Counting the Number of Equivalent Binary
Resolution Proofs

Joseph D. Horton*

Faculty of Computer Science, University of New Brunswick
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
Jjdh@unb.ca, http://www.cs.unb.ca

Abstract. A binary resolution proof is represented by a binary resolu-
tion tree (brt) with clauses at the nodes and resolutions being performed
at the internal nodes. A rotation in a brt can be performed on two adja-
cent internal nodes if the result of reversing the order of the resolutions
does not affect the clause recorded at the node closer to the root. Two
brt’s are said to be rotationally equivalent if one can be obtained from
the other by a sequence of rotations. Let ¢(7") be the number of brt’s
rotationally equivalent to T'. It is shown that if 7' has n resolutions, all
on distinct atoms, and m merges or factors between literals, then

C(T) Z 22n—@(mlog(n))

Moreover ¢(T') can be as large as n!/(m + 1).
A dynamic programming polynomial-time algorithm is also given to cal-
culate ¢(T) if T' has no merges or factors.

1 Introduction

Binary resolution [10] is a commonly used technique in automated reasoning.
There are many different ways to represent a binary resolution proof. The first
method used was just to make a list of the clauses needed in whatever one is
trying to prove, and record with each clause whether it was an input clause, or
was produced by resolving two previous clauses in the list. However, the order
in which many of the resolutions steps are performed is not important, so many
effectively 1dentical proofs would be considered to be different if a proof were
only considered to be a list.

A better method is to consider a proof to be a binary tree, where the child
of two nodes is the result of resolving the clauses at the parent nodes. Here
the binary resolution tree (brt) of [12,8] is used to represent such proofs. Many
resolution-based automated reasoners construct proofs that can be effectively
represented by brts.

Binary resolution sometimes is associative, in that for some clauses A, B and
D, (A *c B) % D = A *. (B *. D). Resolution on an atom p is denoted by the
operation #,. Thus it is possible to change the order of the resolutions in the

* Research supported by a grant from NSERC of Canada



brt and produce essentially equivalent proofs. The clauses produced along the
way are different, so that as lists of clauses, the proofs could look quite different.
This associative redundancy of binary resolution is studied in [12,8], altho it is
not called that in those papers.

Binary resolution has commutative redundancy also, which is much easier
to handle. Because A x, B = B %. A for all clauses A and B which can be
resolved, resolution procedures only perform one of these resolutions. One easy
way to avoid the duplication is to order the clauses into a “waiting” list, select
each one at a time as a “given” clause, resolve the given clause with any clause
which previously had been a given clause, and put the resulting clauses into the
“waiting” list. In this way, each pair of clauses is chosen only once. Assuming that
clause A is chosen before clause B, the pair {A, B} is resolved only when A is
the chosen clause, and not when B is the chosen clause. If a resolution procedure
does not avoid this commutative redundancy, then each brt with n resolutions
could be constructed in 2”7 different ways. By deleting identical clauses using
forward subsumption, such a procedure would only produce each brt in two
ways.

Associative redundancy is more difficult to deal with than commutative re-
dundancy mainly because resolution always commutes but does not always as-
sociate. If two of the clauses have a common literal, and 1t is one of the resolved
literals, then in one order of the resolutions it can be merged and then resolved
away, but with the other order it is left in the result. For example:

(ace . bte) *. de = abd

but
ace *. (bce . de) = abde

The application of associativity requires two adjacent nodes to be rotated in
a brt, reversing the order of the resolutions, and still produce the same resulting
clause at the lower node. This rotation is similar to the rotation performed
in AVL-trees when rebalancing [1]. A general example is shown in Figure 1.
Two brts are said to be rotationally equivalent if one can be obtained from the
other by a sequence of these rotations. Rotation equivalent captures precisely
the associative redundancy of binary resolution.

