of delivering dynamic content.

90

6.4.1 Implementation Scheme

Figure 6.22 and Figure 6.23 show an activity diagram and a sequence diagram to

illustrate how the query server works.

Figure 6.22: The activity diagram of the query server.

A browser sends a search request to the web server. When the web server receives

the first search request, the query servlet is activated through an init call. During the

servlet’s initialization, the object SearchEngine of GSDIndex is loaded from a persis-

tent file. The SearchEngine has three overloaded search methods: search(keyword:

String), search(box:BoundingBox, k:double) and search(keyword:String,

box:BoundingBox, k:double). They can be used to perform the keyword search

91

Figure 6.23: The sequence diagram of the query server.

only, bounding box search only and combined search, respectively. After the web

server delivers the search request to the servlet, the servlets begins to process the

request. The public synchronized servlet method doGet is overridden to handle the

request. First, the servlet determines the search type of the request and asks the

SearchEngine to perform a corresponding search operation. The search result is a

collection of XML metadata file names. Next, for each entity of the search result (a

name of XML metadata file), the servlet reads the XML metadata file and extracts

some information about the geospatial data set, such as the data resource, distribution

and linkages of on-line services. Finally, the servlet creates a dynamic HTML page

using the extracted information from the XML metadata file and hands it to the web

server. The web server then delivers the dynamic HTML page to the browser through

the network.

92

6.4.2 Applet–Servlet Communication

In this implementation, we have the GSDWApplet establish an HTTP connection

to the query servlet on the web server machine. The HTTP connection allows the

applet to take advantage of the java.net.URL and java.net.URLConnection classes to

manage the communication channel. The GSDWApplet provides query information

using an URL-encoded query string, which is formed as a list of key/value pairs, e.g.

name=John. In the query string, key/value pairs are separated by “&“ characters,

spaces are converted to “+” characters, and special characters are converted to their

hexadecimal equivalents. For example, if a user asks for the image data in a region

with bounding box [West, East; South, North] = [229, 227; 45, 46], the query string

looks like “Keyword=image+data&West=229&East=227&South=45&North=46”. In

this research, the URL-encoded query string is created by calling method toEncoded-

String() defined in the GSDWApplet class. This method takes an object of the Java

class java.util.Properties as an argument and converts the properties list to a URL-

encoded query string. To get the response from the query servlet, the GSDWApplet

calls the getAppletContext() and showDocument() methods. The java code for the

Applet–Servlet communication is shown in Figure 6.24.

6.5 Geospatial Data Servers

In this section we describe the implementation schemes for the two actual geospa-

tial data servers – CLI data server and CCRS data server.

93

Figure 6.24: The java code for the Applet–Servlet communication.

6.5.1 ShowCLIMap Servlet and CLI Data Server

As described in section 6.2, the communications between GSDWApplet and CLIMa-

pApplet is implemented using a servlet. ShowCLIMap and the CLIMapApplet com-

municates with the CLIDataServer to get the CLI data. The ShowCLIMap servlet is

a middle-bridge and acts as a distributed CLI data manager. Figure 6.25 illustrates

the implementation scheme for ShowCLIMap Servlet and CLIDataServer.

The GSDWApplet sends a request with a parameter “fileName”, the file name

of the CLI data set, to the ShowCLIMap servlet. The ShowCLIMap servlet deter-

mines which distributed CLI data server provides the service for that CLI data set

and creates a dynamic HTML document which contains the CLIMapApplet. The

parameter “fileName” is passed to the embedded applet CLIMapApplet. Then the

applet CLIMapApplet sends a request to the servlet CLIDataServer with the query

94

Figure 6.25: The implementation scheme of the CLI data server.

string of filename. Upon receiving the request from the embedded applet CLIMa-

pApplet, the servlet CLIDataServer accesses the distributed CLI database to retrieve

the CLI data.

There are two possible architectures to implement the applet CLIMapApplet

and the servlet CLIDataServer: Fat-Client via Thin-Server and Thin-Client via Fat-

Server. In the Thin-Client via Fat-Server architecture, the servlet CLIDataServer

gets the raw CLI data from the CLI database and pre-processes it to create a Java

serialized object of CLIData (See Chapter 4 for the CLI data structure) and then

transfers the Java object to the CLIMapApplet over the network. In the Fat-Client

via Thin-Server architecture, the servlet CLIDataServer simply reads the raw CLI

95

data from the CLI database and sends it to the client. It is the CLIMapApplet’s

responsibility to create the CLIData object which is used to display the CLI map.

