
   
This work introduces a new parallel algorithm for computing 
a multiple longest common subsequence (MLCS). Given a set 
of strings, the longest common subsequence can be obtained 
by removing a number of symbols from each sequence. 
Although there was a lot of research done in the 
parallelization of MLCS algorithms for the special case of two 
sequences, so far there were no any general parallel methods 
for computing MLCS of an arbitrary number of sequences. 
Our method is a parallel approach to dominant points-based 
method recently proposed by Hakata and Imai. The parallel 
algorithm is presented and the related theoretical results as 
well as the algorithm’s implementation on IBM SP3 using 
MPI system are discussed. 
 
longest common subsequence, dominant points, parallel 
algorithms, IBM SP3 

I. INTRODUCTION 

A. Basic definitions 
The multiple longest common subsequence (MLCS) 
problem can be defined as follows: Let  A1, A2, … , Ad  be a 
set of d sequences of length  n1, n2, … , nd, correspondingly, 
over alphabet Σ = {σ1,σ2, … , σs}. A subsequence of Ai can 
be obtained by removing zero or more symbols from Ai. 
More precisely, if A = s1 s2 … sn, then B = si1 si2 … sik is a 
subsequence of A  if ∀  j ∈  {1,2, … ,k}:   ij∈ {1,2, … ,n}  and 
∀ s,t ∈ {1,2, … ,k}, s<t: is<it , where k is the length of B. The 
multiple longest common subsequence problem for a set of 
sequences A1, A2, … , Ad is to find a sequence B such that B 
is a subsequence of each Ai and it has the largest length. For 
example, B = ‘ce’ is the MLCS for A1 = ‘computer’ and  A2 
= ‘science’. Note, that for a given set of sequences there 
can be more than one MLCS. In the case d=2 MLCS 
problem is simply called the longest common subsequence 
problem (LCS).  
The MLCS is widely used in bioinformatics and 
computational biology, mostly in DNA and protein 
sequence analysis. One of MLCS most direct 
implementation in a protein sequence analysis is a search 
for a motif or sets of motifs given a protein family  (motif is 
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a short conserved region in a protein sequence with known 
or implied function). 

B.  Sequential algorithms for MLCS 
The general idea is based on dynamic programming 
approach [1]. This approach is also widely used in the 
similar to MLCS problem – multiple sequence alignment 
(including pairwise alignment) of a set of sequences. In 
general, given d sequences, A1, A2, … , Ad , the dynamic 
programming algorithm builds a d-dimensional score 
matrix L[0, …, n1; 0, …, n2; … ; 0, …, nd], where              
n1, n2, … , nd are the corresponding lengths of the above 
sequences. The score matrix is computed iteratively. For 
example, in a case of two strings, A[1, … ,n] and              
B[1, ... ,m], the score matrix L is computed as follows. 
First, we assign 0 values to the first row and column, i.e.            
L[ i, 0] = L[0,  j] = 0,  0≤ i,j≤ n. Then, the value of each 
element L[i,j], 1≤ i,j≤ n, of matrix L can be calculated 
iteratively via the values of elements that were computed 
before as follows: 
  
                     
         L[i,j] =  
 
 
 

TABLE 2 
THE PROCESS OF COMPUTING THE SCORE MATRIX FOR TWO SEQUENCES,    

A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’ 
 

  a a b c a a b c a b 
 0 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 1 1 1 1 1 1 1  
a 0 1 1 1 1 2 2 2 2   
c 0 1 1 1 2 2 2 2    
b 0 1 1 2 2 2      
a 0 1 2 2 2       
b 0 1 2 3        

 
There has been done a lot of work for implementing 
dynamic programming approach, mostly for the case of 
d=2 (see Table 2, [2]-[3]). Once obtained a score matrix, a 
MLCS can be easily derived by finding the lowest-cost path 
from point [n1, n2, …, nd] to point [0,0, … ,0]. The point  
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L[i-1,j-1]+1                  if A[i] = B[j] 
 
max{L[i-1,j],L[i,j-1]}    otherwise 



p[i1, i2, …id] corresponds to a position in a MLCS if when 
moving along the above path to point [0,0, … ,0], each time 
we go from position p to the next in the path position q the 
score for the latter is L[q] = L[p]-1 (see Table 3).  