An automated binary resolution procedure generally produces multiple brts
that are rotationally equivalent to each other. Once produced, the extra brts are
typically removed by subsumption. The rank/activity restriction of [8] combined
with a fair resolution procedure (any allowed resolution is eventually performed)
constructs exactly one brt from each equivalence class. Variants of resolution
that order the literals with a clause, such as ordered resolution [9,4] or lock
resolution [2], also avoid constructing equivalent brts, but these procedures do
not produce brts in all equivalence clauses. Thus the rank/activity restriction
avoids precisely the associative redundancy of resolution.

How big are the equivalence classes of rotationally equivalent brts? In this
paper it is shown that f a brt contains n internal nodes and m mergings of
literals, then the number of brts rotationally equivalent to a given brt is ¢(T) >



A cva B —cvevp B —cvevB D —evd
Ccievavp D —evd Acvo E e:—cvpvo
E e:avpBv C c:avBvd

F F

Fig. 1. A binary tree rotation

92n=@(mlog(n)) “and can be as great as n!/(m + 1). Deleting identical clauses

allows one to construct a number of equivalent brts equal to the number of
nodes which can be rotated to the root of the brt. In clause tree terms, this
is the number of internal atom nodes which are not internal to a merge path.
Supposing that m is not too big, then the r/a restriction saves a factor of between
about 4 and n on the number of resolutions performed.

As only the structure of the proofs are important in this paper, it can be
assumed for the most part that all atoms are ground atoms. We can identify
the nodes of the brt by the literal from the instances of the literals from the
input clauses resolved at the node instead of the clause produced. Also one can
consider in any given proof that each resolution is done on a different atom from
all the other resolution in the proofs. These assumptions prevent consideration of
improvements to the proof by inserting different factoring operations, or different
merges. Indeed factors are often called merges thruout this paper. However the
results of this paper apply to first order logic wihtout these restrictions just as
well as to propositional logic.

The second section gives background concerning brts and clause trees [7].
Clause trees are another method of considering binary resolution proofs, and
are essential for understanding the results in this paper. Section 3 considers
the extreme cases for the number of equivalent brts when there are no merges
of literals in the proofs. Section 4 gives a dynamic programming algorithm to
calculate the exact number of brts equivalent to a given brt without any merges.
Section 5 considers the extreme cases when the proof is allowed to have merges.
Section 6 lists some open questions.

2 Background

The reader is assumed to be familiar with the standard notions of binary reso-
lution [3]. Resolution proofs can be represented by the following type of proof
tree.



Definition 1. A binary resolution tree, or brt on a set 8 of input clauses is a
binary tree where each node N in the tree is labeled by a clause label, denoted
cl(N). The clause label of a leaf node is an instance of a clause in S, and the
clause label of a non-leaf is the resolvent of the clause label of its parents. A
non-leaf node is also labeled by an atom label, al(N), equal to the atom resolved
upon. The clause label of the root is called the vesult of the tree, result(T). A
sub-brt of a brt T s a brt which consists of a node of T together with all its
ancestor nodes, induced edges and their labels.

abc  abd
NS
be e abcd cd
N/ N/
e:bf d:bc
NS
b:cf

Fig. 2. A binary resolution tree and a corresponding clause tree

For the brt in Figure 2, & = {{b, e}, {e, f},{a b,c},{a,b,d},{c,d}}. The
result of the brt is the clause {¢, f}. The order of the parents of a node is not
defined, thereby avoiding commutative redundancy.

Merging of literals during the construction of a proof is only done immediately
after a resolution, at the first possible opportunity. This differs from [12] where
factoring was delayed as long as possible instead. Either way there is no need
to have nodes for factoring, as it always appears as part of the resolution step.
Forcing factoring to be done early agrees better with what some automated
reasoning procedures do. To avoid some trivial paths, in both brts and in the
clause trees that are defined below, we assume that all general factors of the
input clauses are available.

