Ancestor Reduction in Binary Resolution Trees

Bruce Spencer and Joseph D. Horton

Faculty of Computer Science, University of New Brunswick
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
bspencer@unb.ca, jdh@unb.ca, hitp://www.cs.unb.ca

Abstract. It is shown how the operation of ancestor reduction, found
in tableaux calculi, can be applied to the resolution calculus. An efficient
algorithm tells how to reorder some of the previous resolution steps in a
binary resolution tree, and thus enables an additional factoring step that
removes a literal from a clause. This ancestor reduction operation has a
small search space, constrained by the size of the proof tree. If the addi-
tional search is successful, the new operation can eliminate literals and
reduce the overall time to find a proof. A calculus is defined combining
atom (literal) ordered resolution and ancestor reduction. Atom ordered
resolution restricts search, but may generate large proofs for some atom
orderings. This proposed theorem prover is slightly less restrictive in
that an additional search for some ancestor reductions is required, but
it generates smaller proof trees under many atom orderings.

1 Introduction

Two major categories of deduction machines are based on resolution calculi and
tableaux calculi. Often research into one of these can be applied to the other,
but too often, in our opinion, the two communities are unable to take advantage
each other’s results.

They have many similarities. Given a logic formula, model elimination and
tableaux calculi build rooted trees that represent deductions, in which nodes are
labeled by subformula. Any leaf in the tree is closed by an operation known as
ancestor reduction, in which an ancestor node labeled with a complementary
formula is found, perhaps requiring an instantiation of variables. A branch from
the root to an open leaf generates a partial model of the formula; a tree with
no open leaves is a refutation. Commonly the given formula is in conjunctive
normal form (CNF), each node is labeled by a literal, and the children of a node
form (an instance of) a clause.

Given a logic formula, resolution systems choose subformulas with comple-
mentary parts, perhaps requiring instantiation, and, using the resolution rule
of inference, generate new formulae. Subsequent steps may use (parts of) these
new formula as well as the given formula. A tree or DAG induced by these steps
serves as a deduction. We refer to this as the binary resolution tree (brt) or
the binary resolution DAG. When the given formula is conjunctive normal, the
subformulas are clauses and the complementary parts are literals.

Thus for refuting a given formula in CNF, the mechanisms are similar in
several ways: deductions are tree-based, complementary literals are found, and
variable instantiation is used, commonly unification.

Perhaps the most important similarity, when refuting a CNF, is the notion
of eliminating a literal that is true in some partial model. In tableaux, a lit-
eral labeling a leaf is eliminated by either finding a complementary label on an
ancestor, or by building a subtree below that leaf such that the leaves of the
subtree are all closed. In resolution, a literal of a certain clause is resolved away
(eliminated) either by resolving against a single-literal clause, or by resolving
with a non-singleton clause such that all the other literals in that clause can be
resolved away. The resolution step can be viewed as a form of extension!.

Given that the two mechanisms have a similar task to perform, it is inter-
esting to note that they choose different methods to do it: tableaux calculi use
extension and ancestor reduction, while resolution calculi uses the resolution
rule, and factoring. There are proposals for tableaux systems to use more factor-
ing steps, where these steps are represented in tableax as introduced cut literals
[4], or as paths from an open node to a node on a different path[1].

This paper addresses what we see as a gap in the literature: we introduce the
use of ancestor reduction in resolution systems.

Consider the following example:

{—aVd,aV -b,bV-ebVc,~d}

Given the brt shown in the top left of Figure 1, we see that after four reso-
lution steps there is no refutation. The tableau in the top right is a connection
tableau containing the four connections that correspond to these resolutions.
It gives rise to a refutation. We might expect both mechanisms to achieve the
same result. The tableau gains an advantage by eliminating b with an ancestor
reduction two levels up. The brt on the bottom right has the same advantage
as the tableau. It comes about by reordering the resolutions on b and ¢, so that
both b’s are resolved at once. By inspecting the tableau, we can find a reordering
of resolution steps that gives the same effect as the ancestor reduction.

Here we introduce the notion of ancestor reduction in a brt. This reduction
comes about by reordering the resolutions steps so that a given literal is elim-
inated as part of an existing resolution step. No new resolutions are necessary;
one of the exisiting resolutions is made to eliminate the given literal in addition
to the ones it already resolves.

! In fact the story is a bit more complicated in resolution. Given multiple literals in
a clause, the mechanism may perform some of the steps that eliminate one literal,
leaving some work unfinished, and perform some of the steps to eliminate the others,
and then go back to work left over from the first, and so on. Atom ordered resolution,
which eliminates literals according to some atom order, does this jumping about.
But the deduction tree can always be restructured so that the proof is seen as
eliminating each literal in turn. This may require some duplication of subtrees during
the restructuring. We do not advocate the restructuring — the point here is only that
the mechanism can be viewed as eliminating literals one at a time.

