
A Polynomial Time Algorithm to Find the Minimal

Cycle Basis of a Regular Matroid

Alexander Golynski and Joseph D. Horton
Faculty of Computer Science

University of New Brunswick
http://www.cs.unb.ca
email: jdh@unb.ca

July 31, 2001

1 Introduction

The Minimal Cycle Basis Problem (MCB) is the following. Given a binary

matroid with nonnegative weights assigned to its elements, what is the set

of cycles with total smallest weight which generate all of the circuits of

the matroid? The answer to this problem also answers in some cases the

Sparsest Null Space Basis Problem (NSP) [CP87]. Given a t � n matrix A

with t < n and rank r, �nd a matrix N with the fewest nonzeros whose

columns span the null space of A. Coleman and Pothen �nd solutions to the

latter problem useful in solving the very general Linear Equality Problem:

minimize a nonlinear objective function f(x) subject to a matrix equation

Ax = b. Many optimization problems are of this form. They are especially

concerned when the matrix A is large and sparse. The algorithm given in

this paper solves the NSP for totally unimodular matrices, that is matrices

in which every square submatrix of A has a determinant of +1, -1 or 0.

A matroid is regular if and only if it is representable by the columns of a

totally unimodular matrix.

Seymour [Sey80] proved that any regular matroid can be decomposed

in polynomial time into 1-sums, 2-sums, and 3-sums of graphic matroids,

cographic matroids and the special ten element matroid R10. Truemper

[Tru90] gives an algorithm which �nds such a decomposition in cubic time.

An algorithm to solve the MCB problem for graphs is given in [Hor87]. The

Gomory-Hu tree of [GH61] solves the MCB problem for cographic matroids.

The main technical result of this paper is to show how the minimal cycle
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bases of a decomposition can be glued together to form a minimal cycle basis

of the k-sum.

2 Background

The symmetric di�erence of two sets is denoted byX+Y = (XnY )[(Y nX).

2.1 Matroids

De�nition 2.1 A matroid M = (S; I) is a �nite set S and a collection I

of subsets of S, the independent sets of M , such that:

(I1) the empty set is independent;

(I2) subset of an independent set is independent;

(I3) if X and Y are independent subsets, such that jX j = jY j + 1, then

there are exists e 2 X n Y such that Y [ feg is also independent.

The set S is called the ground set of the matroid and denoted E(M). A

weighted matroid M = (S; I; w) is a matroid (S; I) together with a weight

function w 7! <+ [ f0g

A set X � E is said to be dependent if X =2 I.

A set B � E is said to be a base if B is a maximally independent set,

that is B is independent, but every proper superset X of B is dependent.

A set C is said to be a circuit if it is minimally dependent, that is C is

dependent but every its proper subset X � C is independent. The set of

circuits is denoted by C(M).

A set C is said to be a cycle if it is a combination of circuits with respect

to the + operation. The set of cycles is called the cycle space and denoted

C(M). The cycle space forms a commutative group with respect to the +

operation.

The rank function r : P (E) 7! N speci�es the cardinality of a maximally

independent subset of X .

r(X) = maxfjY j : Y � X and Y 2 Ig

The dual matroid ofM = (E; I) is the matroidM� = (E; I�), where set

of independent sets is I� = fX : 9B base of M , such that B \X = ;g.
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2.2 Representations of a matroid

A matroid does not have to be de�ned by specifying its independent sets.

Instead one can specify any one of the following:

1. the dependent sets;

2. the bases;

3. the circuits;

4. the rank function;

5. the cycle space;

6. the dual matroid.

The dual matroid in turn can be speci�ed in any of the other ways.

Many matroids can be represented as sets of vectors. A matroid is said

to be representable over a �eld F if there is a mapping m of E into a �nite

dimensional vector space V over F such that I � E is independent if and

only if m(I) � V is an independent set of vectors. Often the elements of

the matroid are speci�ed to be the column vectors of a matrix. Then the

circuits correspond to a minimal set of columns which are dependent. There

is some linear combination of these columns which is in the null space of the

matrix.

A matroid which is representable over any �eld is said to be regular;

a matroid representable over GF(2) is said to be binary. The symmetric

di�erence operator + on the subsets of E of a binary matroid corresponds

to vector addition in the corresponding vector space m(E). The cycle space

C(M) is a subspace of this vector space. For the rest of this paper we are

concerned only with binary matroids.