The resolution mapping p at an internal node in a brt maps each resolved
literal to the atom resolved upon, and maps each unresolved literal ¢ to the
occurrence of ¢ in the resolvent, where @ is the product of the unifications used in
the resolution and any required factoring operations. Let the nodes (Ng, ..., Ny)
occur in a brt T such that Ny is a leaf whose clause label contains a literal a, and
for each ¢ = 1,...,n, N;_1 is a parent of N;. Let p; be the resolution mapping
from the parents of N; to N;. Also let p; ... pap1a occur in el(N;), so that a is
not resolved away at any N;. Suppose N, either is the root of T', or has a child
N such that p, ...p1a is resolved upon. Then P = (Ny,..., N,) is a history
path for a. The history path is said to close at N if N exists. However N is not
considered to be on the history path. The resolution mapping tells what happens



to each literal in a given resolution step, and the history path tells what happens
to it from the leaf where it is introduced to the node where it is resolved away.

Operation 1 (Edge Rotation) Let T' be a binary resolution tree with an edge
(C, E) between internal nodes such that C is the parent of E and C has two
parents A and B. Further, suppose that no history path through A closes at F.
Then the result of a rotation on this edge is the binary resolution tree T" defined
by resolving ¢l(B) and cl(D) on al(F) giving cl(FE) in T’ and then resolving
cl(E) with cl(A) on al(C) giving cl(C) in T'. Any history path closed at C' in T
is closed at C' in T"; similarly any history path closed at E in T is closed at E in
T'. Also, the child of E in T, if it exists, is the child of C in T’. (See Figure 1).

A rotation may introduce tautologies to clause labels of internal nodes. For
instance, if al(C') occurs in ¢l(D) then ¢/(F) in T' may be tautological. However
the clause label of the root is not changed.

Lemma 1. Giwen a binary resolution tree T with an wnternal node C' and its
child E, the rotation of edge (C, E) generates a new binary resolution tree and
cl(C) = el(E) up to variable renaming.

A rotation changes the order of two resolutions in the tree. Rotations are
invertible; after a rotation, no history path through D closes at C', so another
rotation at (E,C) can be done, which generates the original tree again. We say
that two binary resolution trees are rotation equivalent if one can be generated
from the other by a sequence of rotations. Rotation equivalence is an equivalence
relation.

In a brt, the atom being resolved upon labels the nodes instead of the edges
as is usually done in proof trees [3,6]. In the equivalent proofs studied in this
paper, what is constant between them is what instances of input literals merge
and resolve together. Which history paths close together is the important thing.
Rotations do not affect what literal instances merge and resolve.

It is possible that a brt has two sub-brts which are isomorphic, in that the
subtrees are isomorphic, and the atom and clause labels of corresponding nodes
are the same. A theorem prover could thus have two different nodes with a
common parent, and the proof found would become an acyclic directed graph
(dag) instead of a tree.

Binary resolution proofs can also be represented by an entirely different tree
structure, the clause tree, introduced in [7]. The definition of clause tree in
this paper differs from that in [7]. There the definition is procedural, in that
operations that construct clause trees are given. Here the definition is structural.
Conceptually, a clause tree represents a clause together with a proof from a set of
input clauses. An input clause is represented by a complete bipartite graph K ,
or claw, in which the leaves correspond to the atoms of the literals of the clause,
modified by the sign on the edge connecting the leaf to the central vertex. Such
a clause tree is said to be elementary. A new clause tree can be built by resolving
two complementary literals from different elementary clause trees. Identify the
two leaves, so the resolved literal becomes an internal node of the tree, thereby



building a clause tree with leaves still corresponding to the other literals of the
clauses. Thus leaves of the clause tree correspond to the literals of the clause. If
there are two leaves with unifiable or identical literals, this corresponds to two
unifiable or identical literals occurring in the clause. When two such literals are
factored or merged, one of the literals is removed from the clause. To represent
this action in the clause tree, a merge path from the leaf corresponding to the
removed literal to the other leaf corresponding to the now identical literal.

