
The ACORN Multi-Agent System

Stephen Marsh (steve.marsh@nrc.ca)
Institute for Information Technology

National Research Council

Ottawa, ON, K1A 0R6, Canada

Ali Ghorbani (ghorbani@unb.ca) and Virendra C. Bhavsar
(bhavsar@unb.ca)
Faculty of Computer Science

University of New Brunswick

Fredericton, NB, E3B 5A3, Canada

Abstract. ACORN (Agent-based Community Oriented Routing Network) is a
distributed multi-agent architecture for the search, distribution and management of
information across networks. ACORN utilises the concept of `information as agent'
together with an application of Stanley Milgram's Small World Problem (the idea of
Six Degrees of Separation) in order to route individual items of information around a
network of people and agents. The ACORN ideal is to achieve a state where a web of
users is created such that information distribution, queries and search, and browsing
behaviour is encapsulated in a single adaptive architecture which learns community
behaviour and knowledge in order to route agents to relevant destinations (users).

This paper describes the ACORN architecture and its implementation. We intro-
duce a novel idea of agent meeting places, or Caf�es, to carry out community-based
information sharing among mobile agents in ACORN. ACORN is compared with
similar work, and evaluations of ACORN for information sharing among mobile
agents are described.

Applications of ACORN include Business to Business and Business to Consumer
based e-Commerce solutions, virtual community creation and support systems, peer
reviewing systems, and personalized directed information handling.

Keywords:Multi-Agent information architectures, autonomous agents, mobile agents,
keyphrase matching, multi-agent architecture, community based information han-
dling, e-Commerce.

1. Introduction

Information is playing an increasingly important role in the networked
world. Great changes are taking place in the area of information supply
and demand due to the widespread application of computers and the
exponential increase of computer networks such as the Internet. The
main problems we are facing right now are how to extract relevant,
useful, and interesting information from many diverse sources and how
to distribute our information to relevant people. Currently, two di�erent
technologies are commonly used to address the information demand
problem, but fewer systems exist for distributing information. The

c
 2001 Kluwer Academic Publishers. Printed in the Netherlands.

fourth-draft.tex; 17/08/2001; 13:51; p.1

2 Marsh, Ghorbani & Bhavsar

existing solutions for the information demand problem can be either
information retrieval, such as is used in the current crop of Web search
engines, or information �ltering, for example in services such as SDI
(Selective Dissemination of Information). One embodiment of the infor-
mation �ltering technique is the software agent. Software agents exhibit
a degree of autonomous behaviour, and attempt to act intelligently on
behalf of the user for whom they are working. Agents maintain user
interest pro�les by updating them based on user feedback. Examples
of such systems are the Kasbah framework for e-commerce [7], and
matchmaking systems such as Yenta [8, 9, 10] and ACORN [22].

If we accept that all the Web cannot be indexed [3, 17], either be-
cause there are always pages that are new, others are not reachable by
any known links, and still others are private (as is the case with many
intranets), then the problems discussed above are almost certainly
compounded. That is, there are some pages that are not connected
to any others (and thus can't be indexed) for one reason or another.
An additional problem is that some knowledge cannot be represented
on web pages without considerable work { this knowledge is social
network knowledge, what we call `Who Knows Who Knows What', or
WKWKW. Moreover, the contents of the web are constantly changing.
All these factors limit the performance of web search engines and in-
formation �ltering solutions. In this paper we propose an alternative
to such solutions.

In any reasonably sized network of people, it is fair to assume that
the chances of any one individual knowing everything relevant about ev-
ery other individual in the group are slim. Any one individual, however,
may know others in other social or interest groups, so the net result is
a collection of interconnected groups of people, linked by `middle men'
who know others in di�erent groups. In this sense, we are all `middle
men1' in some form or another.

In large organisations, too, such collectives of people exist. The
Knowledge Management problem in such organisations lies in trying
to �nd out who is doing what, or knows what, in any particular area.
Corporate Intranets or employee databases are legitimate attempts to
solve this problem, but have to be kept consistently up to date for them
to be of any use to the members of the organisation. Moreover, they
have to be useful and used.

The academic world is a huge web of interconnected practitioners.
In this web, information and knowledge sharing is perhaps more open
than in other arenas, but still, there are times when it is impossible to

1 Naturally, we don't aim to be exclusive in our terminology. The term `middle
person' does not, however, seem to roll easily o� the tongue.

fourth-draft.tex; 17/08/2001; 13:51; p.2

ACORN 3

know who is doing what in which area. Again, as in Milgram's Small
World Problem [23] and see Section 3.2), chains of people exist so that
networking, for example at conferences, really can help �nd people.

The ACORN (Agent-based Community Oriented Routing Network)
system provides an agent-based peer to peer architecture using com-
munity based approaches for information retrieval and provision across
networks. It is based on the assumption that a mixture of consumer
pull and producer push, coupled with a tight control of information
spread, will allow people to keep up-to-date with topics, and will al-
low the producers of information to get their information in a timely
fashion to those who will �nd it relevant. The agents in the system are
autonomous; they make their own decisions about what to do based on
information they receive from their creators and from the data they
get from other agents in their community. One of ACORN's goals
is to facilitate an architecture whereby social networks of computer
(ACORN) users could share information based on `people chains.'

1.1. Novelty and Contribution of ACORN

ACORN embodies the concept of autonomous mobile information in a
peer to peer community of users. Within this community human users
are able to dissiminate information in a timely and accurate fashion.
In addition, users and agents are able to provide valuable recommen-
dations to non-community members (potentially even non-ACORN
users).

Information within ACORN is able to be rated and �ltered by
community members and agents, thus providing a valuable means of
attaining peer-review of information that may have been previously un-
rated (and possibly unrateable given current standards of technology).
The system uses chains of people and agents to build paths through
which mobile agents can disseminate information to like-minded in-
dividuals without necessarily requiring those individuals to expressly
indicate their interests. In addition, because of its novel information
mingling facilities via multiple agent meeting places, or `Caf�es,' agents
can learn recommendations not only from human users but from each
other.

ACORN provides an architecture for security which, while conserv-
ing user anonymity if necessary and required, nevertheless allows for
this peer review and recommendation capacity. The architecture uses
the innovative approach of separate agent `brain' and `body,' wherein
agent code does not migrate, while agent data does, coupled with a
secure agent directory system to provide reliable mobile agent security
measures. These measures protect not only the server on which mobile

fourth-draft.tex; 17/08/2001; 13:51; p.3

4 Marsh, Ghorbani & Bhavsar

agents may be running, but also the mobile agents themselves, both
from inadvertent and malicious attacks on their code and/or the data
they may be carrying.

All of this is managed in a complete, readily available architecture
that is implemented in a relatively small footprint (in Java), is exten-
sible to take into account new developments in information sharing
and handling, and makes full use of readily available communications
and metadata standards such as XML and the Dublin Core [13, 30].
In addition, the system provides for readily adaptable user interfaces
because of its adoption of the JSP libraries.

1.2. Potential ACORN Applications

ACORN's potential applications include people �nding via virtual com-
munities and also via extension to standard web searching approaches,
the dynamic building and maintenance of virtual communities of like-
minded individuals, and adaptive messaging through intelligent infor-
mation dessimination.

On the e-business front, ACORN can provide facilities such as user
preference directed information (i.e., directed advertisements), the dy-
namic building of business and consumer coalitions, and novel knowl-
edge management tools for larger organizations [19].

Finally, we see ACORN as a suitable replacement for or extension
of standard email messaging systems, chat and web search architec-
tures. In this context, to coin a phrase, we see ACORN as `email with
attitude.'

1.3. Paper Organisation

This paper is organized as follows. Section 2 brie
y reviews related
work. An overview of ACORN is given in Section 3 along with a descrip-
tion of Milgram's Small World Problem. The architecture of ACORN
is presented in Section 4. In Section 5, the various types of agents in
ACORN are described. We propose a novel idea of Caf�e as a virtual
meeting place for mobile agents of ACORN in Section 6, and some
relevant methods for information sharing are outlined. We also explore
a dynamic clustering method for ACORN Caf�es. Salient features of
the ACORN implementation, along with performance evaluations of
ACORN are described in Section 7. We conclude with pointers to
further work and a summary of ACORN's capabilities in Sections 8
and 9.

fourth-draft.tex; 17/08/2001; 13:51; p.4

ACORN 5

2. Related Work

Community-based navigation and information sharing are not new [12,
16, 18] and interesting twists on the themes exist (or have existed), such
as the now extinct Fire
y and the vibrant Epinions [14], which take the
views of a community, aggregate them, match individual interests, and
recommend to their members movies, music or whatever that related
members are into. These services work, but in a limited sense: people
need to go to some non-minimal e�ort to describe their interests, and
they need to keep coming back to recommend new movies, recordings,
books, or whatever. Amazon (www.amazon.com) has another way of
doing this, by suggesting books to people that others have bought,
based on the title they are looking at now. This requires no e�ort on
the part of the `recommender,' and works surprisingly well. The concept
of e�ort is important: people aren't going to use something they have
to do extra work for unless they get something more in return.

Agents have been used to provide or discern links between people.
Foner's Yenta [10] is an example of this. It takes people and their
interests and tries to match them with others with similar interests.
This is of particular use in a community-building situation, but can also
help when looking for information (or possible interested receivers of
information you have created); similar systems are described in [15, 16].

3. Overview

ACORN embodies the principle of `Social Knowledge Management,'
wherein the knowledge may lie in private yet easily obtainable places
such as intranets, or may lie only in the heads of the people in the
society. ACORN is a multi-agent based system which uses the concept
of `information as agent' to route information around networks (or
communities) of people. Information in ACORN's context is anything
that can be transported electronically, such as documents, in whole
or in part, queries, images, sounds, and so on. The implementation of
ACORN referred to in this paper uses mobile agents that are capable
of performing both search and distribution of information.