The Fat-Client via Thin-Server architecture is employed in this research, since test-

ing showed that the access times for the Thin-Client via Fat-Server architecture is

significantly slower (see Chapter 7).

6.5.2 CCRS Data Server

The implementation scheme of the CCRS data server is similar to that of CLI

data server and is illustrated in Figure 6.26. The ShowCCRSMap servlet also acts as

a distributed CCRS data manager. The implementation details are omitted.

Figure 6.26: The implementation scheme of the CCRS data server.

96

Chapter 7

Testing and Evaluation

In this chapter, an explanation is provided for the tests designed and conducted to

evaluate the implementation of the Web-oriented Distributed Geospatial Data system.

7.1 The Test Environment

7.1.1 Hardware and Software Settings

The Web-oriented Distributed Geospatial Data System was tested by using a

Catalog Server, three geospatial data servers and a browser-based client (with three

applets) in the Internet Computing Lab at UNB. The hardware settings of the test

environment on the server side are listed in Table 7.1 and the software settings for

testing our system are summarized in Table 7.2.

In the test, we chose Microsoft Internet Explorer 5.0 as the main client browser

since it can display XML files. We also tested Netscape Navigator 4.6 and found it

worked well except for displaying XML files. No browser plug-ins are required for the

test.

Although many web server vendors support Java Servlets, BEA WebLogic Server

97

Table 7.1: The hardware settings of the test environment.

Host Role Make/Model CPU Memory Operating

Name Name /LAN System

butter Catalog Dell PIII 512 MB Windows 2000

Server XPS T750r 750 MHz 100Mbps Professional

butter CLI Data Dell PIII 512 MB Windows 2000

Server(west) XPS T750r 750 MHz 100Mbps Professional

toast CLI Data Dell PIII 512 MB Windows NT

Server(east) XPS T750r 750 MHz 100Mbps 4.0 Workstation

toast CCRS Data Dell PIII 512 MB Windows NT

Server XPS T750r 750 MHz 100Mbps 4.0 Workstation

Table 7.2: The software settings of the test environment.

Role Name Software Used

CORBA-based Contextual Data Server VisiBroker 4.1 for Java & C++

RMI-based Contextual Data Server JDK1.2.2

Servlet-based Contextual Data Server BEA WebLogic Server 6.0

Query, CLIData and CCRSData Server BEA WebLogic Server 6.0

Client Browser Microsoft Internet Explorer 5.0

6.0 (free download trial version) was chosen as the web server in this research. The

BEA WebLogic Server is a popular application server for hosting E-business applica-

tions. It is powerful, reliable, flexible and integrated. BEA [2001a, 2001b] has more

details about the features of BEA WebLogic Server 6.0 and its configuration for web

service and servlets. In this research, the BEA WebLogic Server 6.0 was installed in

two machines butter and toast in the Internet Computing Lab (ITB213) at UNB .

98

7.1.2 Distributing the Test Data Sets

Four types of data sets including GSHHS and GMT contextual data, CEONet

XMLmetadata, CLI vector data (Arc/Info Export (.E00) format), and CCRS imagery

data (GEOTIFF and JEPG format) were used for testing (see Chapter 4). The latter

three types of data sets are used to create a total of 8188 ISO XML metadata files

(total size of 42.12 MB). All of these ISO metadata files, together with the GSHHS

and GMT contextual data files, are stored in the same machine hosting the catalog

server, i.e. the machine butter in Internet Lab. The CLI vector data sets contains

a total of 1690 files. They are divided into two parts, as shown in Figure 7.1. The

Eastern Canada data set contains 648 files that are stored in on the machine toast in

the Internet Lab. The Western Canada data set contains 942 files that are stored on

machine butter in the Internet Lab. The CCRS imagery data are stored on machine

toast in the Internet Lab.

7.2 Performance Test Results and Analysis

This section is dedicated to test results and analysis of the system. The perfor-

mance evaluation is based on the criteria of process times.

7.2.1 Test Results of Building and Loading the GSDIndex

The GSDIndex (Search Engine) plays a key role in the implementation of our sys-

tem. The process of building the GSDIndex involves two steps: (a) creating boundary

and string AVL-Tree from ISO XML metadata files, and (b) building the GSDIndex.

99

Figure 7.1: Distribution of the CLI data sets.