 
TABLE 2 

SELECTED RESULTS FOR THE LCS PROBLEM (D=2). HERE P IS THE LENGTH 
OF LCS, S IS THE SIZE OF ALPHABET, M IS THE NUMBER OF MINIMAL 

MATCHES. NOTE THAT FOR CONVENIENCE WE ARE ASSUMING EQUAL 
LENGTHS OF THE SEQUENCES 

 
 
 
 
 
 
 
 
 
 
The reason for not applying this method for three and more 
sequences is because of its time and space complexity. It is 
not hard to see that the straight-forward implementation of 
dynamic programming method for constructing the score 
matrix would lead to O(nd)  time and space complexities. 
For the special case, d=2, there has been done a lot of 
successful work for improving both complexities (see Table 
2, [4]-[8]). However, for the general case it is still an open 
question. On of the most promising approaches to the 
problem of finding MCLS is so-called dominant points-
based methods [9,10]. As a base of our method we took one 
of the most advanced dominant points-based methods 
proposed by Hakata and Imai in [10,11]. 
 
 

TABLE 3 
THE LOWEST-SCOREPATH IN THE SCORE MATRIX FOR TWO SEQUENCES,      

A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’ GIVES US A LCS = ‘ACBAB’ 
 

  a a b c a a b c a b 
 0 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 1 1 1 1 1 1 1 1 
a 0 1 1 1 1 2 2 2 2 2 2 
c 0 1 1 1 2 2 2 2 3 3 3 
b 0 1 1 2 2 2 2 3 3 3 4 
a 0 1 2 2 2 3 3 3 3 4 4 
b 0 1 2 3 3 3 3 4 4 4 5 

 

II. DOMINANT POINTS-BASED SEQUENTIAL ALGORITHM 

A. Method 
The method is based on several ideas. In order to describe 
these ideas, let us introduce some definitions and notations. 
Given a set of sequences,  A1, A2, … , Ad , over alphabet      
Σ = {σ1,σ2, … , σs}, the position p in the corresponding 
score matrix L is denoted as  p[ p1, p2, … , pd ], where each   
pi is a coordinate of p for the corresponding string, Ai. For a 

sequence A we denote a symbol corresponding to the k-th 
position in A as A[k]. 

Definition 1. Position p in L is called a match iff 
                     A1[p1] = A2[p2] =… = Ad[pd]. 
A match  p, corresponding to a symbol σ is denoted as 
p(σ). 
 
Definition 2. We say that point  p  dominates point q  if  
pi ≤ qi for all i =1,2, … ,d. We denote this fact as           
p ≤  q. The relation  p < q can be defined similarly.  
 
Definition 3. A match  p is called a k-dominant iff 

                    L[p] = L[ p1, p2, … , pd ] =k. 

The set of all k-dominants for a point p is denoted as 
Dk(p). The set of all k-dominants is denoted as D(p). 
 
Definition 4. A match p(σ) is called a σ-parent of a 
point q iff  q < p and there is no match r(σ) such that    
q < r < p. The set of all σ-parents of q is denoted as 
Par(q, σ). 
 
Definition 5.  A point  p  in a set of points S is a minimal 
element of S, if  ∀ q ∈  S:  q ≤ p. 
 

There are several main ideas leading to the above method. 
First, it is not hard to see that one should search among only 
matches since each position in a MLCS should at least be a 
match. Second, it can be shown that the ‘special’ points in 
the lowest-cost path corresponding to positions in the 
MLCS, which were discussed in the previous section, are               
k-dominants, for k = 1, 2, …,|MLCS|.   Next, one should 
note that those dominant points can be computed in a 
dynamic manner: each step we calculate the set of             
k-dominants for k = 1,2, …, |MLCS|. Another important 
idea actually tells us how to compute the sets of k-
dominants: given a set of k-dominants,  the set of  k+1-
dominants is a subset of  Par (Dk, S ). Finally, for each set 
Par (Dk, S ) only the minimal elements are dominant points 
and, thus, can be the candidates for positions in the MLCS 
(see Table 4). Based on these ideas and some more 
advanced properties of dominant points Hakata and Imai 
developed an algorithm for computing a MLCS of a set of d 
sequences. 
 