3.1. Motivation

Information is hard to work with, particularly if there is a lot of it
and it is disorganized, such as on the Web. Current solutions are
straining at the seams, and a new paradigm is required to handle the
volume and noise. Agents present only a possible solution, but one

fourth-draft.tex; 17/08/2001; 13:51; p.5

6 Marsh, Ghorbani & Bhavsar

which bears closer investigation. Conceptually, an agent can be sent
out onto networks to scour web sites or corporate information sites
and databases available to it for information relevant to a search topic
it has been given. This is an extension to the `spiders' that the original
search indexes used, with directions not to grab every �le at a site,
but to get relevant pages. Such `searchbots' exist and work relatively
well, for all their simplicity. However, humans employ other search
strategies, via their communities: asking questions of people you know
might result in them going elsewhere to ask another person they know
(and so on) resulting in, eventually, an answer coming back to them.
This is community-based searching, and requires only that you are a
member of a community, and since communities overlap, it is easy to
grab information across community boundaries. ACORN uses such a
community-oriented approach.

The basic questions that ACORN seeks to address are those we live
with everyday as members of communities:

� Who can help me with a speci�c problem?

� Who would be interested in this information?

� Who knows the answer to this question?

In addition, we attempt, via ACORN, to answer other questions
that might be asked in some situations:

� Who has read what I wrote, and what did they think of it?

� How can I control who sees what I write, yet still use an open
network to distribute it?

� Can I build up a team or community of like-minded people quickly?

3.2. Milgram's Small World Problem

ACORN's primary approach is to use mobile agents to distribute infor-
mation. ACORN's agents move from person to person, following trails
of recommendations. The users the agents visit can recommend other
users, thus increasing the length of the chain and the number of people
the agent can visit. At the end of its journey, the agent should have
learned more about who exists in the community and who is interested
in what it has to present.

ACORN's behaviour is in fact very close to the e�ects seen in Stanley
Milgram's Small World Problem [23]. In Milgram's experiment, several
letters were sent to randomly selected people in the continental US,

fourth-draft.tex; 17/08/2001; 13:51; p.6

ACORN 7

with instructions that the letter had to �nd its way back to a named
person (in Boston, since that's where Milgram was). However, the
caveat was that the letter could only be forwarded via people whose �rst
name the forwarder knew (in other words, people they knew socially).

Taking into accound blind alleys, closed worlds, and the occasioal

uke (for example, one of the randomly selected people just happened
to know the postmaster in the town the �nal recipient lived, so the
chain was very short), the average length of referral chains was six
people. Hence, the concept of Six Degrees of Separation between any
two randomly selected people in the continental US at the time of the
experiment.

Although things have changed { for one thing, there are more people
out there { certain assumptions about the Small World Problem can
still be made. That people still interact with each other, even over
large geographic distances, is clear, for example. In addition, people
are becoming more, not less, networked [31]. The number of links be-
tween people has probably grown, although a new experiment would
be required to prove that assumption.

Recently, attention has turned naturally to the World Wide Web.
The Web is a very connected network of pages, and hence people or
organisations. In addition, the Web is very information centric { the
resulting ties of linked pages are often more akin to citations in scholarly
works than social links, although these, too, exist. Recent work in this
area has found that the average number of links from one random web
page to another is in around 19 [1]. However, the actual shape of the
Web may in fact be less straightforward than such simple �gures suggest
[3], leading to additional problems with the traditional search engines,
on top of what they already have to deal with [17]. The Web, however,
is almost certainly a Small World [1, 29], or at least a collection of
Small Worlds.

We conjecture that the people connected through the Web and
through networks in general are part of a Small World in themselves,
and it is on this assumption that ACORN operates.

4. Architecture

Figure 1 shows an overview of the ACORN architecture as it stands
today. As can be seen, ACORN is, from the top level, a Client/Server ar-
chitecture. Clients, the user's interface to the ACORN system, present
their user interface via JSP pages and displayed to the user on any
standard web browser. Clients provide the ability to create agents,
organize received agents, describe a user's interests, and input details

fourth-draft.tex; 17/08/2001; 13:51; p.7

8 Marsh, Ghorbani & Bhavsar

of other users and their interests. This information is used in the agents
to better distribute themselves.

Figure 1. ACORN Architectural Overview

All community information the Client has is stored in a separate
user pro�le �le on the server side. This core contains user information,
references to agents received and sent, user preferences, and also in-
formation about the people in the user's database. Data about other
users is stored as email addresses allied with keyphrases and associated
weights.

The Main Servers in ACORN provide mobility capabilities to agents,
and also give ACORN a degree of persistence in information. All Client
data is stored (as a client core) on the server side so that, for example, if
the client shuts down, incoming agents can still be processed according
to user requirements. By the same token, we can provide automatic
redirection and recommendations to agents because the server can ac-
cess the client cores to match agent topics with known user interests in
the client core. Because of this structure, the user is able to log on to
the ACORN system from any machine with a simple web browser.

fourth-draft.tex; 17/08/2001; 13:51; p.8

ACORN 9

Agent migration is achieved by sending agent cores from server to
server. Like client cores, the agent core contains all the information the
agent needs to accomplish its tasks: addresses of people to visit, user
interests, document information and so on. When an agent reaches a
new site, the server at that site instantiates a new agent with the core
that has just been received, and lets the agent go on its way. At a
site, the agent can visit users, and communicate with (mingle with)
other agents at a central meeting point (which we call a Caf�e) to share
addresses and interests with others, thus aiming to extend the list of
addresses for people to visit.

Recent additions to the architecture are the Directory Server, which
provides the ability to track and control agents which are o� site, and
the Anonymity Server, which provides routines to anonymise InfoA-
gents before they are sent to the network, and to re-instantiate them
as necessary on their return.

5. Agents | Client, Server, InfoAgent, Anonymiser,

Directory Server

In order to provide the infrastructure for the mobile agents to perform
their tasks, the architecture uses static agents. These are the Client and
the various Servers. In addition, the Caf�es, with their managers and
blackboard agents, provide for information sharing between agents and
persistence of information. The following sections describe the Client,
Servers and Mobile Agents, how they interrelate and the tasks they
are designed for. Section 6 describes the Caf�es in more detail, since we
consider these to be of paramount importance in the architecture as a
whole.

5.1. Client

ACORN's Client serves a dual purpose. Its primary role is to provide
a user interface to the ACORN system. It allows the creation, brows-
ing, control, tracking, and deletion of incoming and outgoing ACORN
agents, and in this sense is much like any email client.

The second role of the Client is to maintain a user pro�le and per-
form information handling tasks. In this role, the Client acts as both
a �lter to incoming information (agents) and a form of `community
browser.' In its �ltering tasks, the Client can scan, prioritise and route
incoming agents according to the preferences based in the user pro�le
(which is controlled by the user and includes priority information, user
interests, contact information, and so forth). For more information on
the Client and user pro�le, see [22].

fourth-draft.tex; 17/08/2001; 13:51; p.9

10 Marsh, Ghorbani & Bhavsar

As a community browser, the Client tracks incoming agents and �les
information about these agent's owners (that which is made public by
the owner's Client on agent creation - see [22]). In addition, the Client's
user can input similar information, which takes the form of `person X

is interested in topics y; z; : : :' This information can be used at agent
creation to suggest possible recipients for an agent. Over time, then, the
Client can build up a fairly sophisticated world view of the communities
its owner belongs to. Again, this can be used in �ltering, prioritising,
and recommending tasks.

5.2. The Main ACORN Server

Much like a Web server, the ACORN Server resides at the point of entry
from a network to a site. All mobile agents must enter the site through
the Server. While the Client acts as a user-controlled information �lter,
amongst other things, the ACORN Server is a site �lter whose primary
task is to protect the site and decide whether a particular mobile agent
is allowed in. It also controls mobile agent migration carried out via
server-to-server communication. In addition, it acts as a permanent
repository for Client and resident mobile agents at a site, in order to
achieve persistence in agents.

When a mobile agent arrives at a site, the Server saves its state.
Clients communicate their state to the Server whenever they are started
up and at speci�ed intervals while they are running. The Server stores
the Client data and can augment it with messages for the user if any
are sent.

As well as the Main Server, the ACORN site architecture con-
tains two additional Servers | a Directory Server and an Anonymity
Server. Because of their direct application to the workings of the mobile
InfoAgents in ACORN, these are described below in Section 5.4.

5.3. InfoAgents | Mobile ACORN Agents

The primary distribution of information in ACORN is carried out by
its Mobile Agents, or InfoAgents. An InfoAgent in ACORN represents
a piece of information of whatever form its creator requires (image,
sounds, documents or sections of documents, etc.). In fact, the InfoA-
gent need not know anything about the information structure or type
since it does not attempt to do anything with the information beyond
distribute it, or at least, its metadata.

As shown in Figure 2, InfoAgents are in fact `thin' representations of
pieces of information, since they do not contain the information itself,
just a link to it and a set of metadata elements that describe it. In
addition, they contain a `thin' user representation in the form of a

fourth-draft.tex; 17/08/2001; 13:51; p.10

ACORN 11

list of user interests speci�ed with a set of user-de�ned keyphrases. In
addition, the InfoAgent carries three distinct lists:

� Recommended | a list of users to be visited

� Visited | a list of users that have been visited

� Known | a list of users who are not going to be visited but whose
data may be of interest to the agent's creator or other agents

Agent (information) Keywords

Dublin Core Metadata for object (information)

User Metadata (Keywords for interests, etc.)

Community Information and Ratings:

Recommended User List

Visited User List

Known User List

Explicit link to information

Unique Agent ID

Figure 2. ACORN Mobile (Info)Agent

The �rst two lists are relatively straightforward. The Recommended
list is a set of users the InfoAgent has been recommended to visit.
These recommendations can come from its creator at creation time or
afterwards (Section 5.3.2), from other users the InfoAgent has visited
(Section 5.3.4) or from other agents via mingling in Caf�es (section 6).
The InfoAgent proceeds through this list in a linear fashion (although
we are working on an optimisation of this process { see Section 8).

On visiting a user, the user's details are taken from the Recom-

mended list and are added to the Visited list. The process of visiting
(Section 5.3.4) may result in additional information being given to the
InfoAgent about the user and their interests. This is stored in the
Visited list, and will be used to update the Client's user pro�le data on
the agent's return.

fourth-draft.tex; 17/08/2001; 13:51; p.11

12 Marsh, Ghorbani & Bhavsar

5.3.1. Community-useable information

The �nal list the InfoAgent carries is an oddity at �rst, but in the
context of virtual communities is in fact extremely powerful. We call it
the Known list. Users in the Known list are not readily of interest to
the agent as it stands. In fact, any time the agent comes across others
in Caf�es, the chances are that some of these will be from users who
are not of interest. In these circumstances, the users and their interest
details are stored in the agent's Known list. This list is useful in two
major ways:

� Firstly, whenever the agent mingles with others, if a user in the
Known list relates to some other agents and their information, they
can be given to that agent to add to its Recommended list | this
is community based information sharing at its best.