The test results of building the GSDIndex from the 8163 ISO XML metadata files for

CEONet metadata and CLI vector data are listed in Tables 7.3 to Table 7.5.

Table 7.3: The test results for building the R-Tree and AVL-Tree for CEONet data.

Building Time Saving Time Total Size Height

(ms) (ms) (KB)

R-Tree (M=50) 143,597 320 284 3

AVL-Tree 207,811 2,914 3,211 16

First, we build a new R-Tree (order M = 50) and a new AVL-Tree using the ISO

XML metadata files for CEONet data and save them. Then, we load the created

R-Tree and AVL-Tree, and insert bounding boxes and keywords from the ISO XML

metadata files for CLI data and save them. The tests were conducted on butter with

JDK1.2.2. The time (in ms) is the average time obtained from 10 time tests.

100

Table 7.4: The test results for building the R-Tree and AVL-Tree for CLI data.

Loading Time Building Time Saving Time Size Height

(ms) (ms) (ms) (KB)

R-Tree 1,042 13,089 320 322 3

(M=50)

AVL-Tree 13,389 25,277 5,178 3,600 16

Table 7.5: The test results (time in ms) for building the GSDIndex.

R-Tree AVL-Tree Build and Total Size Servlet

Load Time Load Time Save Time (KB) Load Time

1,012 16,554 6,399 3,921 7,710

In Table 7.5, the Servlet Loading Time (in ms) is the time that the Query servlet

requires to load the GSDIndex (saved as a serialized Java object in a persistent file)

during the servlet initialization. This may slow down the first query when the Query

servlet is initialized by the BEA WebLogic Server.

7.2.2 Test Results of the Contextual Data Server

The performance of the four kinds of contextual data servers (servlet-based,

CORBA-based (Java), CORBA-based (C++) and RMI-based) were tested in the

same experimental environment. Both client and server programs were run in the

same machine butter. A total of 16 crude resolution contextual data sets were gen-

erated by overlaying different thematic layers and used as the test data. Table 7.6

summarizes the selected test data sets.

101

Table 7.6: The summary of the selected contextual test data sets.

No. Thematic Layers Size (KB) No. Thematic Layers Size (KB)

1 SL 217 9 SL+RV+LK 436

2 SL+PB 265 10 SL+RV+IL 260

3 SL+RV 255 11 SL+LK+IL 403

4 SL+LK 398 12 SL+PB+RV+LK 484

5 SL+IL 222 13 SL+PB+RV+IL 308

6 SL+PB+RV 303 14 SL+PB+LK+IL 451

7 SL+PB+LK 446 15 SL+RV+LK+IL 441

8 SL+PB+IL 270 16 SL+PB+RV+LK+IL 489

(SL: ShoreLines; PB: Political Borders; RV: Rivers; LK: Lakes; IL: Islands in Lakes)

During the test, the running time, which started from the client sending a request

to the server to the end of drawing a map, was recorded in milliseconds by the client

program. Table 7.7 summarizes the average times obtained from 10 tests for the four

kinds of contextual data servers. Figure 7.2 shows the curve of the average transaction

time changing with the size of data set in the 4 types of contextual data servers. The

ratio of the pair-comparison is given in Table 7.8.

It is shown in Figure 7.2 and Table 7.8 that the performance of the servlet-

based server is better than the others by a factor of approximately 2 to 2.5, and the

others have almost the same performance. On average, the servlet-based contextual

data server achieves a data transmission rate of 85 bytes/ms . That is because Java

Servlet uses a simpler architecture to transfer data from the server to the client. When

the Java Applet needs to communicate with the Java Servlet, it’s the programmer’s

responsibility to find what data communication protocol should be used and at what

102

Table 7.7: The test results (time in ms) for the contextual data servers.

Dataset CORBA CORBA RMI Servlet Time/KB

No. (Java) (C++) for Servlet

1 5,027 4,676 4,897 2,464 11

2 7,110 6,630 6,994 3,344 13

3 6,780 6,239 6,199 3,198 13

4 10,245 8,692 9,324 4,456 11

5 5,508 4,737 7107 2,623 12

6 9,223 8,212 8,272 3,866 13

7 12,608 11,567 10,779 5,176 12

8 7,781 6,669 4,717 3,334 12

9 12,659 11,116 9,832 4,887 11

10 7,210 6,690 6,379 3,075 12

11 10,386 9,254 9,012 4,208 11

12 15,312 13,300 12,929 5,789 12

13 9,554 8,242 7,712 4,146 13

14 13,459 11,226 10,836 5,088 11

15 12,468 11,076 10,945 5,017 11

16 15,672 13,419 13,011 5,868 12

103

Table 7.8: The ratio of the pair-comparison.