2.3 Graphic and cographic matroids

A matroid M is called graphic if there exists a graph G = (V;E), where

V is the vertex set and E is the edge set, such that E(M) = E and a set

I � E is independent i� I does not contain a circuit. We denote the graph

by G(M). A matroidM is called cographic if its dual is graphic. We denote

the corresponding graph by G�(M).

A set C is a cocycle (cut) in a graph if and only if there is a 2-coloring

of the vertex set V , A and V nA, such that C = CA, where

CA = fe = fs; tgje 2 E; s 2 A and t 2 V nAg
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A cocycle C is a cocircuit i� it is minimal with respect to set inclusion. Thus

circuits of a cographic matroid M are cuts in the graph G�(M). The cycle

space of a cographic matroid consists of the sets CA for each A � V .

3 Minimal Cycle Bases

A cycle basis B of a binary matroid M is a subset of the cycle space of the

matroid C(M), in which every cycle C of C(M) has a unique representation

over B, that is C = C1 + C2 + : : : + Ck where C1; C2; : : : ; Ck 2 B. The

dimension of the cycle space of a binary matroid M is m � r, where m is

the number of elements of the matroid and r is the rank of the matroid.

Let w be a nonnegative weight function de�ned on S, that is w : S 7!

<
+
[ f0g. De�ne the weight of a set E � S to be w(E) =

P
e2E w(e). The

weight of a cycle basis is de�ned to be the sum of the weights of all cycles

in the basis. A minimal cycle basis is a cycle basis which has the minimum

weight among all cycle bases.

3.1 A characterization of cycles in the MCB

To simplify the presentations in this paper, we assume that every cycle has

a di�erent weight. One can always force this by perturbing the weights on

the elements, at the cost of some time and space. Then there is a unique

minimal cycle basis. It is possible instead to choose one cycle in preference

to another if they are the same weight and are dependent on each other,

but this becomes somewhat cumbersome. One good way to handle such

ties is to use families of relevant cycles, as developed in [Vis97] for graphs.

The following lemma characterizes cycles in a minimal cycle basis under this

uniqueness assumption.

Lemma 3.1 A cycle C is in a minimal cycle basis if and only if it satis�es

the following property. Whenever C = C1+C2+ : : :+Ck where the Ci di�er

from C, then there is an i such that w(C) < w(Ci).

Proof Assume that cycle C satis�es this property, and let B be a cycle basis

not containing C. Then C = C1 + C2 + : : :+ Ck where C1; C2; : : : ; Ck 2 B.

By the above property, there is an i such that w(C) < w(Ci). But then

B0 = B n fCig [ fCg is a basis of weight less than B. Hence a minimal basis

must contain C.

Conversely, assume that C is a cycle in a minimal cycle basis B. Suppose

that C = C1 + C2 + : : :+ Ck. Each Ci can be expressed uniquely as the
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sum of members of the cycle basis, some of which may not include C and at

least one of which does include C. That is, there is a j such that Cj can be

expressed as the sum of cycles in B including C. Then Cj can replace C in

B and still form a cycle basis B0 = B n fCjg [ fCg. Because B is a minimal

cycle basis, w(B) < w(B0). Hence w(C) < w(Cj).

In other words, a cycle is not in the minimum cycle basis if and only if

it can be written as the sum of smaller cycles.

3.2 MCB in graphic matroids

The algorithm to �nd the minimal cycle basis for a weighted graph in [Hor87]

is based on the following:

Lemma 3.2 Let C be a cycle in a minimal cycle basis of a graph G, and

let x be a vertex of C. Then there is an edge e 2 C, say e = fu; vg, such

that C consists of a shortest path from u to x and a shortest path from v to

x and the edge e.

Therefore the following �nds the minimal cycle basis:

� Find the shortest path Puv in G between each pair of verticies fu; vg.

� List all candidate circuits of the form

X = fPuw + Pvw + fu; vgju; v;w 2 V; Puw \ Pvw = fwgg

� Use a greedy algorithm to extract a minimal cycle basis from X .