� Secondly, when the agent returns to its home base, this information
can be given to the Client to add to the user's pro�le. Visiting
agents can be recommended to this user, or the Client's owner can
be advised of a new person to send information to if their interests
match in other ways.

The Known list is likely to become much more valuable in time
than either of the other two lists - it provides a source of community
information unavailable in any other way to mobile agents and ACORN
users, and radically enhances ACORN's
exibility.

5.3.2. InfoAgent Creation

Agent creation is in fact a relatively straightforward process. We have
attempted in our implmentation to automate the process as much as
possible. However, there remain areas where user input is required, as
with all messaging systems.

On creation, the InfoAgent needs to gather metadata about the
information which it is to represent. This metadata will be stored in
a Dublin Core metadata element set [13]. One of the bene�ts of the
Dublin Core in this instance is that no element is absolutely required,
and all elements can be duplicated. Thus for more than one document
name, or language, for example, we are able to represent the document
adequately. More importantly, the user is not required to give more
data than they feel is absolutely necessary and ACORN will still do
its work. One thing we do require is a set of keyphrases to describe
the information, and this is stored both in the Dublin Core and sep-
arately in the agent itself. This keyword list is what the agent uses
to match relevant users to which to route itself, hence its importance.
Given this importance, we are attempting to automate the process of

fourth-draft.tex; 17/08/2001; 13:51; p.12

ACORN 13

keyphrase discovery, at least for textual documents, and are able to use
automated techniques such as Extractor [28]. However, there remains
no adequate method of attaining keyphrases from, for example, music
�les or images, thus we require the user to do some additional work.
Our hope is that this work is not too onerous considering the fact that
the more keyphrases, and the more accurate they are, the better the
document will be matched to and thus routed to other users, to the
bene�t of the author of the information.

Other metadata that the agent can grab automatically and that is
extremely useful for community navigation is the owner's interest, in
keyphrase form, and potentially a list of recommended users to route
itself too. This list can be obtained from the Client by examining and
matching other users' interests in the owner's user pro�le. The owner
is also able to recommend users not in their pro�le (given these rec-
ommendations it's a dilemma as to whether we add these users to the
Client's user pro�le. We have decided against since, on returning, the
agent should have more accurate information about these individuals
that we can add as necessary).

The user is able to give the agent a time limit, at which limit the
agent will return to the user whether or not all of the recommendees
have been visited. In addition, an anonymous bit can be set, and if it is
the agent will proceed to an anomymiser to strip all information that
can potentially identify the user (see Section 5.4.2). Other information,
such as a subject for the agent, additional text messages, and so forth,
are also possible. Finally, the user can specify that the agent stay in
the Caf�e when empty | this is useful in allowing an agent to discover
potentially interested parties by agent mingling when the owner has no
suggestions for who to visit, but is also under the ultimate control of
the Caf�e Controller (see Section 6).

Once this information has been given (and we have a simple single
web page to allow this in our current ACORN implementation) the
agent is free to proceed in its lifecycle, the next step of which is to
migrate to the �rst user on its recommended list (if there is one | if
not, the agent migrates to the local Caf�e in the hope of �nding one or
more users before visitng them once found).

5.3.3. InfoAgent Migration

Migration in ACORN is very important to the system. Without migra-
tion, one agent cannot reach other agents to interact with them. Hence
information cannot be shared. In fact, as was mentioned above, only
information or queries carried by agents migrate. The agent's codebase
does not migrate. More recently we have been exploring an even thinner
agent, which moves only very minimal information from site to site and

fourth-draft.tex; 17/08/2001; 13:51; p.13

14 Marsh, Ghorbani & Bhavsar

stores the majority of an InfoAgent's data at its origin site (or at its
Directory Server | see Section 5.4.1 below.

When a mobile agent wants to migrate to another site, it informs the
Server at the present site of this fact. The site's Server �rst ascertains
that the mobile agent is allowed to move from this site via consulta-
tion with the remote Server. If so, the agent's state is passed to the
remote Server via ACORN Server-to-Server protocol. If not, it informs
the mobile agent, and the agent reorganizes its migration strategy (at
present, going to the next person on its list at another site).

5.3.4. InfoAgents { Visiting Users

When an agent arrives at an ACORN site, two types of interactions
between agents take place. The �rst interaction is that the mobile agent
may have a speci�c person (his/her Client) to contact. In this way,
information can be shared between the person and the mobile agent.
The second type of interaction takes place between mobile agents in
a Caf�e. Once all the recommended users on a site have been visited,
the agent should have an enlarged list of users to visit, and possibly
a set of query responses (which it can carry with it or send back to
its own user). Either way, it can be seen that the agent obtains more
community information as it migrates, amongst other things, and that
this information can be made use of at the end of the agent's life
(when it returns home to its user's Client to upload the community
information it has gathered).

5.4. Additional Services

5.4.1. The Directory Server

One of ACORN's main problems in the past has been the lack of
complete user control over their InfoAgents. Clearly, ACORN has been
designed such that the InfoAgents are capable of carrying out their
tasks with minimal, if any, user interaction beyond the initial agent
creation phase (see Section 5.3). However, it has long been a concern
that in some circumstances user involvement may well be of worth. For
example, there may be circumstances where the user wishes to recall
the agent altogether, or where the user does not wish the agent to visit
a speci�c recomendee. In these instances, the user needs to be able to
control the agent's path. In addition, we feel that it is of some worth
for the user to be able to know at any instant where their InfoAgents
may be.

To accomodate these requirements, we have adopted a Directory
Server approach [6]. In this approach, agents register with the Directory
Server on creation and before migration. Note that this registration is

fourth-draft.tex; 17/08/2001; 13:51; p.14

ACORN 15

not required| the user can choose not to have this additional overhead.
The Directory Server maintains a log and database of agents registered,
and every time a migration is planned, the agent contacts the Directory
Server to update its database entry.

The Directory Server has its own interface through which users and
system administrators can check the location and status of:

� Their own speci�c InfoAgents,

� Any public InfoAgents sent from this site,

� All InfoAgents sent from this site (system administrators only)

Extensions to the Directory Server architecture are either planned or
are currently in progress to allow users to recall agents at any time, and
to examine and alter agent path information (the Recommended list, as
described in Section 5.3) on the
y. The Directory Server architecture
also gives us the capacity to further enhance ACORN's security and
control mechanisms | for more information see Section 8.1.3.

5.4.2. The Anonymity Server

In ACORN's origins, information, although considered valuable, was
also considered to be public. Although not a comment on the socio-
political climate, this requirement of public information was sadly na��ve
(or at least over-enthusiastic on the part of the designer...) It is clear
that people value their privacy, at least in some fashion, in networked
applications (including e-Commerce applications). In order to accomo-
date this requirement of privacy we considered several options. One of
these was the introduction of encryption of InfoAgents, but this was
rejected as being overly problematic for both political and implemen-
tational reasons. In addition, encrypted agents are still problematic in
that they are obviously from a speci�c place. Knowing where something
is from is one step towards knowing who it is from (especially with
regards to organisations rather than people). What is more, when an
agent is decrypted, all the information is once more available { the
solution is an all or nothing one.

Ultimately, we have decided to focus on the concept of anonymity.
The Anonymity Server thus serves to create a situation where InfoA-
gents are able to do their jobs (as described above) but without giving
away anything which may give a clue to who may have sent them.
Naturally, this raises issues of trust (for example in information sharing)
and our solution re
ects this in certain sharing algorithms. However,
the solution is an extremely powerful one, giving ACORN considerable
new capabilities (for which, see Section 8.1.1).

fourth-draft.tex; 17/08/2001; 13:51; p.15

16 Marsh, Ghorbani & Bhavsar

The Anonymity Server quite simply strips an InfoAgent of any infor-
mation which could tie it to a person or geographic location. Anonymity
Servers can reside at any site, and indeed could be the raison d'être for a
speci�c site (a worthwhile service in itself). In other words, just because
an agent comes via a speci�c Anonymity Server does not mean it came
from that site originally. The Anonymity Server operates by �rst saving
all InfoAgent details, then creating a new unique ID for the InfoAgent.
Once done, a new Anonymous InfoAgent is created which has all of the
contents of the source InfoAgent (including Recommended, Known, and
Visited lists, and so forth) but with no identi�able information. The
Anonymous InfoAgent is free to proceed on its path, acting and inter-
acting exactly as any other InfoAgent but without giving any personal
data away. Thus the address of the Anonymous InfoAgent is that of
the Anonymity Server with a unique ID for agent identi�cation at that
Server. The path to the original user is now via the Anonymity Server
(and any path could go through several such Anonymity Servers. . .)

Once the Anonymous InfoAgent's task of distribution/search is done,
it returns to the Anonymity Server, where it is merged into the source
InfoAgent, which is then returned to its origin.

The �nal stage of this process, as yet unimplemented, is a secure
path between origin and Anonymity Server. It is here that encryption
can become of some use to us, and we are examining its possibilities.

6. Caf�e

One of ACORN's main strengths lies in the ability of InfoAgents to
share information amongst themselves. This allows for automated �l-
tering and forwarding of information without human intervention. The
process of information sharing is carried out in agent meeting places,
which we call Caf�es.

In the Caf�e, at certain times (explained later), all InfoAgents present
in a particular Caf�e give their community and personal data to the Caf�e
manager, which compares all data, sharing out any relevant community
data to agents who would �nd it of use, before sending out the agents.
The net result is that, on exit, agents potentially know more about the
community than when they came into the Caf�e.