Definition 2 (Clause Tree). T = (N, E, L, M) is a clause tree on a set S of
mput clauses if:

1. (N, E) as a graph is an unrooted tree.

2. L is a labeling of the nodes and edges of the tree. L : NUE — SUAU{+,—},
where A is the set of instances of atoms in S. Each node s labeled either by
a clause i S and called a clause node, or by an atom in A and called an
atom node. Each edge is labeled + or —.

3. No atom node 1s incident with two edges labeled the same.

4. Each edge e = {a, ¢} joins an atom node a and a clause node c; it is associ-
ated with the literal L(e) L(a).

5. For each clause node ¢, {L(a,c)L(a)|[{a,c} € E} is an instance of L(c). A
path (vo,e1,v1,...,€en,0,) where 0 < ¢ < n, v; € N and e; € E where
1 < j < nisamerge path if L(e1)L(vo) = L(en)L(vy). Path (vo, ..., v,)
precedes (<) path (wq, ..., W) if v, = w; for somei=1,...;m—1.

6. M s the set of merge paths called chosen merge paths such that:
(a) the tail of each is a leaf (called a closed leaf),
(b) the tails are all distinct and different from the heads, and
(¢) the relation < on M can be extended to a partial order, that is, does not

contain a cycle.

An open leaf 1s an atom node leaf that is not the tail of any chosen merge
path. The digjunction of the literals at the open leaves of a clause tree T is called
the clause of T, ¢l(T), and is identical to the clause at the root of a corresponding
brt.

Some relationships between brts and clause trees are discussed in [12]. Among
them are: internal nodes of brts correspond to atom nodes of the clause tree;
leaves of a brt correspond to clause nodes of the clause tree; a history path in
a brt corresponds to an edge of a clause tree. See Figure 2 to see a clause tree
that corresponds to a brt.

In this paper we disallow merge paths of length two since they correspond to
factoring an input clause. Any most general factor of an input clause is allowed
to form an elementary clause tree instead.

When a merge path is chosen between two open leaves, there is no reason to
choose one direction over the other, unless one specifies some arbitrary heuristic.
The corresponding proofs remain exactly the same. One can define a path reversal
operation which changes the clause tree except that one merge path runs in the
opposite direction, which may cause some other merge paths to be modified
somewhat. Then two clause trees are said to be reversal equivalent if there is



a sequence of path reversals which transform one tree to the other. Perhaps a
better alternative, developed in [11] in a slightly different context and put into
general clause trees in [7], is the foothold restriction, which can be used to make
a arbitrary choice that is consistant regardless of the order of the resolutions.

Since both clause trees and brts are simply ways to write down resolution
proofs, they are also equivalent to each other. The rotational equivalence classes
of brts are in one-to-one correspondence with the reversal equivalence classes of
clause trees [12].

3 Proofs without merges

A resolution proof that does not contain any step in which two literals merge, or
factor, corresponds to a clause tree with no chosen merge paths. The resolutions
can be done in any order. Such proofs have been considered in several ways. Given
a set S of clauses, it is known that the following statements are equivalent: S
has an input refutation; S has a unit refutation; the set of factors of S’ contains a
relative Horn subset which is unsatisfiable. These are equivalent to S admitting
a clause tree without merge paths [7]. If there are n resolutions, then there
are n! different proofs, written as a sequence of resolutions, for which every
resolution is relevant to the proof. The clause tree corresponding to these proofs is
unique, since there are no merge paths to be reversed. Many brts, all rotationally
equivalent, can correspond to these proofs, as a sequence of resolutions, yet each
brt may correspond to many of these proofs.

Given a brt T with n atom nodes, let ¢(T') be the number of brt’s rotationally
equivalent to 7. Similarly define the number of brt’s corresponding to a given
clause tree T to be ¢(T).

Theorem 2. IfT is a mergeless brt with n internal nodes, so that it corresponds
to a mergeless clause tree T, then

Cp <¢(T) < n!

where Cp, = ((2n)!/(n!(n + 1)Y) is the n'* Catalan number. These bounds are
tight.