Dataset No. J/C J/R C/R J/S C/S R/S

1 1.08 1.03 0.95 2.04 1.90 1.99

2 1.16 1.17 1.01 2.10 1.81 1.80

3 1.09 1.09 1.01 2.12 1.95 1.94

4 1.08 1.13 1.05 2.34 2.18 2.07

5 1.07 1.02 0.95 2.13 1.98 2.09

6 1.17 1.09 0.94 2.33 2.00 2.13

7 1.12 1.11 0.99 2.39 2.12 2.14

8 1.16 1.24 1.07 2.30 1.99 1.86

9 1.18 1.10 0.93 2.30 1.95 2.09

10 1.12 1.15 1.03 2.47 2.20 2.14

11 1.14 1.29 1.13 2.59 2.27 2.01

12 1.13 1.14 1.01 2.49 2.21 2.18

13 1.09 1.17 1.07 2.44 2.23 2.08

14 1.20 1.24 1.04 2.65 2.21 2.13

15 1.15 1.18 1.03 2.65 2.30 2.23

16 1.17 1.20 1.03 2.67 2.29 2.22

Average 1.14 1.15 1.01 2.36 2.15 2.07

(J: CORBA(Java); C: CORBA(C++); R: RMI; S: Servlet)

104

Figure 7.2: Performance comparison of the 4 types of contextual data servers

URL address the client can find the servlet program. In the others, a programmer

doesn’t have to worry how to connect to the server and where to find the server

program; all this work is done by the name service of the ORB system. That is, the

osagent Smart Agent of VisiBroker for the CORBA approaches and rmiregistry for

the RMI approach were used to find a distributed object. The process of finding out

where objects reside requires substantial time.

Based on this analysis, the three sub-systems (query, CLI data service, and CCRS

data service) are all implemented using servlet techniques.

7.2.3 Test Results of the Query Server

The query server cooperates with the contextual data server to perform the func-

105

Table 7.9: The search time for keywords only.

Trial Keywords # of Items Search Time (ms)

No. Found Time (ms) per item

1 earth science 6,503 4,927 0.76

2 oceans 1,516 90 0.06

3 canada land inventory 1,232 60 0.05

4 land use 339 10 0.03

(Test time: 11:00–11:30 AM, March 26, 2001)

Table 7.10: The search time for bounding boxes only.
(Match factor k = 0.01.)

Trial Bounding # of Items Search Time (ms)

No. Boxes Found Time (ms) per item

1 [0, 360; -90, 90] 3,914 2,473 0.63

2 [0, 180; -90, 90] 2,340 270 0.12

3 [180, 360; -90, 90] 3,508 952 0.27

4 [225, 300; 40, 60] 4,128 1,342 0.33

(Test time: 12:00–12:30 PM, March 26, 2001)

tion of catalog server. The query server was installed in the butter machine and it

was tested by using the Internet Explorer 5.0 web browser running on the same ma-

chine. The search time is the time that it takes the client to get query results after

the request is sent out. Search times for querying for keywords only, querying for

bounding boxes only, and combined querying for keywords and bounding boxes are

listed in Table 7.9 to Table 7.11. Table 7.12 shows the effect of the match factor k on

the search results and the effect is depicted in Figure 7.3. The results in these tables

are the average of 10 separate runs for each trial.

106

Table 7.11: The search time for combining keywords and bounding boxes.
(Match factor k = 0.01.)

Bounding Keywords # of Items Search Time Time (ms)

Boxes Found (ms) per item

[0, 360;−90, 90] earth science 3,794 7,751 2.04

[0, 360;−90, 90] oceans 1,196 2,754 2.30

[0, 360;−90, 90] land use 80 2,694 33.68

[0, 180;−90, 90] earth science 2,265 5,278 2.33

[0, 180;−90, 90] oceans 842 411 0.49

[0, 180;−90, 90] land use 46 324 7.04

[225, 300, 40, 60] earth science 2,878 6,499 2.26

[225, 300, 40, 60] oceans 753 1,452 1.93

[225, 300, 40, 60] land use 246 1,352 5.50

(Test time: 12:30–1:30 PM, March 26, 2001)

Table 7.9 and Table 7.10 show that key word searches can take up to 4.9 seconds

compared to bounding box searches times of less than 2.5 seconds. The per item search

times of bounding box searches range from 0.12 to 0.63, whereas that of keyword

searches vary from 0.03 to 0.76. Some keyword searches take much more time than

others, e.g. “earth science” via “land use”, since there are so many data sets contain

the keywords “earth science”. The search time for all bounding boxes searches does

not vary significantly. Table 7.11 indicates that the combined search time is basically

the sum of the two separate search times.