For example, if two agents enter the Caf�e, one representing a doc-
ument about programming in Java (keyphrases: OOP, Objects, Java,
etc.), the other representing a query about Object Oriented program-
ming (keyphrases: Objects, OOP, Software Engineering, etc.), the Caf�e
will match the keyphrases (besides such an exact match, other tech-
niques can also be used, see Section 6.4) and take the relevant user

fourth-draft.tex; 17/08/2001; 13:51; p.16

ACORN 17

information from each agent, giving it to the other. The net result is
that the �rst agent will now visit the second agent's owner to present
its information, which may be of relevance, and the second agent will
visit the �rst agent's owner, hoping to learn more. Of course, we en-
visage that many more than two agents will be present in each Caf�e
Information Exchange, with a corresponding increase in the utility of
exchanged information. At present, each agent will visit the Caf�e at
every site it visits thereby spreading and gaining relevant information.
A site may have from zero to many Caf�es, each of which could be
dedicated to a speci�c genre of information. The decision about which
Caf�e to visit can be based on a similiarity measure or other criteria,
and is controlled by the Caf�e Controller, as can be seen below. In this
manner, the Caf�e construct automates community based information
sharing for agents.

6.1. Caf�e Architecture

The structure of a single ACORN Caf�e is shown in Figure 3. Simply,
each Caf�e has two main agents, the Caf�e Manager and the Blackboard.

Blackboard

Cafe Manager

Figure 3. Single ACORN Caf�e

fourth-draft.tex; 17/08/2001; 13:51; p.17

18 Marsh, Ghorbani & Bhavsar

6.1.1. Caf�e Manager

The Caf�e Manager is responsible for the mingling of agents in the Caf�e
at any given time. Each agent entering a Caf�e has a certain amount
of patience | a time limit beyond which they wish to have left the
Caf�e. Each Caf�e also has a maximum number of agents permissible
(this is manually set by the site owner at present). When one or both
of these limits is reached, mingling takes place (see Section 6.4). Once
mingling is �nished, all agents in the Caf�e at the time of mingling are
ejected. The exception to this rule is if an agent has been designated as
a permanent resident in the Caf�e on creation. Such agents can be used
to express an interest in a speci�c topic, for example, or to perform
advertising roles. Naturally, the Caf�e manager ultimately controls if
they can stay or not (since they take up space and time).

6.1.2. The BlackBoard

The second Caf�e agent is the Blackboard. The Blackboard serves the
purpose of maintaining some degree of persistence in agent information.
It is clear from the above discussion that the mingling process followed
by agent ejection with no history means that there is a high probablility
that some information that may be of use is lost. For example, agent Y
may have information relevant to agent Z, but unless Y and Z are in
the same Caf�e at the same time, they will never share that information,
despite going to the same Caf�e at di�erent times.

The Blackboard solves this dilemma to some extent. Any agent, on
entering the Caf�e, may choose to interact with the Blackboard agent.
The Blackboard is given the agent's list of interests and contact infor-
mation (its owner's ACORN address). This information is prioritised
according to Blackboard rules (see below) and stored if applicable.
In addition, the Blackboard gives a list of matching topics and the
addresses of the users allied with them. The agent can add these to
its distribution list. Thus, agent information in Caf�es is not lost when
agents leave the Caf�es.

6.1.2.1. BlackBoard Rules

The BlackBoard agent follows strict rules on how to store the infor-
mation that is given to it by agents to achieve persistence. These rules
serve to limit the amount of space used at a Server site, and to en-
sure that information stays current in Caf�es. There are in fact several
strategies that can be used here, and which follow classic rules for
Queues, Deques, and so forth. ACORN's BlackBoards are at present
using a FIFO methodology, with space limit of 50 agent lists. These
lists are not limited in size, however. Current ACORN setup allows
the administrator of a Server Site to change this value on startup.

fourth-draft.tex; 17/08/2001; 13:51; p.18

ACORN 19

Prioritisation of lists is based on order of entry into the system. Note
that there can be several ways of dealing with prioritisation, however.
These rules are at present only able to be hard-coded into the current
system. We are investigating di�erent prioritisation methods, and are
also investigating adding more `intelligence' to the BlackBoard, to allow
communication between BlackBoard agent and InfoAgent such that
more relevant information is returned in response to BlackBoard queries
from InfoAgents.

In addition to BlackBoard rules, there are concerns about more
sensitive information or information that is entirely in
ux as far as
the creator of the InfoAgent is concerned. It should be noted that
InfoAgents are free not to put information on the BlackBoard at all
| it is entirely the choice of the InfoAgent.

6.2. Multiple Caf�es

An ACORN site can in fact have any number of individual Caf�es
(including none at all, although this removes one of ACORN's main
strengths). This is shown in Figure 4.

Manager

BB

Manager

BB

Manager

BB

Cafe
Controller

Figure 4. Multiple ACORN Caf�es with Caf�e Controller

Each Caf�e at a site has associated with it a set of topics for agents
which it is willing to accept. Thus, agent X can enter a speci�c Caf�e

fourth-draft.tex; 17/08/2001; 13:51; p.19

20 Marsh, Ghorbani & Bhavsar

iff one or more of X's keyphrases match one or more of that Caf�e's
topic list. In this way, we are able to provide a more speci�c matching
between similar agents. All of the Caf�es at a site are monitored and
controlled by the site's Caf�e Controller. The Controller keeps track of
all Caf�es and their topics and is responsible for routing agents to and
from Caf�es.

On entering a site and choosing to enter a Caf�e, an agent �rst in-
teracts with the Caf�e Controller for that site. The Controller compares
agent and Caf�e keyphrases and routes the agent to the most relevant
Caf�e. Note that the agent can choose to go to any number of Caf�es
if its topics match. The Controller manages this process, sequentially
routing the agent from Caf�e to Caf�e as necessary. Within individual
Caf�es, the process is as described above and in Section 6.4.

6.3. Dynamic Caf�es

In the course of our experiments and usage of ACORN it became clear
that, initially, a single Caf�e per server was not enough: single Caf�es are
too generic and result in information sharing (mingling) between agents
that is clumsy and not speci�c enough for specialised InfoAgents. Our
�rst solution to this problem was the introduction of multiple Caf�es
as described above. However, this solution su�ers from its own set of
problems, not least that it is also far too constraining when we consider
that the agents may well have extremely diverse contents as regards
the information they carry. It is worth noting, however, that dedicated
Caf�es are indeed an extremely powerful added value to any site, since
they ultimately allow that site to provide a specialised service to chosen
classes of InfoAgents. However, the problem remains for less specialised
InfoAgents, or those that do not �t the mould.

A simple solution to this problem is to include a generic Caf�e on
any server, such that, if there is no speci�c Caf�e for an agent to join
sensibly, there is always at least one Caf�e for it to potentially mingle
with others. With some thought, it seems clear that this solution simply
brings us back to the original problems we experienced with a single
Caf�e per server.

Our most recent innovation within ACORN is to introduce the con-
cept of dynamic clusters of InfoAgents for information sharing. This
can also be thought of as just-in-time Caf�es. As can be seen in Figure
5, in this system, the InfoAgents register with the Caf�e Controller as
usual, but once in the Caf�e Space on the server they become part of a
community in
ux. Continually, the agents are examined and clusters of
agents are formed dynamically such that those whose interests closely
match are clustered together. Once an agent enters or leaves the Caf�e

fourth-draft.tex; 17/08/2001; 13:51; p.20

ACORN 21

space, the clusters are re-examined and potentially reorganised to take
into account the addition of, or loss of, the new information. The result
is a much more closely �tted solution where agents are guaranteed to
be able to �nd similar others if they exist in the Caf�e Space.

C
 A

 F
 E

 S

 P
 A

 C
 E

BB
Manager

BB
Manager

BB
Manager

BB
Manager

BB
Manager

Dynamic Clusters

Cafe Controller

Figure 5. Dynamic ACORN Caf�es | Just-in-time Caf�e Creation

In order to dynamically create Caf�es that unite specialised InfoA-
gents, a systematic way of comparing and assigning agents to Caf�es
must be proposed [5]. In this case, it is suggested that the dynamic
K-means algorithm (see for example [27]) be applied to compare and
assign these agents to new or existing clusters. Each cluster corresponds
to a unique Caf�e.

Each cluster is de�ned as having a center composed of a normalized
vector of keywords and corresponding weights that re
ect the interests
of all members of the given cluster. It is calculated by averaging the

fourth-draft.tex; 17/08/2001; 13:51; p.21

22 Marsh, Ghorbani & Bhavsar

vector of keywords and corresponding weights of each member of the
cluster. InfoAgent membership to a particular cluster is dependent on
the Euclidean distance from the InfoAgent's keyword vector to the
given cluster center. In this case, the InfoAgent will join the cluster
whose center is geometrically closest to its own. In the event of an
unacceptably large distance to the nearest cluster, the InfoAgent is
assigned to a new cluster that contains a center equal to the InfoAgent's
keyword vector (i.e., a new cluster is created).

Upon joining and leaving the cluster, the cluster's mean center is
adjusted to re
ect the change in the members' keyword interests. As
such, clusters have a dynamic nature that allow for the interests of the
cluster to change with time as the members' interests change. At the
same time, the cluster population is dynamic to re
ect the variety of
interests of the InfoAgents.

Within the implementation, each InfoAgent is assigned to one unique
cluster. This unique assignment to a highly specialized subset of the
InfoAgent population will minimize the quadratic mingling that occurs
amongst InfoAgents in any given Caf�e.

It is clear that the addition of dynamic clusters to the Caf�e Space is
valuable and provides for a powerful information sharing mechanism.
However, we feel it appropriate to couple the dynamic clusters with the
already extant specialised Caf�es, since we conjecture that specialised
Caf�es allow agents to select sites to approach simply for their recognised
`expertise' in a given topic, and allow sites to successfully position
themselves as specialised information servers. At the same time, adding
dynamic clustering to this facility allows more genericity and therefore
utility to non-specialised InfoAgents.

6.4. Information Sharing

People create InfoAgents to work for them, but their purposes may
not be the same. For example, some people may create InfoAgents for
searching for information, while others may create them for distribut-
ing information to relevant people. One of the important aspects of
the information retrieval and provision is to share information among
InfoAgents. In information sharing, an InfoAgent can receive informa-
tion from and provide information to other relevant InfoAgents. We
use keyphrases to represent concepts such as the user's interests, the
contents of a document carried by an InfoAgent, and the information
being searched. InfoAgents use these keyphrases to �nd other relevant
agents to exchange information. In addition, each of these keyphrases
is weighted for importance (on a scale from 0 to 100) by the user. These

fourth-draft.tex; 17/08/2001; 13:51; p.22

ACORN 23

weights can be used in matching process (and indeed in the �ltering
process when an InfoAgent is delivered to a Client).