Proof. Once the order of the n resolutions is determined, so is the brt. There-
fore ¢(T) < n!, the number of possible orderings of the resolutions. If T is
a(n extended) claw K, 1, then T itself is a linear binary tree, with every resolu-
tion being between an input unit clause and the “central” clause. The resolutions
can be done in any order, and so the number of equivalent brts is n!. See Figure
3.

If 7 is a path, see Figure 4, then the corresponding brt 7' can be shaped like
any binary tree with n internal nodes. Let f(n) be the number of brts correspond-
ing to a clause tree which is a path, containing n internal atom nodes. Assume
that the k'” internal atom node corresponds to the last resolution. Removing
the atom node breaks the path into two clause trees which are paths themselves,



Fig.3. A clause tree maximizing the number of equivalent brts, with shape of corre-
sponding brt.

O—0—O0— 1o —= ) O———=o O O

Fig.4. A clause tree minimizing the number of equivalent brts.

one with £ — 1 internal atom nodes and the other with n — k. The number of
brts then is f(k — 1)f(n — k). Summing over all the choices of internal atom
nodes, any of which can be the last resolution, f(n) = >, _, f(k — 1)f(n — k).
The solution to this recurrence is well-known to be f(n) = C,,. Therefore the
lower bound is tight.

Lastly we prove the lower bound. Assume that ¢(7*) > Cj if T* has k < n
internal atom nodes. Let the internal atom nodes of T be {aj, as,...,a,}. For
each atom node a;, let the subtrees determined by breaking 7 at the atom node
a; be T; and T/. Assume that 7; has no more internal atom nodes than 7/,
and that this number is b;. Thus the number of internal atom nodes in 7, is
n—1—0b; >b;. Then

o(T) > > Co,Coios, = £(T) (1)
i=1
The function f defined in equation (1) is a lower bound on ¢(7) which can be
calculated from the shape of 7. We show that if 7 has a node of degree 3, then
we can find another clause tree with n internal atom nodes for which this lower
bound f is smaller.

Note that
Ce (2K (k=D (2k)(2k—1) _
G R @l T kg T WkxD ()

This ratio increases with k. But the product CyC),_1_; decreases as k increases
for a fixed n, as long as 2k < n, since

Cro1Cpp (4=6/(n—k+1))
CrCnoior  (4=6/(k+1)) > 1 (3)

Tt follows that the product CjCp_1_ is minimized when k = [(n — 1)/2].




Suppose that 7 has a node ¢ of degree 3 or more. Rename the atom nodes of
T such that a; and ay are the two atom nodes adjacent to ¢ which make b; and
by are as small as possible, with b1 < ba. Then by is the number of internal atom
nodes in the subtree obtained by deleting a; from 7 and does not contain the
clause node c. Similarly by is the number of internal atom nodes in the subtree
obtained by deleting as from 7 and does not contain the clause node ¢. Thus
b1§b2<n—2—b1—b2.

o.d

D/ % b\al %
T T

Fig. 5. The construction to show the lower bound

We modify 7 to make a new clause tree 7’ by detaching a; from ¢, and
re-attaching it to the other clause node d adjacent to as. See Figure 5. Let b be
defined for 7' in the same way as b; is defined for 7. Thus b} is the number of
internal atom nodes in the smaller clause tree obtained by deleting a; from 7.
Then b; = b} except for i = 2. For this case b, = min{by +ba+1,n—2—by1—bs} >
bs. By equation (3), f(7') < f(T). Thus f is minimized only for clause trees
with all nodes of degree less than 3, that is, only for paths. Since for a path the
value of f from equation (1) is exactly C,, = > C;Cp_1_; , the lower bound is
proved.O

4 A polynomial algorithm to count mergeless proofs

Given a mergeless clause tree 7, it is possible to count in polynomial time the
exact number of corresponding brts. The algorithm uses dynamic programming.
Given a specific clause node ¢ of T, let f(c,h,T) be the number of brt’s cor-
responding to 7 in which the leaf node corresponding to ¢ occurs at height h.
Once f(e, h, T) is known for any specific ¢ and all h = 1,...,n, one can calculate
e(T) by summing f(e, h,T) over all values for h. If T contains zero atom nodes

and one clause node ¢, then f(c,0,7) =1 and f(c,k,7) =0 for k > 0.