Table 7.12 shows that there is a significant effect of the match factor k on the

search result. For a fixed bounding box [200, 350; 20, 84], the variation of match factor

from 0.90 to 0.50 results in a small change of the number of found items from 0 to

107

Table 7.12: The effect of the match factor k on the search results.
(Bounding Box = [200, 350; 20, 84])

k # of Time Time (ms) k # of Time Time (ms)

Items (ms) per item Items (ms) per item

0.90 0 0 0 0.20 781 140 0.179

0.80 12 10 0.833 0.10 2476 640 0.258

0.70 22 10 0.455 0.01 3040 980 0.322

0.60 56 10 0.179 0.001 3537 1422 0.402

0.50 203 40 0.197 0.0001 5102 2774 0.544

0.40 291 50 0.172 0.00001 5111 2845 0.557

0.30 485 80 0.165 10−8 5673 3135 0.553

Figure 7.3: The effect of match factor k on the number of returned items.

108

Figure 7.4: The effect of match factor k on the logarithm (base 10) of the number of
returned items.

203, whereas the variation of match factor from 0.50 to 0.1 results in a large change

of the number of found items from 203 to 2476. Furthermore, when the match factor

changes from 0.1 to 0.0, the number of found items changes from 2476 to 5673. The

per item search times (ms) falls in the range of [0.15, 0.85]. The effect of the match

factor k on the number of returned items is depicted in Figure 7.3. Figure 7.4 shows

the relation between the logarithm (base 10) of the number of returned items and

match factor k ∈ [0.001, 0.80]. It seems from Figure 7.4 that there is a trend of

N = 103.6/103k for k ∈ [0.001, 0.80], where N is the number of returned items.

109

Table 7.13: Test results of the CLI data service.

No. Data Size Time (ms) Time/KB Time(ms) for Time/KB

(KB) for FC/TS for FC/TS TC/FS for TC/FS

1 5,495 16,143 2.3 409,800 74.6

2 3,018 9,904 3.3 210,426 69.7

3 1,845 5,491 3.0 132,314 71.7

4 253 691 2.7 56,729 224.6

5 19 330 17.3 7,210 379.5

7.2.4 Test Results of the Geospatial Data Services

In this research, the ShowCLIMap applet cooperates with the CLIData Server

to provide the CLI data service. We tested the performance of two architectural

implementations of the CLI data service: Fat-Client via Thin Server (FC/TS) and

Thin-Client via Fat Server (TC/FS) using three data sets which have different sizes.

All the tests are conducted in the same machine butter. The test results are given

in Table 7.13. The running time is the average time (10 time tests) measured from

the client clicking a link to the CLI data service to the end of drawing a map on the

screen (time in ms). The result shows that the running times for the Thin-Client via

Fat-Server architecture is very large, whereas the performance of the Fat-Client via

Thin-Server architecture is reasonable. For Fat-Client via Thin-Server architecture,

the data transmission achieves the best performance of 349 bytes/ms. The best

data transmission rate for Fat-Client via Thin-Server architecture is only about 15

bytes/ms.

110

Chapter 8

Conclusions and Future Work

In this research a distributed geospatial data integration system capable of per-

forming geospatial queries and providing geospatial data services on multiple geospa-

tial data servers has been designed, implemented and tested. In the following sections,

the insights that have been gained through the work accomplished in this research

and some possible further enhancements to the current implementation are discussed.

8.1 Conclusions

This research extended the previous work by Xiao [49] and Teng [43]. The Web-

oriented Distributed Geospatial Data Warehouse (WDGSDW) system implemented

in this research has added the capability to deliver distributed geospatial data in

response to a query on the catalog server. In addition, a match factor k was added

to the search engine to allow more flexible control of the query.