There are several di�erent methods available to the Caf�e Managers
when mingling the InfoAgents in the Caf�e, from extremely simple to
relatively complex. The following sections describe the matching tech-
niques we have implemented for ACORN to date. Section 7 presents
evaluation experiments and timing results.

6.4.1. Exact Matching

In ACORN's original incarnation, two InfoAgents shared information
whenever there was at least one keyphrase match between the two of
them [22]. As was stated above, InfoAgent document metadata and
associated owner interests are presently described in terms of simple
keyphrase lists with possible associated weights. Thus, each InfoA-
gent carries two lists: one to describe the information it represents,
and one to describe owner interests. In Caf�e mingling, both of these
lists are consulted in order to match InfoAgents. This is because we
make the assumption that the creator of a document is interested in
what the document contains, even should a keyphrase only be listed
in document keyphrases, not in owner interests. Although a simplistic
assumption, we feel it can potentially increase the validity of InfoAgent
recommendations.

The mingling process is in fact relatively straightforward and in
its simplest form is an exact keyphrase matching exercise, where each
InfoAgent's keyphrase, from both owner and information lists, is com-
pared with each other InfoAgent's keyphrase. If any match, the doc-
ument in question is deemed of relevance to the other owner, and
the other owner's address is added to the Recommended list, along
with a list of their interests (derived from combinng owner and in-
formation keyphrase lists). If there is no match, the information can
still be added to the Known list for potential future use, and to learn
community knowledge. Note that, if an address has already been vis-
ited or recommended, or is on the Known list, the information is not
duplicated.

Figure 6 shows this process in a slightly simpli�ed form. For the
sake of simplicity, we have neglected to add the keyphrase lists to the
agents at the end of the mingling process. Ordinarily, at the end of the
process, the lists would hold both address and interest information. For
the sake of clarity, we describe the mingling process shown in Figure 6
here.

At the onset of the mingling process, there are three InfoAgents in
the Caf�e. These belong to users A@addrp1, B@addr-2, and C@addr-

1. For simplicity's sake, we refer to these as A, B, and C. Note that,

fourth-draft.tex; 17/08/2001; 13:51; p.23

24 Marsh, Ghorbani & Bhavsar

Keys:

Keys:
C

 A
 F

 E

M
 I

 N
 G

 L
 I

 N
 G

A@addr−1

Chess, Checkers, Board games

User: Board games, Cars, Cats, Fishing

Vis

Rec:

K@addr−29, C@addr−1

Kno: Q@addr−51, M@addr−58
Z@addr−28, W@addr−2, B@addr−2

Vis

B@addr−2

Keys: Fishing, Rod&lines, Bait

User: Cars, Fishing, Jogging, Canoes

Q@addr−51: Fishing, Cars;
M@addr−58: Fishing, Boxing

Rec: Z@addr−28, K@addr−29
K@addr−51, G@addr−58, W@addr−2,

A@addr−1, X@addr−28

Kno: C@addr−1, D@addr−23

Keys: Canoes, Kayaks, Boats

User: Canoes, Boxing, Jogging, Hiking, Chess

Vis

Rec:

Kno: G@addr−58, D@addr−23, A@addr−1, M@addr−58,
Z@addr−28, Q@addr−51, K@addr−51, X@addr−28,
K@addr−29

C@addr−1

A@addr−1
Keys: Chess, Checkers, Board games

Board games, Cars, Cats, FishingUser:

Vis K@addr−5:Chess, Cars;
G@addr−58:Checkers, Boxing

Rec: D@addr−23: Chess;
X@addr−28:Chess, Fishing

Kno:

B@addr−2
Keys: Fishing, Rids&lines, bait

User: Cars, Fishing, Jogging, Canoes

Vis Q@addr−51:Fishing, Cars;
M@addr−58:Fishing, Boxing

Rec: Z@addr−28: Fishing;
K@addr−29:Checkers, Fishing

Kno:

C@addr−1
Canoes, Kayaks, Boats

User: Canoes, Boxing, Jogging,

Hiking, Chess

Vis

Rec: W@addr−2: Canoes, Baits, Fishing

Kno:

K@addr−5:Chess, Cars;
G@addr−58:Checkers, Boxing

D@addr−23, X@addr−28

W@addr−2, B@addr−2

Figure 6. Information Sharing between Agents | Mingling in the Caf�e

although A and C come from the same local Server, they need not be
aware of each other in the �rst place, as is the case here. Note also
that it is possible for one user or InfoAgent to know of another while
the reverse need not be the case (at least until an InfoAgent visits the
known other). Finally note that the addresses (e.g., A@addr-1) serve
in this example as placeholders for real ACORN addresses, which are
in fact exactly the same in format as standard email addresses.

In this example, A's InfoAgent represents a document whose keyphrases
(Keys) are Chess, Checkers, and Board Games. Also, A's interests
(User) are listed as Board Games, Cars, Cats, and Fishing. As can be
seen, B's and C's InfoAgents hold similar lists.

As with all InfoAgents, A's, B's and C's InfoAgents have three lists:
Visited (Vis), Recommended (Rec) and the Known (Kno) list. Here,
A's InfoAgent has already visited K@addr-51 and G@addr-58. From

fourth-draft.tex; 17/08/2001; 13:51; p.24

ACORN 25

these visits, the InfoAgent has learned that G has interests in Chess

and Cars, and G has interests in Checkers and Boxing (this is a good
thing for both since the InfoAgent represents information about Chess,
Checkers and Board Games. . .). The InfoAgent also has two users on its
Recommended list: D@addr-23, whose interest as far as the InfoAgent
knows is only in Chess, and the slightly more interesting X@addr-28,
who at least as well as Chess has another interest in Fishing. The
Known list is empty. Again, similar situations, with di�erent users and
interests, pertain to B's and C's InfoAgents. The Known list is empty
for all the InfoAgents.

The mingle process simply matches keyphrases in its Exact Match-
ing incarnation. In this example, A and B InfoAgents are compared
�rst, then A and C, followed by B and C. In fact, there's no real
reason to the order as long as every InfoAgent gets compared with
every other. In the �rst comparison, A with B, each keyphrase in A's
lists of Keys and User keyphrases are �rst matched with B's Keys
list. Note that the User list is not compared since we are trying to
ascertain if the B InfoAgent should visit A. In this instance, there is
a match | A likes Fishing and B's InfoAgent has a keyphrase for
Fishing in its document description list. As a result, A@addr-1, along
with her interests: Chess, Checkers, Board Games, Cars, Cats, and
Fishing is added to B's InfoAgent's Recommended list. in due time,
B's InfoAgent will visit A. The reverse does not attain though |
there are no matches between B's interests and the information A's
InfoAgent represents. However, in the spirit of building community
knowledge, B@addr-2, along with a list of B's interests: Fishing, Rods
& Lines, Bait, Cars, Jogging, Canoes are added to the Known list of
A's InfoAgent. Somewhere down the line, this could be of use to A (for
example were A to write a missive on Fishing by Canoe) or to another
InfoAgent that A's current InfoAgent might bump into. Again note
that, although the interest lists are copied, they are not shown in the
diagram.

The process continues with more comparisons and matching until all
InfoAgent details are compared and exchanged. Figure 6 shows initial
and �nal states for the interested reader to work through.

With a little thought, it soon becames clear that using such exact
keyphrase matching, an InfoAgent may collect extremely large amounts
of information from other InfoAgents and �nally deliver this infor-
mation to its owner. In our opinion, this is not an eÆcient way of
searching and distributing information. In addition, the comparisons
between keyphrases are always O(n2) where n represents the number
of keyphrases, and for large numbers of keyphrases in large numbers of
InfoAgents, this is clearly a problem.

fourth-draft.tex; 17/08/2001; 13:51; p.25

26 Marsh, Ghorbani & Bhavsar

This matching method makes it almost impossible for people to
extract relevant, useful, and interesting information from information
sources. In the same vein, it is also impossible for people to distribute
their information to other relevant people.

The next section describes techniques we used to alleviate some of
these problems - Substring Indexing and Cosine Similarity Measures.

6.4.2. Two Di�erent Similarity Measures

Similarity measures are widely used in the information retrieval (IR)
community and are sometimes referred to as the matching functions,
the correlation coeÆcients, or the selection algorithms. In IR, similar-
ity measures are the mechanisms through which the retrieval software
makes a comparison between document and query representations to
e�ect retrieval [11]. A similarity measure is any function that assigns a
value of matching coeÆcient to a pair of vectors. Each vector includes
a set of attributes that characterizes an entity. Similarity measures
have been used to cluster documents and determine similarity between
a query and a document. When the similarity measures are used to
cluster documents, they are designed to quantify the likeness between
documents. If one assumes that it is possible to group objects in such
a way that an object in one group is more like the other objects of that
group than it is like any object outside that group, then a clustering
method enables such a group structure to be discovered. When these
measures are applied to determine the similarity between a query and
a document, they serve in matching or ranking. In this section we
adapt two similarity measures used in IR to share information among
InfoAgents in the Caf�e, the substring indexing method [24] and the
Cosine measure method [25]. For more information, see [33].

6.4.2.1. Substring Indexing

Substring indexing is simply the proportion of common terms in two
documents (or InfoAgents). It is expressed as follows.

Let ai represent i-th agent and K(ai) represent the set of keyphrases
associated with agent ai. Further, K

(ai) = fkai

1 ; k
ai

2 ; : : : ; k
ai

mg where
kai

j represents the j-th keyphrase of agent ai. Adapting the substring
indexing method, the similarity of two agents, Sa1;a2 , is the proportion
of common keyphrases carried by the two agents and is given as follows:

Sa1;a2 =
2:jK(a1) \K(a2)j

jK(a1)j+ jK(a2)j
(1)

where j:j represents the cardinality of a set. jK(a1)\K(a2)j is the number
of keywords shared by both agents. Sa1;a2 is equal to 1:0 for agents

fourth-draft.tex; 17/08/2001; 13:51; p.26

ACORN 27

with identical sets of keyphrases and 0:0 for agents with no common
keyphrases.

