

This work introduces a new parallel algorithm for computing
a multiple longest common subsequence (MLCS). Given a set
of strings, the longest common subsequence can be obtained
by removing a number of symbols from each sequence.
Although there was a lot of research done in the
parallelization of MLCS algorithms for the special case of two
sequences, so far there were no any general parallel methods
for computing MLCS of an arbitrary number of sequences.
Our method is a parallel approach to dominant points-based
method recently proposed by Hakata and Imai. The parallel
algorithm is presented and the related theoretical results as
well as the algorithm’s implementation on IBM SP3 using
MPI system are discussed.

longest common subsequence, dominant points, parallel
algorithms, IBM SP3

I. INTRODUCTION

A. Basic definitions
The multiple longest common subsequence (MLCS)
problem can be defined as follows: Let A1, A2, … , Ad be a
set of d sequences of length n1, n2, … , nd, correspondingly,
over alphabet Σ = {σ1,σ2, … , σs}. A subsequence of Ai can
be obtained by removing zero or more symbols from Ai.
More precisely, if A = s1 s2 … sn, then B = si1 si2 … sik is a
subsequence of A if ∀ j ∈ {1,2, … ,k}: ij∈ {1,2, … ,n} and
∀ s,t ∈ {1,2, … ,k}, s<t: is<it , where k is the length of B. The
multiple longest common subsequence problem for a set of
sequences A1, A2, … , Ad is to find a sequence B such that B
is a subsequence of each Ai and it has the largest length. For
example, B = ‘ce’ is the MLCS for A1 = ‘computer’ and A2
= ‘science’. Note, that for a given set of sequences there
can be more than one MLCS. In the case d=2 MLCS
problem is simply called the longest common subsequence
problem (LCS).
The MLCS is widely used in bioinformatics and
computational biology, mostly in DNA and protein
sequence analysis. One of MLCS most direct
implementation in a protein sequence analysis is a search
for a motif or sets of motifs given a protein family (motif is

Dmitry Korkin is with the Faculty of Computer Science, University of
New Brunswick, P.O.Box 4400, Fredericton, NB, Canada, E3B 5A3
(phone: 506-451-6931, e-mail: z17b3@unb.ca).

a short conserved region in a protein sequence with known
or implied function).

B. Sequential algorithms for MLCS
The general idea is based on dynamic programming
approach [1]. This approach is also widely used in the
similar to MLCS problem – multiple sequence alignment
(including pairwise alignment) of a set of sequences. In
general, given d sequences, A1, A2, … , Ad , the dynamic
programming algorithm builds a d-dimensional score
matrix L[0, …, n1; 0, …, n2; … ; 0, …, nd], where
n1, n2, … , nd are the corresponding lengths of the above
sequences. The score matrix is computed iteratively. For
example, in a case of two strings, A[1, … ,n] and
B[1, ... ,m], the score matrix L is computed as follows.
First, we assign 0 values to the first row and column, i.e.
L[i, 0] = L[0, j] = 0, 0≤ i,j≤ n. Then, the value of each
element L[i,j], 1≤ i,j≤ n, of matrix L can be calculated
iteratively via the values of elements that were computed
before as follows:

 L[i,j] =

TABLE 2
THE PROCESS OF COMPUTING THE SCORE MATRIX FOR TWO SEQUENCES,

A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’

 a a b c a a b c a b
 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 1 1 1 1 1 1 1
a 0 1 1 1 1 2 2 2 2
c 0 1 1 1 2 2 2 2
b 0 1 1 2 2 2
a 0 1 2 2 2
b 0 1 2 3

There has been done a lot of work for implementing
dynamic programming approach, mostly for the case of
d=2 (see Table 2, [2]-[3]). Once obtained a score matrix, a
MLCS can be easily derived by finding the lowest-cost path
from point [n1, n2, …, nd] to point [0,0, … ,0]. The point

A New Dominant Point-Based Parallel
Algorithm for Multiple Longest Common

Subsequence Problem
Dmitry Korkin

L[i-1,j-1]+1 if A[i] = B[j]

max{L[i-1,j],L[i,j-1]} otherwise

p[i1, i2, …id] corresponds to a position in a MLCS if when
moving along the above path to point [0,0, … ,0], each time
we go from position p to the next in the path position q the
score for the latter is L[q] = L[p]-1 (see Table 3).