TABLE 4 
THE SET OF DOMINANTS AND MATCHES IN THE SCORE MATRIX FOR TWO 
SEQUENCES, A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’. THE DOMINANT 

POSITIONS ARE CIRCLED WHILE THE REMAINING MATCHES THAT ARE NOT 
DOMINANT ARE SQUARED 

  

  a a b c a a b c a b 
 0 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 1 1 1 1 1 1 1 1 
a 0 1 1 1 1 2 2 2 2 2 2 
c 0 1 1 1 2 2 2 2 3 3 3 
b 0 1 1 2 2 2 2 3 3 3 4 
a 0 1 2 2 2 3 3 3 3 4 4 

N Year  Author(s)             Time                         Ref.  
1  1974  Wagner, Fischer     O(n2)                         [2]  
2  1975  Hirschberg              O(n2)                         [3]  
3  1980  Masek, Paterson     O(n2 / log n)              [4]  
4  1984  Hsu, Du                  O(pn log(n/p)+pn)    [5]  
5  1986  Myers                     O(n(n - p))                 [6]  
6  1992  Apostolico et al.     O(n(n - p))                 [7]  
7  1994  Rick                        O(ns + min(ms,pn))   [8]   

/



b 0 1 2 3 3 3 3 4 4 4 5 
 

B. Sequential algorithm 
For the comparison with our parallel algorithm for MLCS, 
an algorithm discussed by Hakata and Imai in [10,11] was 
implemented. A simplified pseudocode for the above 
dominant points-based sequential algorithm is given below. 
 

Algorithm Seq_MCLS({A1,A2,…,Ad},Σ)  
(1)  D0 = {[0,0,…,0]}; k=0; 
(2)  while D k not empty do { 
      A = B = ∅   
(2.1)   for p ∈  Dk do {  
(2.1.1)    Par(q,Σ) = Parents(p)  
(2.1.1)        A = A ∪  Par(q,Σ)  
       }//for p  
(2.2)   Dk+1 =Minima(A)  
(2.3)   k = k + 1  
    }//while  
(3)  pick a point p ∈  Dk-1  
    while k-1 > 0 do  
     { current LCS position = A1[p1]  
(3.1)    p = q, where q is such that   

p ∈  Par(q,Σ) 
(3.2)    k = k – 1 
     }  
 

The algorithm uses two functions, Parents(p) that gives a 
set of all parents of  p,  Par(q,Σ),  and Minima(A) that gives 
all the minimal elements for the given set of positions A. 
While the former algorithm is pretty straight forward the 
pseudocode for Minima is presented below. 
 
Function Minima(S)  
(1) A = ∅   
(2) for i=1 to |S| do 
      f [i]=1  
(3) for i=1 to |S| do { 
      if f[i]=1 then { 
        for j=1 to |S| do { 
          if y[j]=1 then { 

                     if S[i]=S[j] and j>i           
             then f[j]=0  

            if S[i]≠S[j] and S[i]≥S[j]   
               then f[i]=0  
            if S[i]≠S[j] and S[i]≤S[j]  
               then f[j]=0  
          } //if y[j] 
          if f[i]=1 then A=A∪ {S[i]}  
        } //for j 
      } //if f[i] 
    } // for i 
(4) return A 

C. Results 
The theoretical results for Seq_MLCS algorithm are 
presented by the following theorems (for convenience, here 
and below we assume the lengths of all sequences are the 
same and equal to  n). 
 

Theorem 1. Seq_MLCS algorithm correctly computes 
the LCS of sequences  A1, A2, …, Ad. 
 
Lemma 1. Minima function takes O(dn2).  
 

Hakata and Imai showed in [10,11]that the theoretical time 
complexity for the algorithm for finding the set of minimal 
points can be improved. 
 

Lemma 2 [10,11]. For d ≥ 3, the minima of n points in 
the d-dimensional space can be computed in            
O(dn logd-2 n) time by a divide-and-conquer algorithm. 

 
Based on this results the theoretical time complexity for a 
slightly improved  version of Seq_MLCS is given by the 
following theorem. 