6.4.2.2. Cosine Measure

In the substring indexing similarity measure, all keyphrases are
considered to be of the same importance. However, in reality in most
of the cases, the keyphrases have di�erent weights representing their
importance.

Let w
(ai)
j represent the weight of the keyphrase k

(ai)
j and K(ai)

represent the keyphrase vector de�ned as follows:

K(ai) =
n�

k
(ai)
1 ; w

(ai)
1

�
;
�
k
(ai)
2 ; w

(ai)
2

�
; : : : ;

�
k(ai)
m ; w(ai)

m

�o
(2)

With the Cosine measure method [25] we de�ne the similarity of two
InfoAgents as

Sa1;a2 =

P
i w

(a1)
i w

(a2)
irP

i

�
w
(a1)
i

�2rP
i

�
w
(a2)
j

�2 (3)

The Cosine measure method �nds the cosine of the angle between
two vectors de�ned in the space of keyphrases. Note that each keyphrase
represents a unique dimension in this space. Sa1;a2 is equal to 1:0 for
InfoAgents with identical keyphrase-weight pairs and 0:0 for agents
with no common keyphrases.

7. Evaluation

ACORN has been implemented in Java from its conception, and has
passed through several incarnations since then. Presently, ACORN is
implemented using J2SE, and uses JSP for its user interface require-
ments. We have found that the combination of Java's powerful commu-
nications and data abstraction capabilities coupled with the
exibility
and portability of JSP and HTML as interface description languages
provides for an eÆcient and easily extensible modular system.

This section presents some of the experiments we have carried out
with ACORN in terms of timing and evaluation in the past [2, 33]. It
also presents some of the changes we have made to the system in order
to facilitate such testing, and discusses further evaluation possibilities.

fourth-draft.tex; 17/08/2001; 13:51; p.27

28 Marsh, Ghorbani & Bhavsar

7.1. Information Sharing

7.1.1. Comparison of Similarity Measures

This section describes the evaluation of two of the similarity measures
explained in Section 6.4.2, the sub-string indexing method and the
Cosine measure method. For comparing the methods we use a sample
of 49 article abstracts from technical magazines and web pages. We
consider 49 ACORN agents each carrying keyphrase-weight pairs of
only one of these articles.

The 49 article abstracts are classi�ed into �ve categories based on
their content: Category 1 (articles 1-11), Category 2 (articles 12-22),
Category 3 (articles 23-32), Category 4 (articles 33-42), and Category
5 (articles 43-49). Each category represents a speci�c topic. The text
document indexing software Extractor [28] is used to obtain keyphrases
and their weights. The details of these articles and the output obtained
using Extractor are given in [32]. One article from each category was
selected and the similarities between this article and the entire set of
articles from all categories were calculated using equations (1) and (3).
Note that the similarity between two articles is commutative.

Figures 7 and 8 show the similarity measure results using the Cosine
measure method and the substring indexing method. It is seen from
Figure 7(a) that for the article 12 of Category 2, the Sa12;a12 = 1:0.
Further, the degree of similarity of article 12 with the rest of the articles
of its category is much higher than the similarity with articles from
other categories. For the substring indexing method, as seen in Figure
7(b), the Sa12;a12 = 1:0. However, there is not much di�erence seen in
the degree of similarity with articles from its own Category 2 as well as
Category 1. Thus, the Cosine measure method is found to be superior
than the substring indexing method. Similar observations can be made
from Figure 8 and additional results given in [32].

7.1.2. Recall-Precision with Cosine Measure

In information retrieval, precision and recall are commonly used to
measure the e�ectiveness of the retrieval methods. Recall measures the
ability of a method to retrieve useful documents. It is de�ned as the
proportion of relevant material retrieved. Precision, conversely mea-
sures the ability of a method to reject useless materials, and is de�ned
as the proportion of retrieved material that is relevant to a query.
In the following discussion, we adapt the de�nitions of precision and
recall used in information retrieval to explore the quality of information
exchange among InfoAgents.

The InfoAgents in a Caf�e are divided into two sets, the set of In-
foAgents, A, that carry relevant information and those that do not,

fourth-draft.tex; 17/08/2001; 13:51; p.28

ACORN 29

0

0.2

0.4

0.6

0.8

1

si
mi
la
ri
ty

1 6 11 16 21 26 31 36 41 46
articles

(a)

0

0.2

0.4

0.6

0.8

1

si
mi
la
ri

ty

1 6 11 16 21 26 31 36 41 46
articles

(b)

Category 1: article 1 - 11
Category 2: article 12 – 22
Category 3: article 23 - 32
Category 4: article 33 - 42
Category 5: article 43 - 49

Category 1: article 1 - 11
Category 2: article 12 – 22
Category 3: article 23 - 32
Category 4: article 33 - 42
Category 5: article 43 - 49

Figure 7. Similarity of article 12 (from category 2) with all articles: (a) the Cosine
measure method, (b) the substring indexing method

�A. Let a represent the number of InfoAgents from A that are selected
by the similarity measure method for information exchange. Further,
b = jAj � a. Let c denote the number of InfoAgents also selected
from �A for information exchange and �nally d = j �Aj � c. Based on
these notations, the precision (p) and recall (r) measures are de�ned
as follows:

p =
a

a+ c
(4)

r =
a

a+ b
(5)

The above precision and recall de�nitions were suÆcient and appro-
priate for the early IR systems, which were merely capable of boolean
searching. In the early IR systems, a user's query was expressed as a
boolean combination of keywords, and the systems retrieved the doc-

fourth-draft.tex; 17/08/2001; 13:51; p.29

30 Marsh, Ghorbani & Bhavsar

0

0.2

0.4

0.6

0.8

1

si
mi

la
ri
ty

1 6 11 16 21 26 31 36 41 46
articles

(a)

0

0.2

0.4

0.6

0.8

1

si
mi
la

ri
ty

1 6 11 16 21 26 31 36 41 46
articles

(b)

Category 1: article 1 - 11
Category 2: article 12 – 22
Category 3: article 23 - 32
Category 4: article 33 - 42
Category 5: article 43 - 49

Category 1: article 1 - 11
Category 2: article 12 – 22
Category 3: article 23 - 32
Category 4: article 33 - 42
Category 5: article 43 - 49

Figure 8. Similarity of articles 35 (from category 4) with all articles: (a) the Cosine
measure method, (b) the substring indexing method

uments matching the constraints represented by the query [4]. Unlike
early IR systems, our current information sharing system uses vector-
space model based on keyphrase-weight pairs. It is used to calculate the
degree of similarity between two InfoAgents. The owner of an InfoAgent
can assign a similarity threshold, �, to his/her agent. An InfoAgent a1
will share information with another InfoAgent a2, if Sa1;a2 > �a1 .

The choice of the threshold will greatly in
uence the precision/recall
of the system. For example, when an InfoAgent communicates with
other InfoAgents, if it shares information with a greater number of
relevant others, the system's recall value increases. However, when it
shares information with larger number of irrelevant others, the pre-
cision decreases. In order to take this trade-o� into consideration, we
evaluate the keyphrase-based information sharing system using average
of precision and recall values over the set of 49 articles for di�erent
thresholds.

fourth-draft.tex; 17/08/2001; 13:51; p.30

ACORN 31

Table I lists the average precision and recall values for a test data
set (see [32] for details). Figure 9 depicts the average precision versus
average recall for various similarity thresholds for the test data set given
in Table I. It is seen that as the similarity threshold is increased, the
precision increases whereas the recall value decreases.

Table I. Average precision and recall for various similarity thresholds.

Similarity Threshold

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision 0.82 0.9 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Recall 0.95 0.95 0.93 0.85 0.75 0.64 0.41 0.38 0.21 0.1

0.8

0.85

0.9

0.95

1

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
Recall

ST = 0.1

ST = 0.05

Figure 9. Average precision vs. average recall for various similarity thresholds (�).

7.1.3. Execution Time with the Cosine Measure

Experiments were carried out to study how the Cosine measure method
a�ects the execution time of ACORN. For each InfoAgent a set of
keyphrases with random weights was generated. We de�ne the mingle-
time as the time needed for information sharing in the Caf�e. Ten
experiments with number of agents ranging from 10 to 100 were con-
ducted for ACORN, with and without the Cosine measure method.

fourth-draft.tex; 17/08/2001; 13:51; p.31

32 Marsh, Ghorbani & Bhavsar

0

20

40

60

80

100

120

Ti
m

e
(s

ec
on

ds
)

0 20 40 60 80 100
Number of Agents

Mingle Time with Cosine Total Exection Time with Cosine

Mingle Time for without Cosine Total Exection Time without Cosine

Figure 10. The execution times for ACORN with and without the Cosine measure
method.

Figure 10 shows the experimental results. The execution time is the
average of three runs for each experiment. It is seen that the mingle
time of ACORN with Cosine measure is smaller than that of ACORN
not using the Cosine measure. This is due to the selective information
sharing carried out in the Cosine measure method. Such information
sharing also reduces the total execution time, as can be seen in Figure
10.

7.2. Dynamic Clustering

As documented in Section 6.3, we have adopted a just-in-time approach
to Caf�e creation in which we use dynamic K-means clustering to cre-
ate clusters of similar InfoAgents on the
y. This should result in a
more closely matched sharing of information in the mingling of the
InfoAgents in the cluster. There are, however, issues which need to
be measured in this process, and this section presents some of the
experiments and associated results we have obtained. This portion of
the evaluation of ACORN should be considered to be preliminary since
we are in the process of optimising the clustering process (which will
result in better timing results if nothing else). Note also that once
InfoAgents are in their clusters, the likelihood of �nding similar others
is increased over single Caf�es and at least as good as multiple Caf�es, so
we expect a dramatic improvement in mingling results and speed given
the already similar InfoAgents.

fourth-draft.tex; 17/08/2001; 13:51; p.32

ACORN 33

Our experiments concern the timing and eÆciency of clustering for
the dynamic K-means clustering process we have adopted.