3.3 MCB in cographic matroids

To �nd the minimal cycle basis of a cographic matroid, one can use the

Gomory-Hu algorithm from [GH61]. Given a weighted graph, they �nd

a weighted tree on the same set of vertices for which the weights of the

minimal cuts (cocycles in matroid terminology) between any pair of nodes

is the same in both the tree and the graph. Each edge of this Gomory-Hu tree

corresponds to the minimal cut in the graph separating its two endpoints.

If any minimal cut separating two vertices v and u is written as the sum of

other cuts, the sum must contain a cut which separates v and u. This cut

cannot be smaller than the minimal one. Hence by Lemma 3.1 these minimal

cuts must all be in the minimal cycle basis. The n�1 cuts corresponding to

edges of the Gomory-Hu tree number exactly the dimension of the cocycle

space and hence must form the minimal cycle basis.
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3.4 Sums of binary matroids

The sum of two binary matroids M1 �M2 is de�ned to be a matroid M on

the ground set S = S1+S2, where S1 and S2 are the ground sets of M1 and

M2 respectively. The sum is given by its cycle space

C(M) = fC1 + C2 : C1 2 C(M1); C2 2 C(M2); C1 + C2 � Sg

The members of Z = S1 \ S2 are called the connecting elements.

We are concerned about three special cases of this operation, namely:

1-sum or direct sum when Z = ;;

2-sum when Z = fzg;

3-sum when jZj = 3, Z is a triangle (circuit of three elements) of M1 and

M2 and Z includes no cocircuit of either M1 or M2.

In these cases it is required that jS1j; jS2j < jSj.

A set A of M1 or M2 is called good with respect to the decomposition

M =M1�M2 if jA\Zj � 1, otherwise A is called bad. Note that in the 1-

and 2-sum cases, all sets are good. In the 3-sum case every cycle A 2 C(M)

is the sum of two good cycles. Suppose that A = C +D where C is a cycle

of M1 and D is a cycle of M2, and C and D are bad. Then jC \ Zj > 1,

so j(C + Z) \ Zj � 1. Therefore A = (C + Z) + (D+ Z) where C + Z and

D + Z are both good.

4 The Algorithm

The �rst phase of the algorithm is based on the decomposition theorem

[Sey80] for regular matroids. A regular matroid M can be decomposed

into 1-, 2- and 3-sums of graphic, cographic matroids and copies of the

special matroid of ten elements R10. The algorithm of [Tru90] �nds such a

decomposition in cubic time.

Given a decomposition M = M1 �M2 and minimal cycle bases for M1

and M2, how can we construct a minimal cycle basis for M? In fact, before

we can even �nd the minimal cycle bases for the Mi, appropriate weights

have to be found for the connecting elements. So the remaining algorithm

consists of three more phases: determine the weights of connecting elements;

calculate the minimal cycle bases of the constituent graphic, cographic and

R10 matroids; last, glue together the minimal cycle bases.
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4.1 Connecting Weights

Let Z be the set of connecting elements for the sum M = M1 �M2. Let

Cz be the circuit of minimal weight in M1 such that Z \ Cz = fzg, and let

Pz = Cz n fzg. Call Pz the z-path in M1. Similarly let Dz be a minimal

weight circuit in M2 containing z and no other element of Z, and call Qz =

Dz n fzg the z-path in M2.

Assume that w is the weight function on M . De�ne weight functions

wi on Mi to be the same as w on the set Si \ S. De�ne the weight of a

connecting element z from Z in M1, w1(z), to be the weight of z-path Qz

in M2. Similarly de�ne the weight of a connecting element z from Z in M2,

w2(z), to be the weight of z-path Pz in M1. These weights are the only

information about each part of a sum embedded in the other part.

For any subset A of S1 we de�ne its correspondent �A, a subset of S, by

replacing every connecting element z with the corresponding shortest path

Qz . In other words

�A = A+
X

z2Z\A

Dz (1)

We list some properties of this correspondence:

� Since Dz are �xed, A 7! �A is a linear transformation, therefore

If C = C1 + : : :+ Ck then �C = �C1 : : :+ �Ck

� w1( �A) � w(A), moreover if A is good then w1( �A) = w(A).

� If C 2 C(M1), then �C 2 C(M).