Fig. 6. Breaking the clause tree

Next we need a recursive formula for f(c,h, 7). Let a be an atom node
adjacent to ¢, with d being the other clause node adjacent to a. Deleting a, and
its incident edges, breaks 7 into two smaller clause trees 77 containing ¢ and 75
containing d. See Figure (6).

; height j
e s Kol
%)\ /C%n7 ng O

a0 ng :>
/
oy

N

D

B
h-k-1 resolutions
from 82

e
NN

Ong

/
~

Onz Or]1 i)

(o9)
[EEN

(o9)
N

Fig. 7. Breaking the brt

Consider any brt B corresponding to 7. Let the leaf [, corresponding to
¢ be at height h in B. Consider the path from this leaf to the root. It must
contain the node at which the resolution corresponding to a is done. Suppose
that it contains k& nodes at which other resolutions from 77 are done. Then it has
h — k — 1 nodes at which resolutions from 75 are done, excluding the resolution
corresponding to a. If one were to remove the nodes corresponding to atom nodes

10



of 73 and reconnect this path from I, to the root, then the result would be a brt
By corresponding to 7y in which the leaf corresponding to ¢ would be at height
k. Similarly removing the nodes correponding to atom nodes of 71 would leave
a brt By corresponding to T3, with the leaf corresponding to d being at height
j > h—k—1.See Figure 7. Looking at the path from /. to the root in B again,
the nodes from B; can be inserted anywhere on this path, as long as they are
below the node corresponding to @. The number of ways in which the nodes from
71 can be placed is (Z) Summing over the possible values of k&,

h—1

fent) = X () ) sy X i)

k=0 J>h—k-1

The values of f can now be calculated using dynamic programming. Con-
sider the clause tree to be a tree rooted at some clause node, complete with
child/parent and ancestor/descendant relationships. Suppose that we evaluate
f for each subtree rooted at any clause node ¢. To evaluate f for ¢, first all the
values of f for all immediate descendant clause nodes must be known, for the
subtree rooted at that clause node. Then the recursion formula must be applied
for each of the atom node children of ¢, so that the formula, for each possible
value of h, is applied up to degree(c) times at ¢. The recursion formula must be
applied once for each internal atom node of T, for values of h up to the number
of internal atom nodes below the parent clause node of the atom node in the
rooted T .

The internal summation for 75 can be found for all the values of A in linear
time. Thus the values of f can be calculated in time quadratic in h for any given
c and T, assuming that the values of F' are known for the subtrees and the nodes
¢ and d. The set of recursions need to be calculated once for each atom node
of 7. Hence the whole calculation can be done in time cubic in the number of
atom nodes.

5 Proofs with merges

If the proof includes merging or factoring of literals, then the above arguments
are not valid. Each merge requires that some of the resolutions be performed be-
fore the resolution of the merged literal. Hence the number of equivalent proofs
is smaller for the same number of resolution steps. A single merge can decrease
the number of equivalent brt’s by as much as a factor of the number of resolu-
tions. In the case of a single merge in a proof, the factor is exactly the number
of internal atom nodes on the merge path in the clause tree. If the merge were
just within an input clause, it does not change the number of equivalent brt’s
at all. Tt has been assumed that merges always occur between literals from dif-
ferent input clauses, specifying that different occurrences of a given input clause
are considered to be different input clauses. Moreover we assume that no two
distinct literals from the same occurrence of a clause are merged with the same
literal of another clause. In a clause tree this means that two merge paths with

11



the same head cannot have their tails being adjacent to the same clause node,
because this implies hat the two literals of one input clause are factored.