7.2.1. Experimental setup

In order to test the e�ectiveness of the K-means algorithm, a population
of virtual InfoAgents and interests must be established. In this ex-
periment, one hundred randomly generated keywords were used. Each
keyword was assigned a random weight value. The virtual InfoAgent is
represented as a normalized vector of randomly chosen keywords and
corresponding weights. Each established virtual InfoAgent is allowed
to enter the Caf�e Space in a serial fashion. As each InfoAgent enters,
the Caf�e Controller must decide to generate a new cluster or simply
assign the incoming agent to a given cluster. These experiments aim to
study the timing associated with the process along with the minimum
cluster distance limit parameter of the algorithm.

The controlled dimensions of the study include the following: virtual
InfoAgent population, keywords per InfoAgent, and minimal cluster
distance. The virtual InfoAgent population represents the total num-
ber of InfoAgents that will be assigned to clusters. It is allowed to
vary betwen one and �fteen hundred with increments of sixty-four.
The keywords per InfoAgent are the total number of keywords that
will be assigned to each InfoAgent. They vary from two to twenty
with increments of two. Lastly, the minimum cluster distance limit
represents the minimum distance that an InfoAgent must be from its
closest cluster in order to generate a new cluster. It is allowed to vary
from 0.2 to 0.8 with increments of 0.02.

Through the incremental changing of these variables, various times
for process completion are noted and conclusions are drawn concerning
an optimal value for the minimum cluster distance limit.

7.2.2. Results

Initially, the process completion time was studied for the case of all
InfoAgents having �ve random keywords. As depicted in Figure 11,
the cluster assignment time increases quadratically as the InfoAgent
population and minimum cluster distance limit increase. A curious
valley develops under the condition of a minimal cluster distance of 0.4.
Figure 12 denotes a slice of the surface graph with the minimum cluster
distances of 0.2 to 0.8 with increments of 0.2. Both graphs suggest that
a value of 0.4 is ideal for the �xed case of all InfoAgents having �ve
keywords.

Figure 13 depicts the scenario of allowing the keywords per InfoA-
gent to vary as the InfoAgent population remains at its maximum of
�fteen hundred. The valley of completion time exists so long as the

fourth-draft.tex; 17/08/2001; 13:51; p.33

34 Marsh, Ghorbani & Bhavsar

Figure 11. Completion time for di�erent minimum distances with 5 keyphrases per
InfoAgent

Figure 12. Completion time for di�erent minimum distances with 5 keyphrases per
InfoAgent

number of keywords per InfoAgent varies between three and seventeen.
As such, the optimal value for the minimum cluster distance limit is
dependent upon the average number of keywords per InfoAgent.

In Figure 13, it is assumed that InfoAgents will have an average
of �ve keywords of interest. Hence, the determination of an optimal
value of 0.4 is appropriate. In the event that �ve keywords is not the
average, there will exist an optimal value for the minimum distance that
can be ascertained via experimentation. Further work will be devoted
to automating this process.

fourth-draft.tex; 17/08/2001; 13:51; p.34

ACORN 35

Figure 13. Completion time for varying number of keyphrases per InfoAgent

7.2.3. Comments on Dynamic Clustering

The advent of just-in-time Caf�e building, or dynamic clustering, has
given a boost to the quest for more relevant information sharing in
ACORN. Although our initial implementation is relatively straight-
forward and does not attempt radical eÆciency measures to improve
speed, we are nevertheless pleased with the results we have obtained
in our performance evaluations. It seems clear that given more eÆcient
algorithms the clustering process would add little or no overhead to
the previous systems in ACORN where the Caf�e Controller controlled
agent access to Caf�e Space in a di�erent fashion (via boolean keyphrase
comparisons).

8. Ideas for Further Work

Clearly, given the complexity of the social structures we are hoping to
leverage with ACORN, and the obvious adaptibility and power of the
architecture itself, there is much to do. A currently working version
of ACORN contains all of the capabilities documented in this paper
and we consider it to be the �rst publically viable ACORN version.
However, we also envisage continuing work on ACORN in the future,
both short and medium-long term. This section documents some of our
ideas for the future extension and application of ACORN.

fourth-draft.tex; 17/08/2001; 13:51; p.35

36 Marsh, Ghorbani & Bhavsar

8.1. Short Term Ideas

8.1.1. Extending Anonymity

One of the more powerful additions to ACORN we have applied recently
concerns anonymity. Our current implementation, however, leaves some-
thing to be desired. Put simply, the way we deal with trust and transi-
tivity of information sharing does not �t our view of how information
should behave, especially in more sensitive applications (be they per-
sonally or commercially sensitive). Consider, for example, a situation
where an anonymous agent, A, seeks some information from another
agent, X, that a third party, Y , knows (and X knows Y knows this,
while Y knows X knows, and so on...) In the current implementation,
X would just give Y 's address to the anonymous agent, given certain
caveats as mentioned above. Ordinarily, this may be a reasonable thing
to do, but in certain circumstances where the information may be sen-
sitive in some way, Y may be justi�ably upset with X for revealing his
knowledge of this piece of information. Clearly we need a solution to
this problem. We are currently working on extending the anonymous
server to provide for anonymous forwarding of information, while ex-
tending the agents themselves to include a more private list of known
community members, and a private list of potential recommendations.
The solution to this problem is then as follows: X is free to tell A that
she knows of someone who can help, but is not free to announce that
it is Y . X then contacts Y by sending a Noti�cation Agent (simply a
new kind of InfoAgent with limited contents) including a reference to
A (which is in fact an ID on the Anonymity Server and the address
of that Server). Y is then free to contact A by sending an ordinary
InfoAgent to the Anonymity Server which can forward it on to the
relevant anonymous user, the owner of A. This user is free to contact
Y in person or through another agent.

The power of this solution becomes clearer when one considers that
Y need not expose himself at all, since he is capable of sending an
anonymised agent via a di�erent Anonymity Server (or even the same
one if he trusts it enough), which can be replied to by A's owner with
another anonymous agent. Neither party need know who the other is
whilst still being capable of entering into a useful communication. We
believe this is one of the most powerful aspects of ACORN, possibly
second only to that of the Caf�e mingling and clustering techniques we
use.

8.1.2. Noti�cation of Recommendation

The Noti�cation Agent is another extension which in fact does not need
anonymity to be of use. In any recommendation, it should be possible

fourth-draft.tex; 17/08/2001; 13:51; p.36

ACORN 37

to inform the recommended party that they have been recommended,
to whom, and in what context. This is worthwhile not only because
the recommended party has time to formulate appropriate responses
to the recommendee, but also because, for example in a commercial
environment, suitable consideration can be given to the recommender
for their recommending services (a commission, in other words). The
Noti�cation Agent allows this process to take place. At every recom-
mendation, the parties concerned have the option of requesting the
Caf�e or Server at which they are working to send the Noti�cation
Agent to the recommended party | this agent consists of no more
information than recommender, recommendee, context and subject rec-
ommended (along with usual data such as timestamps, for example).
This requires no more than a minimal adjustment to the Caf�e/Server
architecture and almost no change to the ACORN InfoAgents (in fact,
the Noti�cation Agent can be very easily represented by an InfoAgent).

8.1.3. InfoAgent Control

The current Directory Server structure allows system administrators,
and to a lesser extent users, to examine the current status of InfoAgents
in the network. The Directory Server has its own user interface (imple-
mented via JSP) to enable this examination. However, the Directory
Server structure clearly has much further rami�cations to the control
of InfoAgents, however. At the very least, we will be incorporating
the user interface into the Client interface, such that we have a single
interface to the ACORN system. Secondly, we will be implementing
more InfoAgent control into the system, via various means, to achieve
the following:

� Ability of user to recall InfoAgent at any time,

� Ability of user to examine potential path of InfoAgent (Recom-
mended list),

� Ability of user to adapt InfoAgent path (Recommended list) on
the
y. This enables a user to control who the InfoAgent visits
and who it does not, but note that this control is not forced on the
user, since the InfoAgent is capable of making its own decisions.

The Directory Server structure also allows for:

� More intelligent planning of InfoAgent paths, both within and
between InfoAgents and users, and the Directory Server,

� Sharing of completed paths for future searches/distribution of sim-
ilar information { this is in fact a potentially very powerful aspect

fourth-draft.tex; 17/08/2001; 13:51; p.37

38 Marsh, Ghorbani & Bhavsar

of ACORN that can allow information dissemination to speed up
based on already discovered communities,

� (Pseudo-) intelligent information sharing between InfoAgents and
users based on the thin/fat agent structure (see [6] and Section
8.2.1).

8.1.4. infoDNA

The InfoAgents in ACORN are little more than na��ve searchers. They
accept any information given to them and do not question it { such
questioning is for their owner to do.

However, we believe that even the agent owner can be assisted in
this task, and for this we are incorporating the concept of infoDNA
[21, 20] in our agents. infoDNA is in fact a simple trust handling
mechanism which takes its information from community ratings. In
this it is similar in concept to the system described in [26], although
applied to information. Within the infoDNA system, each agent car-
ries extra information which contains the ratings and signatures of all
those who have seen the information. These ratings can be averaged
to arrive at a community trust rating for the information. This, allied
with InfoAgents' potential recognition of each other (or each others'
owners) can allow an InfoAgent to at least prioritise recommended or
given information. This solution is a simple addition to ACORN which
provides a worthwhile addition to the simple reasoning capabilities of
the agents, while giving users additional tools for prioritisation and
�ltering of incoming information.

8.2. Longer Term Ideas

8.2.1. Smart Information Sharing

The current Directory Server structure has allowed us to implement the
concept of thin/fat InfoAgents within ACORN. The thin/fat InfoAgent
structure (see [6]) allows for only a small amount of information to be
sent from Server to Server, and for the Server to request the information
it needs (from the Directory Server) at any time. In fact, the current
thin/fat InfoAgent structre needs send only the agent unique ID and
the Directory Server address. On arrival at a Server, the rest of the
InfoAgent data is sent to the Server on request. InfoAgent lifecycle
on a Server is then unchanged until migration, then the data is sent
back to the Directory Server which acknowledges with the address of
the next Server to migrate to. This gives a large amount of control to
the user should they require it, while allowing the system to proceed

fourth-draft.tex; 17/08/2001; 13:51; p.38

ACORN 39

as before to all external appearances. However, the solution is non-
optimal and does not take into account the available power of such
an architecture. In future, we will be implementing a smart Directory
Server-Client communication structure such that the information (In-
foAgent contents) that is sent to the requesting Server is based on
user requirements, the Server doing the requesting, the context of the
request, trust, and so forth. Clearly this raises substantive questions
about the nature of trust and the sharing of information, and these
are longer term research considerations. As a beginning, the current
structure provides more power as well as allowing multiple copies of
an InfoAgent to exist and be controlled from a sensible point (the
Directory Server) with or without user intervention.