Theorem 2 [10]. The MLCS problem for  d ≥ 3  strings 
of length  n can be solved in time  
                  O(nsd + |D|sd (logd-3n + logd-2 s)), where |D| 
is the size of the set of all dominant positions.. 

 
It is not hard to see that the size |D| of the set of all 
dominants is much smaller than the size of set of all 
positions. Although a nontrivial (rather than by nd ) 
estimation of |D| is still an open question the results 
obtained by the implementation of dominant point-based 
approach show the great advantage of this method in 
contrast to classical dynamic programming approaches. 
These results will be briefly discussed in Section IV. 
 

III. PARALLELIZATION STRATEGY 
Also there were series of successful parallelization 
approaches to the LCS problem, which is a special case of 
MLCS when d=2 (see, for example, [12]-[13]), we have not 
seen any approaches for the general case of MLCS 
problem. 

A. Method 
When designing our parallel algorithm based on dominant 
points approach we need, first, to analyze, which parts of  
Seq_MCLS algorithm can be parallelized,  then, to  
implement the parallelization of the above parts, and 
finally, to combine the parallelized parts with the remaining 
parts of the algorithms. It turns out that because of the 
nature of dynamic programming-based approaches for 
MLCS problem (as well as for many others), it is very 
difficult and, sometimes, impossible to implement a 
parallelization approach based on the static partition of 
initial data (e.g. dividing some of the given sequences onto 
subsequences and distributing them among the processors). 
Taking this fact into consideration we developed a dynamic 



distribution of data approach. Given P processors, one of 
which is a master and the rest of which are slaves, the main 
idea is to distribute each time all elements of a current k-
dominant set, Dk, among P processors in order to parallelize 
the computation of sets of parents for each of the k-
dominants (steps 2.1, 2.1.1, and 2.1.2 in Seq_MCLS). After 
calculating the sets of parents in parallel mode, all the slave 
processors return the parent sets back to the master 
processor, which performs, then, a computation of the next 
dominant set, Dk +1. 
The data flow during execution of the algorithm can be 
illustrated by the following example of LCS problem for 
two sequences given in Table 4. Suppose, P = 4 processors. 
Then, based on the size of a current k-dominant set, |Dk|, we 
need to use |Dk| processors, if |Dk|<P and P processors 
otherwise (see Fig.1). Note, that in real examples (e.g. DNA 
or protein sequences), generally, the number of a current        
k-dominant set is relatively big (several hundreds and 
sometimes, thousands). 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 
Fig. 1 Data flow for the example of LCS problems for two strings 

presented in Table 4. Black arrows show incoming data flow, gray arrows 
show outcoming data flow. The active processors are colored gray. 

 

B. Parallel algorithm 
 
Summarized the ideas discussed above, we designed and 
implemented the parallel algorithm for MLCS problem. The 
algorithm was implemented on the MPI (message-passing 
interface) system and run on local IBM SP3 machine. The 
simplified pseudocode of the algorithm is given below. 
 
Algorithm Par_MCLS({A1,A2,…,Ad},Σ)  
(1)  D0 = {[0,0,…,0]}; k=0; 
(2)  while D k not empty do { 
      A = ∅  
(2.1)   Proc0: Distribute elements of Dk 
      // Each processor performs: 
(2.2)       Get my_Dk: a subset of elements        

                                of Dk 
      for p ∈  my_Dk do {  
(2.2.1)     Par(q,Σ) = Parents(p)  
(2.2.2)           my_A = my_A ∪  Par(q,Σ)  
      }//for p  
      //Each slave processor finishes  
(2.3) Proc0: Gather elements of my_A        

              into A 
(2.4)       Dk+1 =Minima(A)  
(2.3)   k = k + 1  
    }//while  

   (3)  pick a point p ∈  Dk-1  
    while k-1 > 0 do  
     { current LCS position = A1[p1]  

(3.1)    p = q, where q is such that   p 
∈  Par(q,Σ) 

(3.2)    k = k – 1 
     } 

C. Implementation issues 
Since all slave processors during the while-loop in the 
above algorithm perform computation of the parents sets 
based on the elements of current k-dominant set, Dk, the 
process of sending-receiving data between the master 
processor, on one side, and the slave processors, on the 
other, requires synchronization.  The synchronization is 
performed via a standard barrier implementation in a 
message-passing system. The process of data exchange is 
performed via MPI_Bcast and MPI_Gather routines. 
 