The following theorem defines a lower bound on ¢(7T), denoted by Ib(n, m),
which is a product of Catalan numbers.

Theorem 3. Let T is a brt with n internal nodes and m merges, so that it
corresponds to a clause tree T with m merge paths. Also let n =Y ;" ' n; such

that n; = [n/(m+1)| orn; = |n/(m+1)] + 1. Then

Moreover this bound is tight.

Proof. First we demonstrate the extreme case. Let n = k(m + 1). Let brt T
correspond to a clause tree 7 whose internal atom nodes aq, as, ..., a, all lie in
order on a single path. Thus all the nodes of T form a path except possibly for
atom nodes which are leaves. Let T have m merge paths Py, Ps, ..., Py,. Let the
heads of the paths be spaced out almost equally along the path, with the head
of path P; at atom node ag;41, and the tail of P; adjacent to the clause node
adjacent to a; and not between ay and as. See Figure 8.

Fig. 8. An example of the lower bound, with ¢(7) = (C2)*.

Let n; be the interior node of the brt T corresponding to the interior atom
node a; of the clause tree 7. The resolutions corresponding to ay, ..., a; must
all occur before the resolution of ag41, and so ny,...,ng form a sub-brt Tiof
T. Because T 1is effectively a path, the root of T3 is a parent of ngy1. By the
results of the previous section, there are C} brt’s rotationally equivalent to 77 .
Similarly the resolutions corresponding to agy1,...,as, must all occur before
the resolution of agx 41, and again these resolutions can be organised in Cj ways.
The nodes n1y, ..., ng, must form a sub-brt 75 of T', and the root of To must be
a parent of nag41. The number of brt’s rotationally equivalent to Ty equals the
product of the number of ways that the nodes ng41,...72, can be organised and
the number of brt’s rotationally equivalent to T}, that is (C)?. Continuing in this
way, for j =1,...,m, nodes nqy, ..., ng; form a sub-brt 7; which is rotationally
equivalent to (Cy )’ brt’s. Then T,,, = T, and is rotationally equivalent to (Cj)™
brt’s.

Next we prove the lower bound. Consider the set A of interior atom nodes of
T that are not interior nodes of any merge path. They may be heads of merge

paths. Consider C = T — A, T with the nodes of A and their incident edges

12



deleted.. C consists of a set of k¥ < m component clause trees which are sub-trees
of T. Some of these trees may consist of a single isolated clause node. Let the
nontrivial component clause trees be 7; with n; internal atom nodes and m;
merge paths. Note that for each non-trivial component clause tree 7;, the head
of at least one merge path with internal atom nodes in it has as its head an atom
node from A. Exclude these merge paths from being chosen merge paths of the
T;. Also consider the clause tree D obtained from 7 by contracting all the edges
of C. D 1s a mergeless clause tree with, say, ny internal atom nodes. Note that
Zf:o n; = n and Zle m; < m—k.

Let C; be a brt corresponding to C;, and D a brt corresponding to D. Then
build a brt from D by replacing each leaf of D which corresponds to a contracted
C;, by C;. The resulting brt corresponds to 7. Moreover the result is different if
any of the component brts are changed. Thus

k

o(T) > e(D) [ e(Ci) > Cn, [[ 1b(ni, 1)

i=1 i=1

Each [b(n;, m;) is a product of Catalan numbers. By the observation after
equation 3 that the product CyCh_ is minimized when k = h/2 or k = (h—1)/2
for a fixed h, the product of all the Catalan numbers is minimized when the
subscripts are as equal as possible. One can also see that maximizing the number
of factors minimizes the product, by considering adding a factor of Cy to the
product if there is not a factor for each merge path. This gives the lower bound
in the theorem.O

Because C,, = (47)/n®W) it follows that

C(T) > 22n—@(mlog(n))

Fig.9. A clause tree with merges and many equivalent brts.