CORBA, RMI and Servlets techniques were tested to build the middle-tier com-

ponent for the contextual data service. The Java Servlets technique was chosen to

implement the whole system based on finding the CORBA and RMI techniques being

2 to 2.5 times slower, on average, compared to the Java servlet. Performance of 85

111

bytes/ms was observed, on average, for the servlet-based contextual data server.

The system is capable of querying multiple homogenous and heterogeneous geospa-

tial databases in a geospatial query. The search engine is the kernel of the Web-

oriented Distributed Geospatial Data Warehouse (WDGSDW) system. The search

engine is implemented by combining the AVL-Tree for text search (keywords) and

R-Tree for geographical search (bounding boxes) supporting a variable match factor

restriction. The search engine is easy to build and update by providing appropriate

ISO XML metadata files for any new geospatial data files. Experimental results from

Chapter 7 indicate that keyword searches can take up to 4.9 seconds compared to

bounding box searches times of less than 2.5 seconds on a catalogue containing 8188

entries. A combined keyword and bounding box search requires an average of 1.2

times more than the individual searches. The keyword search is dependent on the

percentage of datasets containing the keywords. The search time (in ms per found

item) ranges from 0.49 to 33.68, a 69 to 1 ratio.

It is also observed that there is a significant effect of the match factor k on the

search result. For a fixed bounding box [200, 350; 20, 84], when the match factor

changes from 0.90 to 10−8, the number of found items changes from 4 to 5673 and

the per item search times (ms) falls in the range of [0.15, 0.85]. There is also a trend

of N = 103.6/103k for k ∈ [0.001, 0.80], where N is the number of returned items.

Two actual geospatial data services, CLI data and CCRS data, were implemented

in this research. The implementation provides a three-tier architecture to support a

flexible, expandable, and most importantly, server-side transparent realization. The

Fat-client via Thin-server architecture for CLI data service achieves the best per-

112

formance of 349 bytes/ms, about 23 times as fast as the Thin-client via Fat-server

architecture.

8.2 Future Work

The search engine is the key component of the implemented Web-oriented Dis-

tributed Geospatial Data Warehouse (WDGSDW) system and the query performance

is determined mainly by the keyword searching which requires an exact string match.

We expect that the search performance can be improved if we develop an appropriate

data structure capable of supporting efficient geospatial queries (combined text and

geographical queries). Tries [11] is one of the promising candidate index techniques

which can used to build the search engine, since it can efficiently index spatial data

as well as text data supporting approximate string match. Therefore, further work of

this research may start by investigating if the trie data structure can compete with

the combined AVL-Tree and R-Tree technique.

Another enhancement to the current system is to implement a sophisticated tool

meeting the OpenGIS standard which can than provide geospatial data services for a

wide variety of geospatial data formats.

The usability of the system can further be improved by developing a “geospatial

web crawler” which runs around the entire web collecting information about geospatial

data servers over the Internet and creating corresponding ISO XML metadata files.

These metadata files then can be stored in the catalog server and used to up-date the

search engine in a continuous, unattended fashion.

113

References

[1] Adelson-Velskii, G. M. and Landis, E. M. (1962), “An Algorithm for the Orga-

nization of Infromation”, Soviet Math. Doklady 3 (1962), 1259–1263.

[2] Art&Computer Hackbarth (2001), Homepage: http://www.tiffy.de/, 2001.

[3] BEA Inc. (2001a), “Introduction to BEA WebLogic Server”, March 2001, avail-

able from http://e-docs.bea.com/wls/docs60/intro/index.html.

[4] BEA Inc. (2001b), “Developing WebLogic Server Applications”, March 2001,

available from http://e-docs.bea.com/wls/docs60/programming/index.html.

[5] Box, J. et al (2000), “Simple Object Access Protocol (SOAP) 1.1”, W3C Note

08 May 2000, available from http://www.w3.org/TR/SOAP/.

[6] The Canada Centre for Remote Sensing (2001), Images and Data Services, March

2001, available from http://www.ccrs.nrcan.gc.ca/ccrs/imgserv/seeimge.html.

[7] Chaudhuri, S and Dayal, U. (1997), “An overview of data warehousing and

OLAP technology”, ACM SIGMOD Record, 26: 65-74, 1997.

[8] Edwards, J. (1999), 3-Tier Server/Client at Work (Rev.Ed), John Wiley & Sons,

New York, 1999.

[9] Farley, J. (1998), Java Distributed Computing, O’Reilly, CA, 1998.