—avd av—b
| e
—bvd bv—c
| e
—cvd bve
| e
bvd —d
| e
b
—avd av—b
| e
bve -bvd bv—c
I e
cevd —cvd
\ |
d —d

e

—a —|d
_|d
a —b %
X
b —C
X
b c
X X
bv—c bve —avd av—b

N |
b —bvd
AN Ve

d —d

=g

Fig. 1. Clockwise from top left: a brt, a corresponding but stronger tableau, a reordered
brt with the strength of the tableau, and a larger atom-ordered brt

One can always make a brt’s result at least as strong as a tableau with the
same connections by considering different orderings. Conventional wisdom says
a theorem prover does not have the time to search for the most effective order-
ing, and that it is better to fix an ordering and recover from its disadvantages
by quickly making more inferences. The tree in bottom left of Figure 1 shows
inferences ordered lexically on the atoms. Five resolutions are needed to build a
refutation. So only one more resolution is required.

Now consider the following clause set:

{aVb,aV -b,—aVc,—aV ¢}

If resolutions must be on lexically first atoms, then seven resolutions must be
done to refute the clauses, whereas the opposite order requires three. Expo-
nentially many more resolutions may be required for an unfortunately chosen
order [7]. Our contention is that a small amount of searching for a better order
of resolutions may be worth the effort, especially if there are no serious ill effects
other than the extra search.

But how can this search be performed? Converting the resolution deduction
into a tableau is expensive. Moreover it may not be beneficial. Consider any
connection tableau from the clauses in Figure 1 with bV —c as the top clause.
Then no two-level ancestor reduction is possible, and such a tableau has seven
connections. For other examples, the connection tableau will indicate a better
resolution order only if c-literal reductions are also considered [5].

Say that a given literal in a tableau can see all of its ancestors; they are
visible from the literal [3]. Thus visible literals are potential candidates for an
ancestor reduction. Extend the term to visible literals in a brt. A given literal
in the root clause of a brt can see those previously resolved literals that are
potential candidates for ancestor reduction.

This paper provides the visible algorithm for literals in a brt. Given a literal
in the root clause that we want to eliminate, visible returns a literal already
resolved upon in the brt if some reordering of resolution steps puts these two
literals in the same clause somewhere in new tree. If both the given literal and
the visible literal are identical or unifiable, then the resolution that eliminated
the visible literal can also eliminate the given literal. Visible returns all such
literals in one pass through the tree, so its complexity is linear in the tree size.

We depend on the splay algorithm [6] for restructuring the brt. Given an
internal node in the brt, splay restructures the tree so that that node is the new
root, if possible, or failing that, it is brought as close as possible to the root of
the tree. When applied for ancestor reduction, we have identified some resolved-
away literal that is visible from a literal in the root, and we want both of these
literals to occur in the same clause. The node where that literal is resolved upon
is splayed. The old root becomes an internal node that is a parent of this splayed
node. In so doing, both literals are in the clause of this old root, and both can
be resolved at the splayed node.

The restructuring done by a splay could be accomplished by reordering pairs
of resolution steps, but splay performs the restructuring in a pass through the

branch from the internal node to the root. Thus splay is also linear in the tree
size.

Our search for an ancestor reduction can also reveal an irregularity in the
sense of tableau calculus, which is more specialized than irregularity in resolution
calculus. Removing this irregularity corresponds to removing from a tableau
branch a section with two identical literals, a loop in the reasoning. This can
have the effect of removing literals other than the one for which the ancestor was
sought. This result is already known in the literature as the surgery operation
[6]. Surgery applies to the more general circumstance of irregularity in a brt
where some atom resolved upon at a given node arises again in the clause of a
descendant.

The background section gives our definition of similar binary resolution trees,
which means that they differ only by the order of the steps given. Within the
set of similar trees, we identify when a given pair of nodes can be put on the
same branch (visible) and when they must stay on the same branch (support).
Using this, we define the ancestor reduction operation, which uses a combination
of the visible and splay algorithms. Following this, we point out that ancestor
reduction and atom ordered resolution can be used together.

2 Background

We use standard definitions for atom, literal, substitution, unifier and most gen-
eral unifier. A clause is a disjunction of literals. We use Robinson’s notion of
resolution; one or more literals selected from one clause resolve against one or
more literals selected from another clause, if a unifying substitution exists for the
atoms of all the selected literals. This gives rise to a resolvent clause comprised
of the remaining literals with the substitution applied. This operation from a
pair of clauses to a resolvent clause gives rise to a binary tree, drawn with the
resolvent clause below the resolved clauses.