9. Conclusions

ACORN is a multi-agent peer-to-peer system where mobile agents
represent pieces of information and are capable of learning and using
community knowledge, both accesible and solely within the heads of the
community members, in order to route relevant information around a
network.

ACORN has progressed from a simple information sharing system
in its �rst incarnation to a sophisticated information architecture ca-
pable of supporting privacy, security, multiple information types, an
extensible user interface and heterogeneous platforms, and the require-
ments of the information rich society we live in today. It is able to be
easily extended and adapted for purposes we did not envisage at �rst
blush, and remains a powerful tool for the purpose for which it was
�rst designed. Recent additions to the ACORN architecture serve to
increase its power via dyanmic clustering of InfoAgents, the ability to
more properly track and control InfoAgents from the user's side, and
the ability to use secure and powerful privacy techniques.

This paper described the ACORN information system as it stands
today and pointed towards future developments (of which we envisage
the short term ideas completing within the next six to twelve months).
We do not see the completion of these works as the completion of
ACORN, which is clearly an architecture with enormous capabilities in
directions we cannot foresee. We look forward to working with ACORN
further and to seeing it in use. As a �rst step, we will be releasing
ACORN services (at least as they are documented in this paper) in the
near future.

For up to date details on ACORN, see

http://www.iit.nrc.ca/~steve/acorn.html

fourth-draft.tex; 17/08/2001; 13:51; p.39

40 Marsh, Ghorbani & Bhavsar

Acknowledgements

The authors would like to express their deepest thanks to the people
who have worked with ACORN in the past, without whom the archi-
tecture would not exist in its current form. Accordingly, we thank to
Youssef Masrour, Leigh Wetmore, Hui Yu (especially for the work on
information sharing algorithms documented in Sections 6.4 and 7.1),
and Jonathan Carter (especially for the work on Directory Servers,
Anonymity Servers, Dynamic Clustering as described in Section 6.3 and
the thin/fat InfoAgent). This work has bene�tted from consultation
with many of our colleagues at the NRC and the University of New
Brunswick, to whom, our thanks.

Dr Ghorbani's and Dr Bhavsar's work was partially funded through
grants RGPIN 227441-00 and OGP0089 respectively from the Natural
Science and Engineering Research Council of Canada.

References

1. Albert, R., H. Jeong, and A.-L. Barabasi: 1999, `Internet: Diameter of the
World-Wide Web'. Nature 401(6749), 130{131.

2. Bhavsar, V., A. Ghorbani, and S. Marsh: 2000, `A Performance Eval-
uation of the ACORN Architecture'. In: Proceedings of the 14th

Annual International Symposium on High Performance Computing Sys-

tems and Applications (HPCS 2000), Victoria, British Columbia, Canada.
http://www.cs.unb.ca/profs/ghorbani/ali/papers/hpcs00.ps.

3. Broder, A., R. Kumar, F. Maghoul, P. Raghavan, R. Stata, A. Tomkins,
and J. Wiener: 2000, `Graph structure in the web'. In: Proceedings WWW9.
http://www9.org/w9cdrom/160/160.html.

4. Br�uninghaus, S. and K. D. Ashely: 1998, `Evaluation of Textual CBR ap-
proaches'. In: Proceedings of the AAAI-98 Workshop on Textual Case-Based

Reasoning, Madison, WI. (AAAI-Technical Report WS-98-12). pp. 30{34.
5. Carter, J., A. A. Ghorbani, and S. Marsh: 2001a, `Just-in-Time Information

Sharing Architectures'. In preparation.
6. Carter, J., A. A. Ghorbani, and B. Spencer: 2001b, `Agent Design Consider-

ations within Distributed Information Retrieval Systems'. In: Proceedings of

the Workshop of Novel E-Commerce Applications of Agents, (in conjunction

with the 14th Biennial Conference of the Canadian Society for Computational

Studies of Intelligence { AI 2001), Ottawa, Canada. pp. 23{28.
7. Chavez, A. and P. Maes: 1996, `Kasbah: An Agent Marketplace

for Buying and Selling Goods'. In: Proceedings of the First In-

ternational Conference on the Practical Application of Intelligent

Agents and Multi-Agent Technology (PAAM'96). London, UK.
http://agents.www.media.mit.edu/groups/agents/publications/.

8. Foner, L. and I. B. Crabtree: 1996, `Multi-agent matchmaking'. BT Technology

Journal 14(4), 115{123.
9. Foner, L. N.: 1996, `A Multi-Agent Referral System for Matchmak-

ing'. In: The First International Conference on the Practical Appli-

fourth-draft.tex; 17/08/2001; 13:51; p.40

ACORN 41

cations of Intelligent Agents and Multi-Agent Technology, London, UK.
http://foner.www.media.mit.edu/people/foner/yenta-brief.html.

10. Foner, L. N.: 1997, `Yenta: A Multi-Agent, Referral Based
Matchmaking System'. In: First Conference on Autonomous

Agents (Agents '97), Marina del Rey, California. pp. 301{307.
http://foner.www.media.mit.edu/people/foner/yenta-brief.html.

11. Gerrie, B.: 1983, Online Information Systems. Arlington, VA.: Information
Resources Press.

12. Hill, W., L. Stead, M. Rosenstein, and G. Furnas: 1995, `Recommending and
Evaluating Choices in a Virtual Community of Use'. In: Proceedings CHI'95.
pp. 194{201.

13. http://dublincore.org/.
14. http://www.epinions.com/.
15. Kautz, H., A. Milewski, and B. Selman: 1995, `Agent Ampli�ed Communica-

tion'. In: Proceedings AAAI-95 Spring Symposium on Information gathering

from Heterogeneous, Distributed Environments, Stanford University, CA. pp.
78{84.

16. Kuokka, D. and L. Harada: 1995, `Matchmaking for Information Agents'. In:
Proceedings International Joint Conference on Arti�cial Intelligence, Montreal,

Canada. pp. 672{678.
17. Lawrence, S. and C. Giles: 1998, `Searching the World Wide Web'. Science

280(3), 98{100.
18. Maltz, D. and K. Ehrlich: 1995, `Pointing the way: active collaboration

�ltering'. In: Proceedings CHI'95. pp. 202{209.
19. Marsh, S.: 1999, `Agent Oriented Information - Social Knowlewdge Man-

agement'. Invited talk at IKMS Canada '99, International Knowledge
Management Summit, Toronto, November 22-24, 1999. Available from
http://www.iit.nrc.ca/~steve/Publications.html.

20. Marsh, S.: 2001a, `And Introducing... SociAware. A New Construct for Social
Awareness Utilising Trust'. In: Proceedings MICON 2001 - In Press.

21. Marsh, S.: 2001b, `An Open Standard of Trust'. Presentation given at ENTER
2001 conference (www.enter2001.org), Montreal, May 2001. Available from
http://www.iit.nrc.ca/~steve/Publications.html.

22. Marsh, S. and Y. Masrour: 1997, `Agent Augmented Community Information
| The ACORN Architecture'. In: H. Johnson (ed.): Proceedings CASCON 97:

Meeting of Minds, Toronto. pp. 72{81.
23. Milgram, S.: 1992, `The Small World Problem'. In: S. Milgram, J. Sabini, and

M. Silver (eds.): The Individual in a Social World: Essays and Experiments.

2nd Edition. New York. NY.: McGraw Hill.
24. Morita, M. and Y. Shinoda: 1994, `Information Filtering Based on User Be-

havior Analysis and Best Match Text Retrieval'. In: Proceeedings of the

Seventeenth Annual International ACM-SIGIR Conference on Research and

Development in Information Retrieval. pp. 272{281.
25. Salton, G. and M. McGill: 1983, Introduction to Modern Information Retrieval.

New York, NY.: McGraw-Hill.
26. Schneider, J., G. Kortuem, J. Jager, S. Fickas, and Z. Segall: 2000, `Dissem-

inating Trust Information in Wearable Communities'. In: 2nd International

Symposium on Handheld and Ubiquitous Computing (HUC2K), Bristol, UK.
27. Tou, J. T. and R. C. Gonzalez: 1974, Pattern Recognition Principles. Reading,

MA: Addison Wesley.

fourth-draft.tex; 17/08/2001; 13:51; p.41

42 Marsh, Ghorbani & Bhavsar

28. Turney, P.: 1999, `Learning to Extract Keyphrases from Text'. Technical Re-
port ERB-1057, National Research Council Canada, Institute for Information
Technology, Ottawa, Canada. http://extractor.iit.nrc.ca/.

29. Watts, D. J. and S. Strogatz: 1998, `Collective dynamics of `small-world'
networks'. Nature 393(6684), 440{442.

30. Weibel, S., J. Godby, E. Miller, and R. Daniel:
1995, OCLC/NCSA Metadata Workshop Report.
http://www.oclc.org:5046/oclc/research/conferences/metadata/dublin core report.html.

31. Wellman, B. (ed.): 1999, Networks in the Global Village. Boulder, CO.:
Westview.

32. Yu, H.: 2000, `Keyphrase-Based Information Sharing in Multi-Agent Systems'.
Master's thesis, Faculty of Computer Science, University of New Brunswick,
Fredericton, NB. Canada.

33. Yu, H., A. A. Ghorbani, V. Bhavsar, and S. Marsh: 2000, `Keyphrase-Based
Information Sharing in ACORN Multi-Agent Architecture'. In: Proceedings
of MATA 2000, Mobile Agents for Telecommunication Applications, Springer

LNCS 1931, Springer-Verlag, Berlin. pp. 245{258.

Address for O�prints:

fourth-draft.tex; 17/08/2001; 13:51; p.42