Similarly for B � S2, de�ne its correspondent by �B = B +
P
z 2 Z \ BCz.

Finding the connecting weights can be reduced to the following more

general (M;T )-problem. Given a regular weighted matroid M de�ned on a

ground set S with weight function w and a set T � S, for each t 2 T , �nd

a shortest circuit Ct including t in M which is otherwise disjoint from T .

For our purposes it su�ces to restrict the set T to being a single edge or a

circuit of three elements.

In the base cases when the matroid is graphic, cographic or R10, the

(M;T )-problem can be solved. For the graphic case, delete the elements of

T from the graph and solve the shortest path problem between the endpoints

of the edge t. The path together with the edge of T is the answer. For the

cographic case, contract the edges of T (except for t) and solve the min-cut
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problem between the endpoints of t. All possible circuits can be considered

for R10.

Otherwise there is a decomposition M = M1 �M2 and we can apply

recursion. Let Z be the set of connecting elements. Weight the elements

in M1 and M2, other than the elements of T and Z, the same as in M . If

the sum is a 1-sum, Z = ;, and then each circuit of M is either a circuit

of M1 or a circuit of M2. The problem can be solved in either M1 or M2,

depending upon which submatroid the elements of T are in.

The cases of a 2-sum or a 3-sum are considered together. Suppose that

T is contained in either S1 or S2, say T � S1. Then all the elements e ofM2

have de�ned weights w2(e) = w(e) other than those in Z. Let w2(z) be an

arbitrarily large number for each element z in Z. We apply the algorithm to

the (M2; Z)-problem, �nd the circuits Dz, and let Qz be the shortest z-paths

obtained. Assign weights w1(z) = w2(Qz) for every z 2 Z. Next invoke the

algorithm for the (M1; T )-problem for each element t to �nd the circuit Ct,

the minimal circuit containing t but no other element of T . Each circuit Ct

contains at most one element from Z.

If Ct contained two elements from Z, say z1 and z2, then we are dealing

with a 3-sum, and Z = fz1; z2; z3g is a 3-element circuit. Then z3 can

replace z1 and z2 in Pt to make a lighter path thru t. Note that the triangle

inequality w1(z3) � w1(z1)+w1(z2) holds for the elements of Z, because Q1+

Q2+fz3g = D1+D2+Z is a cycle inM2 and so w2(Q3) � w2(Q1)+w2(Q2).

Thus the correspondent of Ct, �Ct is the solution to the (M;T )-problem in

the case when T is only on one side of the decomposition.

Now suppose that T intersects both ground sets. Without loss of gener-

ality, let T \ S1 = fr; sg and T \ S2 = ftg. By the de�nition of the matroid

sum, there exist two good cycles C 2 C(M1) and D 2 C(M2) such that

C +D = T , and C \ Z = D \ Z = fzg. Then D = ft; zg, in other words z

is parallel to t. The circuits thru t in M2 are the same as the circuits thru

z, with t replacing z. Hence z can act as a surrogate for t in M2. As z is

also in M1, z can act as a surrogate for t in M1 as well.

Delete t fromM2, removing all circuits in M2 which include t, to form a

new smaller matroidM 0

2. Solve the (M
0

2; Z)-problem. LetD0

z be the minimal

weight circuit containing z, and let Q0

z = D0

z nfzg. If this is a 3-sum case, let

the other elements of Z be x and y, and de�ne Q0

x and Q
0

y similarly. Weight

the elements of Z in M1 with the weight of these \paths" in M 0

2. Next solve

the (M1; fz; r; sg)-problem, �nding minimal circuits Cz, Cr and Cs for z, r

and s respectively.

The answer to the (M;T )-problem can now be found, but it is not quite

as simple as the case when T is all on one side of the sum. There are two
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possible answers for each element of T . The weight for both possibilities can

be checked as the �nal step of this phase of the algorithm. The shortest cir-

cuit including t can be either D0

z+fz; tg or the correspondent of Cz + fz; tg.

The shortest circuit including r is either �Cr or Cs + frg+Q0

z . The shortest

circuit including s is either �Cs or Cr + fsg+ Q0

z .