[10] FGDC (1998), Federal Geographic Data Committee, “Content Standard for Digi-

tal Geospatial Metadata (CSDGMVersion 2)”, Document FGDC-STD-001-1998,

available from http://www.fgdc.gov/metadata/contstan.html

[11] Fredkin, E. H. (1960), “Trie memory”, Coummunications of the ACM, 3(9):

490-499, 1960.

[12] GEOIDE (2001), “Designing the technological foundations of geospatial

decision-making with the World Wide Web (DEC#2)”, 2001, available from

http://www.geoide.ulaval.ca/Public/an/ProgrammesRD/Projets/Project2.html

114

[13] GeoGratis (2001), GeoGratis homepage, http://geogratis.cgdi.gc.ca/frames.html,

2001.

[14] Guttman, A. (1984), “R-trees: A Dynamic Index Structure for Spatial Search-

ing”, SIGMOD Record, Vol. 14 No. 2, 1984, pp. 47-57.

[15] Han, J., Lakshmanan, L. V. S. and Ng, R. T. (1999), “ Constraint-Based, Mul-

tidimensional Data Mining”, IEEE Computer, vol. 32, no. 8, pp. 46-50, 1999.

[16] Harold, E. R. (1997), Java Networking Programming, O’Reilly, CA, 1997.

[17] Henning, M., and Vinoski, S. (1999), Advanced CORBA Programming with

C++, Addison Wesley Longman, Inc., Reading, Massachusetts, USA, p. 16,

1999.

[18] Hunters, J. (1998), Java Servlet Programming, O’Reilly, CA, 1998.

[19] Inmon, W. H. (1992), Building the Data Warehouse. John Wiley & Sons, New

York, 1992.

[20] Inprise Corporation (2000), VisiBroker for Java/C++: Programmer’s Guide

(version4.1), Scotts Valley, CA, 2000.

[21] Lake, R. and Cuthbert, A. (Eds.) (2000), “Geography Markup Language

(GML)” v.1.0, OpenGIS Consortium Recommendation Paper, 2000, available

from http://www.opengis.org/techno/specs/00-029/GML.html.

[22] ISO/TC 211 /WG3 Editing committee 19115 (2001a), “ISO/TC 211 Geographic

information/Geomatics CD 19115.3, Geographic information - Metadata”,

March 2000, available from http://www.statkart.no/isotc211/dokreg10.htm

[N930], pp. 16–85.

[23] ISO/TC 211/WG3 Editing committee 19115 (2001b), “ISO/TC 211

Geographic information/Geomatics Final text of CD 19115 Geo-

graphic information - Metadata”, December 2000, available from

http://www.statkart.no/isotc211/dokreg11.htm [N1024], pp.17–86.

[24] Mahmud, Q.H. (2000), Distributed Programming with JAVA, Greenwich, CT :

Manning, 2000.

[25] McDonnell, R. and Kemp, K. (1995), International GIS Dictionary, Cambridge:

GeoInformation International, 1995.

115

[26] Microsoft (2001), “MSXML Parser 3.0 Release”, 2001, available from

http://msdn.microsoft.com/downloads/default.asp.

[27] Morissette, D. (2000), “Arc/Info Export (E00) Format Analysis”, April 2000,

available from http://www.geocities.com/ vmushinskiy/fformats/files/e00.txt .

[28] Nickerson, B. G., Teng, Y. and Xiao, J. (2000), “Web-based query processing

for geospatial data using XML and CORBA”, Proceedings of GEOIDE 2000

Conference, Calgary, Alberta, May 24-25, 2000.

[29] City of Oakland Website (2001), http://www.oaklandnet.com/maproom/.

[30] OpenGIS Consortium Inc. (1999a), “The OpenGIS Abstract Specification,

Topic 0: Abstract Specification Overview (Version 4)”, 1999, available from

http://www.opengis.org/techno/specs.htm.

[31] OpenGIS Consortium Inc. (1999b), “OpenGIS Simple Feature Specification for

SQL”, 1999, available from http://www.opengis.org/techno/specs.htm.

[32] OpenGIS Consortium Inc. (2000), “ OpenGIS Web Map Server Interface Imple-

mentation Specification (Version. 1.0.0)”, May 2000, available by contacting the

OGC at revisions@opengis.org.

[33] OpenGIS Consortium Inc. (2001), Homepage, http://www.opengis.org/.

[34] Orfali, R., Harkey, D. and Edwards, J. (1996), The Essential Distributed Objects

Survival Guide, John Wiley & Sons, New York, 1996.