IV.  RESULTS AND DISCUSSIONS 
 
Since in the Par_LCS algorithm we were able to 
parallelize only a part of the sequential Seq_LCS 
algorithm, we cannot expect a linear speedup even in the 
theoretical analysis of the time complexity. The best 
performance will obviously be in a case when, for each 
current k-dominant Dk, all P available processors 
participate in computing of the parent sets for the elements 
of Dk, that is, when for each k: |Dk| ≥ P. However, as it was 
mentioned in the previous section, it turns out, that for the 
most of real applications the most of the k-dominants have 
several hundreds and even thousands of elements, so the 
following estimation of time complexity for the 
parallelized part of Par_LCS algorithm is useful.. 

 
Lemma 2. If  ∀ k: |Dk| ≥ P, then the parallelized part of 
Par_CLS takes O(T/P), where T is a time taken by the 
corresponding part in a sequential algorithm, and          
T is O(s|D|), where D is a set of all dominant positions, 
and  s is the size of alphabet Σ.     

 
To investigate the practical behavior of Par_MLCS 
algorithm we tested it on two main types of examples:  
 

 Nodes  0 1 2 3 k 
 
 0 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 

|Dk| 
 
 1 
 
 2 
 
 4 
 
 4 
 
 3 
 
 1 
 
 0 



• Examples where the size of a current k-dominant 
set is small and might not exceed the total 
number of processors available (Figs. 2,3); 

 
• Examples where the size of current k-dominants 

for most k is much larger than the number of 
processors available  (Figs. 3,4). As the example 
of the ‘real world ‘ application we took a family 
of 6 protein sequences with the maximal 
sequence length equal to 63.  
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   Fig. 2 Time table for a MLCS problem; d = 3, n = 10,  and the 

maximal size of k-dominant is 4. 
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   Fig. 3 Speedup (circled) and efficiency (squared) for a MLCS 

problem; d = 3, n = 10, and the maximal size of k-dominants is 4. 
 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12

Number of Procs.

Ti
m

e

 
   Fig. 4 Time table for a MLCS problem; d = 6, n = 63. 
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Fig. 5 Speedup (circled) and efficiency (squared) for a MLCS problem; 

d = 6, n = 63. 
 

The results presented on the Figs. 2-5 confirm all our 
theoretical predictions. If in the case of small-size example 
it is not efficient to use a lot of processors for parallel 
computing of MLCS, in a case of ‘real world’ we can see a 
quite opposite picture. The results obtained, for example, in 
the case of P =12 processors were almost twice better than 
the results obtained by Hakata and Imai in [10,11] for the 
same data set even although they were using an optimized 
version of the algorithm that we used as a base for our 
approach. Note, that for the same problem a classical 
dynamic programming algorithm would need about 190 Mb 
of memory and take more than 70 hours to run. 

 

V. CONCLUSIONS AND FUTURE RESEARCH 

Although the MLCS problem and its special case, LCS 
problem, have been studied by a relatively large number of 
researchers, and there has been some success reached in the 
parallelization of LCS problem, currently we don’t know 
any satisfactory approaches for parallelization of the 
general MLCS problem. We proposed a novel approach for 



parallelization of the one of most recent and advanced 
method for computing MLCS, proposed by Hakata and 
Imai and based on the concept of dominant points. We 
discussed the idea , implementation issues, and both, 
theoretical and experimental results of the new parallel 
approach to MLCS problem. 
In the future we will be continuing work on the complete 
parallelization of the dominant point-based approach. In 
fact, the following result will allow us to parallelize the 
remaining part of the Seq_MLCS algorithm that has not 
been parallelized. 

Proposition. If Dk = D1
k ∪  D2

k ∪  … ∪  DP
k  and for each 

i: Di
k+1 is the k+1-dominant based on  Di

k, then: 
 
         Dk+1 = Minima (D1

k+1 ∪  D2
k+1 ∪  … ∪  DP

k+1), 
 
 where Minima(S) is a set of minimal elements of S. 
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