A binary resolution tree (brt) on a set S of input clauses is a labeled binary
tree. Each node N in the tree is labeled by a clause label, denoted cl(NN). Each
node either has two parents and then its clause label is the result of a resolution
operation on the clause labels of the parents, or has no parents and is labeled
by an instance of an input clause from S. In the case of a resolution, the atom
resolved upon is used as another label of the node: the atom label, denoted al(N).
Any substitution generated by resolution is applied to all labels of the tree. The
root of a clause tree is the newest, lowest node, and its clause label is called the
brt’s result. A binary resolution tree is closed if the result is the empty clause,
0. By soundness of resolution, a closed brt on S is a refutation of S.

We are interested in the “history” of a literal in a brt, from its introduction
to the tree in a leaf to either its being resolved away, or to its occurence at the
root. The path of nodes whose clause labels contain a given literal is called the
history path of that literal. The tail of the path is a leaf where the literal occurs
in (an instance of) an input clause. The head of the path is the lowest clause
where that literal’s occurrence appears. In the case where the literal is resolved

away, the node where it resolves is said to close the path. This node is the child
of the head of the path. For instance, given the top left brt in Figure 1, the
history path for d is every node on the vertical spine of the tree, except the
bottom node, where d closes. The history path for b does not close.

We use a strict notion of correspondence between two brts, which allows us
to state that they differ only in the order in which the resolutions are done, but
the individual resolutions themselves are identical. Two brts 77 and T» on the
same set of input clauses are said to resolve input literals similarly (or briefly,
are similar) if, by following the history paths, the same input literals are found
to resolve against each other in T as in T5. More formally, there must exist a
mapping v (1-to-1 and onto) from nodes of T} to nodes of T> such that leaves
map to leaves labeled with the same input clauses, up to variable renaming. This
induces a natural mapping from literals in the leaves of T} to those in 75, and
by extension, a mapping from history paths in 77 to those in T5. Suppose v can
be extended so that a history path closes at node N in T3 if and only if the
corresponding history path closes at v(N) in T». Then we say 77 and T resolve
input literals similarly.

Note that for similar brts, corresponding nodes are not necesarily labeled
with the same clauses, except for the leaves and the root. Also corresponding
history paths are not necessarily the same length.

Definition 1 (Visible [6]). In a given brt with internal nodes N and M, we
say that M is visible from N, and that N can see M, if some similar brt exists
in which M is a descendant of N. Otherwise M is invisible from N.

Definition 2 (Support [6]). In a given brt with internal nodes N and M, we
say that N is supports M, and that M is supported by N, if N is a descendant
of M in every similar tree.

To simplify the discussion we assume that the literal ordering is independent
of sign, and thus is an atom ordering. In the following, the internal nodes of a
brt are ordered by applying this atom ordering to the atom labels of the nodes,
i.e. the atom resolved upon at that node.

Definition 3 (Support ordered resolution [7]). Given an ordering <X of
atoms and a binary resolution tree T, we say that a node N is support ordered
if no descendant of N has higher order than N unless it supports N. T is support
ordered if all its nodes are.

In effect, support ordering is the lexical composition of the support relation
and atom ordering.

Theorem 1 (Completeness and uniqueness of support ordered resolu-
tion [7]). For a given partial ordering < on atoms and a given brt T, there is a
support ordered proof tree T* that is similar to T. If < is total, T* is unique.

3 Identifying and performing ancestor reductions

Given a brt with a some literal & in the clause label of the root, we want to know
if there is some way to reorder the resolutions so that k can also be removed. In
other words we want to find a similar brt, but one that affords an opportunity
to close the history path for k. Such an opportunity would arise in the new brt if
the new history path for £ now contains a node where the literal resolved away
matches k. Thus we need to consider the set of similar brt’s. On the surface, this
search seems time-comsuming, and so does the task of rebuilding the proof, but
we want both the search and the restructuring to have low complexity.

The Vis algorithm identifies the internal node where an occurrence of k is
already resolved, and the splay adjusts the tree so that the both occurrences of &
are in the same internal node. The Vis and Splay algorithms appeared in [6]. Vis
is adjusted so it returns literals instead of atoms. The sign of the literal returned
is decided by the occurrence of the literal in cl(B).

procedure Vis(N, Pk)
if N is a leaf then return ¢
else
Let A and B be the parents of N and partition Pg into P4 and Ppg, which
are the sets of history paths that go through A and through B, respectively.
Assume without loss of generality that B is chosen so that Ppg is nonempty.
Let C4 and Cp be the sets of history paths with heads at A and B respectively,
and hence close at N.
if P4 is nonempty then
return Vis(A,P4UC4) UVis(B,PpUCg);
else
Let literal a € ¢l(B) such that al(N) occurs in a.
return {a} UVis(A4,C4) UVis(B,Pg)
endif
endif