[35] Ken Orr (2001), “Data Warehousing Technology ”, 2001, available from

http://www.kenorrinst.com/dwpaper.html.

[36] Phyne, T. M. (1997), “Open Spatial Data Standards for the Information High-

way”, US EPA Scientific Visualization Centre, Research Triangle Park, North

Carolina, 1997, available from http://www.gepg.psu.edu/ica/icavis/rhyne.html.

[37] The San Diego regional SanGIS (2001), Homepage, http://www.sangis.org/.

[38] Schussel, G. (1996), “Client/Server Past, Present, and Future”, 1996, available

from http://news.dci.com/geos/dbsejava.htm.

[39] Soy (2000), K. S., “Examination of Web-Based Geographic Information Systems

Seminar in Information Policy: Digital Government – LIS 390.2 – Spring 2000”,

available from http://www.gslis.utexas.edu/ ssoy/federal/evalgis.htm.

116

[40] Sun Microsystems Inc. (2001a), “Using CORBA and Java IDL”, 2001, available

from http://java.sun.com/products/jdk/1.2/docs/guide/idl/jidlUsingCORBA.html

[41] Sun Microsystems Inc. (2001b), “Java servlet API:

The Power Behind the Server”, 20001, available from

http://java.sun.com/products/servlet/index.html.

[42] Sun Microsystems Inc. (2001c), “Fundamentals of RMI”, 2001, available from

http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html.

[43] Teng, Y. (2000), “Use of XML for query processing in Web-based geospatial

data warehouses”, Faculty of Computer Science Technical Report TR00-135,

University of New Brunswick, June 2000.

[44] Vinoski, S. (1997), “CORBA: Integrating Diverse Applications Within Distrib-

uted Heterogeneous Environments”, IEEE Communications Magazine, Vol. 14,

No. 2, 1997.

[45] Weiss, M. A. (1996), Algorithms, Data Structures, and Problem Solving with

C++, Addison-Wesley, 1996.

[46] World Wide Web Consortium (2000), Extensible Markup Language (XML)

1.0 (Second Edition), W3C Recommendation 6 October 2000, available from

http://www.w3.org/TR/2000/REC-xml-20001006 (HTML file).

[47] Wessel, P. and W. H. F. Smith (1996), “A Global, Self-Consistent, Hierarchical,

High-Resolution Shoreline Data Base”, J. Geophys. Res., 101, 8741-8743, 1996;

data available from ftp://gmt.soest.hawaii.edu/pub/wessel/gshhs.

[48] Paul Wessel and Walter H. F. Smith (2000), ”The Generic Mapping Tools Ver-

sion 3.3.6 Technical Reference and Cookbook”, University of Hawai’i at Manoa,

School of Ocean and Earth Science and Technology, October 2000, available from

http://imina.soest.hawaii.edu/gmt/gmt/doc/html/GMT Docs/GMT Docs.html

[49] Xiao, J. (2000), “WWW Access to Geospatial Data”, Faculty of Computer Sci-

ence Technical Report TR00-133, University of New Brunswick, May 2000.

117

Vita

Candidate’s full name: Lushu Li

Univeristy attended: PhD (Management Science - Operations Research), 1998

Southeast University

Nanjing, P. R. China

MSc (Applied Mathematicsand Control Theory), 1993

Nanjing University of Science and Technology

Nanjing, P. R. China

Publications:

1. Lushu Li and K. K. Lai (2000), “Fuzzy dynamic programming approach to

hybrid multi-objective multi-stage decision-making problem”, Int. J. Fuzzy Sets

and Systems 117(1), 13-25.

2. Lushu Li and Z. H. Sheng (2000), “The structural property and weak conver-

gence of fuzzy orthogonal measures, Int. J. Fuzzy Sets and Systems 112 (2),

271-276.

3. L.S. Li and K. K. Lai (1999), “A fuzzy approach to multiple objective trans-

portation problem”, Int. J. Computers & Operations Research 27 (1), 43–57.

4. K. K. Lai and Lushu Li (1999), “Fuzzy dynamic optimization approach to

multi-objective resource allocation problem”, European J. Operational Research

117(2), 293–309.

5. K. K. Lai, J. Xue and Lushu Li (1999), “Project Selection Modeling Using Fuzzy

Multicriteria Evaluation and Fuzzy Boolean Programming”, Int J. Intelligent

Control and Systems 3(1), 19-38.