The upper bound on the number of equivalent brt’s when merge paths are
allowed does decrease when merge paths are allowed, but not very much. I do
not have a proof of an upper bound significantly better than n!, but it is no

13



less than n!/(m + 1). Consider the same clause tree as in the mergeless case,
the claw if you like, and add m merge paths, all with the same head, h, from
tails t1,%s, ..., 1, attached at m distinct clause nodes, and not the central clause
node. The m atom nodes internal to the merge paths must resolve before the
atom node at the head. This decreases the number of brt’s by a factor of m + 1.
See Figure 9. T believe that this clause tree is the extreme case, but T have no
proof.

6 Open Questions

The first open question is the final conjecture of the preceding section. What
is the exact upper bound on the number of rotationally equivalent brt’s with n
internal nodes and m merges?

A somewhat more important question is whether there is a polynomial-time
algorithm to count the number of equivalent brt’s with n internal nodes and m
merges? If we cannot count them, or alternatively show that this i1s a difficult
question, then our understanding of binary resolution must be quite limited.

More important again is asking the equivalent questions for dags. Dags are
what binary resolution theorem provers usually produce as proofs. Can one count
the number of rotationally equivalent binary resolution dags, with or without
merges? Can one put bounds on the number of such dags? Maybe this is a very
difficult question.

Perhaps the most interesting question is: Given a brt, what is the smallest
equivalent dag? Goerdt [6] has shown that there are unsatisfiable sets of clauses
such that the smallest non-regular (an atom label does not occur twice on one
branch of the brt) refutation is exponentially bigger that the smallest refutation.
When combined with the result that the smallest refutation brt is regular, indeed
surgically minimal, for any unsatisfiable set of clauses [12], the smallest brt must
be exponentially larger than the smallest dag. I do not know whether the smallest
rotationally equivalent dag is typically, commonly or only rarely much smaller
than the smallest brt.

The previous question leads to another. Is there some other reasonable def-
inition of equivalence for dags? Using clause trees, one can do more than just
path reversals to get more proofs which are almost equivalent. One has the oper-
ations of surgery and supplanting. Surgery is not always reversable, so this is not
a strict equivalence relation, yet a refutation always transforms to a refutation,
and even non-refutations may transform to a refutation.

References

1. G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organizaton of
information. Sowiet Math. Doklady, 3:1259-1263, 1962.

2. R. S. Boyer. Locking: a Restriction of Resolution. PhD thesis, University of Texas
at Austin, 1971.

14



11.

12.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York and London, 1973.

Hans de Nivelle. Resolution games and non-liftable resolution orderings. Collegium
Logicum, Annals of the Kurt Gadel Society, 2:1-20, 1996.

E.Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made
simple. J. ACM, 48:149-169, 2001.

Andreas Goerdt. Reguar resolution versus unrestricted resolution. SIAM Journal
on Computing, 22:661-683, 1993.

J. D. Horton and B. Spencer. Clause trees: a tool for understanding and imple-
menting resolution in automated reasoning. Artificial Intelligence, 92:25-89, 1997.
J. D. Horton and B. Spencer. Rank/activity: a canonical form for binary resolu-
tion. In C. Kirchner and H. Kirchner, editors, Automated Deduction — CADE-15,
number 1421 in Lecture Notes in Artificial Intelligence, pages 412-426, Lindau,
Germany, July 1998. Springer.

. J. Reynolds. Seminar notes. Stanford University, Palo Alto, California, 1965.
10.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12:23-41, 1965.

Bruce Spencer. Avoiding duplicate proofs with the foothold refinement. Annals of
Mathematics and Artificial Intelligence, 12:117-140, 1994.

Bruce Spencer and J. D. Horton. Efficient algorithms to detect and restore mini-
mality, an extension of the regular restriction of resolution. Journal of Automated
Reasoning, 25:1-34, 2000.

15