AncestorReduce is given a brt 7" and a literal & in the clause label of the root
of T. It returns T itself if no reduction is possible, or otherwise, it returns a tree
similar to T except that k is no longer the root, and the history path for k& is
closed.

procedure AncestorReduce(7, k)
Let R be the root 7.
Let Pk be the set of history paths in T for &, that include R.
Let V = Vis(R, Pk).
if k € V then
Let K be the node in T where the visible k£ was found.
Let T' = splay(T, K)

Consider R in T'. It is no longer the root, but it is a parent of K. K is on
all the history paths Pg, which do not close. Also K is on the history paths
for the visible k¥ and these do close. Extend the resolution at K so that all
history paths from both sets close.
return 7"

endif

A call to splay (T, K) [6] is given an internal node K in a binary resolution
tree T' and returns a new binary resolution tree 7" such that all descendants of
K cannot see K in T". Thus K is as close to the root as possible.

This section extends the work reported in [6], where all visibility was defined
in terms of visible nodes and visible atoms. Here we consider visible literals.

4 Combining with ordered resolution

We propose the following reasoning procedure, based upon an atom ordering.
Literals are ordered in a clause by their atoms. A largest literal in a clause can be
resolved, or a smaller literal be resolved as long as larger literals can be ancestor
reduced. We show that such a system builds all support ordered proofs. Thus it
will produce minimally sized brts, independent of the atom ordering.

Definition 4 (SOAR tree). Let C be a clause set and let < be a total order on
the atoms of C. An brt constructed by support ordered resolution using ancestor
reduction, or SOAR tree, is a binary resolution tree on C, according to one of
the following:

— A leaf node whose clause label is an instance of a clause from C.

— A brt comprised of a root node and two SOAR subtrees Ty and Ty, where the
clause label of the root is the resolvent of Ty and Ty on the maximal atom
from each.

— A brt T constructed as follows: Let T' be a new brt from resolving two SOAR
trees Ty and Ty on a possibly non-mazimal literal from each, such that for
1 = 1,2 all literals from the T; clause greater than the literal resolved upon,
are visible in To_;. Let T be T' after ancestor reduction removes all of these
higher ordered literals.

Note that the third item above is strictly more general than the second. This
third rule adds support ordered nodes to the tree. Thus the calculus generates
many support ordered brts. One might think that the SOAR calculus gener-
ates all support ordered trees. Assuming the atoms are ordered alphabetically,
consider the clauses

{—a,aVvVbVvd,aVcV-d,-b -c}

There is a four-resolution refutation, using each clause once. But the SOAR
calculus must make two resolutions with the —a clause, and so requires five.

5 Summary

In this paper we propose a strategy for identifying, in a binary resolution tree,
any opportunity for ancestor reduction. Ancestor reduction is accomplished by
restructuring a brt so that the same resolutions are done in a different order, and
the new tree allows an extra literal to be resolved upon in an existing resolution.
The SOAR calculus has the property of being slightly more permissive than
atom ordered resolution alone, in that it requires more searching and allows more
resolutions. But it gives smaller sized trees, under many atom orders. Unlike the
rank/activity resolution [2] it does not have a large number of initial choices.
Unlike weak support ordered resolution [7], it works well with subsumption.

References

1. Peter Baumgartner, J.D. Horton, Bruce Spencer. Merge path improvements for
minimal model hypertableau. In Automated Reasoning with Analytic Tableauz and
Related Methods, pages 51-65. Springer, 1999.

2. J. D. Horton and B. Spencer. Rank/activity: a canonical form for binary resolution.
In C. Kirchner and H. Kirchner, editors, Automated Deduction — CADE-15 number
1421 in Lecture Notes in Artificial Intelligence, pages 412-426. Springer, July 1998.

3. J. D. Horton and Bruce Spencer. Clause trees: a tool for understanding and imple-
menting resolution in automated reasoning. Artificial Intelligence, 92:25-89, 1997.

4. R. Letz, K. Mayr, C. Goller. Controlled integration of the cut rule into connection
tableau calculi. Journal of Automated Reasoning, 13:297-337, 1994.

5. R. E. Shostak. Refutation graphs. Artificial Intelligence, 7:51-64, 1976.

6. Bruce Spencer and J. D. Horton. Efficient algorithms to detect and restore mini-
mality, an extension of the regular restriction of resolution. Journal of Automated
Reasoning, 25:1-34, 2000.

7. Bruce Spencer and J. D. Horton. Support ordered resolution. In David McAllester,
editor, Automated Deduction — CADE-17, number 1831 in Lecture Notes in Artificial
Intelligence, pages 385—400. Springer, June 2000.