4.2 Gluing minimal cycle bases together

Finally we discuss how to glue cycle bases from the parts of a sum. The

gluing algorithm is based on the observation that the set of correspondents

for all cycles in B1 and B2 spans the cycle space ofM . At the same time no

other cycle of M can satisfy the property of Lemma 3.1. Thus the minimal

cycle basis of M must be included in this set of cycles.

Theorem 4.1 Let M = M1 �M2, where M1 and M2 are binary matroids

with ground sets S1 and S2 respectively, and � is a 1-, 2- or 3-sum. Let

B1 and B2 be their minimal cycle bases respectively, with weights of the

connecting elements as previously de�ned. Then the set

Bt = f �C : C 2 B1g [ f
�D : D 2 B2g

includes a minimal cycle basis for M .

Proof Let A be a cycle of M and not in Bt. It is representable as a sum of

two good cycles, say A = C +D, where C is a cycle of M1 and D is a cycle

of M2. Two cases are possible.

Suppose A is contained in one of the ground sets Si, say A � S1. Then

D = ; and let

C = C1 + : : :+ Ck (2)

be the representation of C over B1. Then by lemma 4.1

A = C = �C = �C1 + : : :+ �Ck (3)

is a representation of A over Bt. Note that A is heavier than the heaviest

cycle Ci in (3), since the property of lemma (3.1) holds for the heaviest �Ci.

Hence A cannot be in the minimal cycle basis of M .

Otherwise D 6= ; and C \D = fzg for some connecting element z 2 Z.

Then

A = ( �C + Cz) + ( �D +Dz) = �C1 + : : :+ �Ck + �D1 + : : :+ �Dl (4)
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for some Ci in Bi and Dj in B2. Thus A is the sum of elements of Bt, so Bt
spans the cycle space of M . Also A must be no lighter than C, since

w(A) = w(C n fzg)+w2(D n fzg) � w1(C n fzg)+w2(Qz) = w1(C) = w( �C)

Similarly w(A) � w2(D). Also note that w(Cz + Dz) = w1(Cz) � w1(C).

Hence A is the sum of three cycles �C, �D and Cz+Dz which are lighter than

itself. Thus A is not in the minimal cycle basis.

The set of cycles Bt may not form a basis because there can be too many

cycles in the set. The greedy algorithm can be used to obtain a basis from

Bt, since C(M) taken as the ground set constitutes a binary matroid itself

with respect to cycle dependency. The same method as in [Hor87] can be

used. Sort the cycles of Bt and represent them as columns of a matrix,

the rows of which are indexed by the elements of M . Then use Gaussian

elimination, processing columns from the lightest to the heaviest until we

�nd dim(C(M)) = jE(M)j � r(M) independent cycles.

5 Complexity

Let m be the number of elements in a regular matroid M . Truemper �nds

a complete decomposition in �(m3) time [Tru92], down to only graphic

matroids, cographic matroids and copies of R10.

Finding the weight of the connecting elements in the decomposition re-

quires solving the (M;T )-problem in a 1-, 2-, or 3-sum. This requires at

most O(m) time to decide what subproblems have to be solved, and those

subproblems need to be solved at most once on each side of the sum. The

solution for the graphic and cographic cases requires solving a shortest path

problem or a network ow problem respectively. In either case the problem

is easier than solving the MCB problem itself for the component, which must

be done in a later phase.

The Gomory-Hu tree for a graph can be constructed by solving n � 1

network ow problems, n is the number of vertices in the graph. The network

ow problem can be solved in O(mn logm=n logn n) [KRT94], so the MCB

problem for cographic matroids can be solved in O(mn2 logn) time. This is

considerably faster than any known algorithm for graphic matroids.

Thus the slowest step in the algorithm is solving the MCB in the graphic

case, for which the best published algorithm is �(m3n) in the worst case

[Hor87]. The di�culty is extracting the independent set of shortest candi-

date cycles. In practise when implemented, the minimal cycle basis circuits
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of a graph are usually found very quickly because they are usually all very

short. But this is not guaranteed. Indeed it is possible for the largest circuit

of X to be in the circuit basis.

The more general MCB problem for binary matroids is known to be

NP -hard. Indeed just the problem of �nding the shortest circuit in a binary

matroid is NP -hard, and by Lemma 3.1, the shortest circuit must be in any

minimal cycle basis.
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