TABLE 2

SELECTED RESULTS FOR THE LCS PROBLEM (D=2). HERE P IS THE LENGTH
OF LCS, S IS THE SIZE OF ALPHABET, M IS THE NUMBER OF MINIMAL

MATCHES. NOTE THAT FOR CONVENIENCE WE ARE ASSUMING EQUAL
LENGTHS OF THE SEQUENCES

The reason for not applying this method for three and more
sequences is because of its time and space complexity. It is
not hard to see that the straight-forward implementation of
dynamic programming method for constructing the score
matrix would lead to O(nd) time and space complexities.
For the special case, d=2, there has been done a lot of
successful work for improving both complexities (see Table
2, [4]-[8]). However, for the general case it is still an open
question. On of the most promising approaches to the
problem of finding MCLS is so-called dominant points-
based methods [9,10]. As a base of our method we took one
of the most advanced dominant points-based methods
proposed by Hakata and Imai in [10,11].

TABLE 3
THE LOWEST-SCOREPATH IN THE SCORE MATRIX FOR TWO SEQUENCES,

A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’ GIVES US A LCS = ‘ACBAB’

 a a b c a a b c a b
 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 1 1 1 1 1 1 1 1
a 0 1 1 1 1 2 2 2 2 2 2
c 0 1 1 1 2 2 2 2 3 3 3
b 0 1 1 2 2 2 2 3 3 3 4
a 0 1 2 2 2 3 3 3 3 4 4
b 0 1 2 3 3 3 3 4 4 4 5

II. DOMINANT POINTS-BASED SEQUENTIAL ALGORITHM

A. Method
The method is based on several ideas. In order to describe
these ideas, let us introduce some definitions and notations.
Given a set of sequences, A1, A2, … , Ad , over alphabet
Σ = {σ1,σ2, … , σs}, the position p in the corresponding
score matrix L is denoted as p[p1, p2, … , pd], where each
pi is a coordinate of p for the corresponding string, Ai. For a

sequence A we denote a symbol corresponding to the k-th
position in A as A[k].

Definition 1. Position p in L is called a match iff
 A1[p1] = A2[p2] =… = Ad[pd].
A match p, corresponding to a symbol σ is denoted as
p(σ).

Definition 2. We say that point p dominates point q if
pi ≤ qi for all i =1,2, … ,d. We denote this fact as
p ≤ q. The relation p < q can be defined similarly.

Definition 3. A match p is called a k-dominant iff

 L[p] = L[p1, p2, … , pd] =k.

The set of all k-dominants for a point p is denoted as
Dk(p). The set of all k-dominants is denoted as D(p).

Definition 4. A match p(σ) is called a σ-parent of a
point q iff q < p and there is no match r(σ) such that
q < r < p. The set of all σ-parents of q is denoted as
Par(q, σ).

Definition 5. A point p in a set of points S is a minimal
element of S, if ∀ q ∈ S: q ≤ p.

There are several main ideas leading to the above method.
First, it is not hard to see that one should search among only
matches since each position in a MLCS should at least be a
match. Second, it can be shown that the ‘special’ points in
the lowest-cost path corresponding to positions in the
MLCS, which were discussed in the previous section, are
k-dominants, for k = 1, 2, …,|MLCS|. Next, one should
note that those dominant points can be computed in a
dynamic manner: each step we calculate the set of
k-dominants for k = 1,2, …, |MLCS|. Another important
idea actually tells us how to compute the sets of k-
dominants: given a set of k-dominants, the set of k+1-
dominants is a subset of Par (Dk, S). Finally, for each set
Par (Dk, S) only the minimal elements are dominant points
and, thus, can be the candidates for positions in the MLCS
(see Table 4). Based on these ideas and some more
advanced properties of dominant points Hakata and Imai
developed an algorithm for computing a MLCS of a set of d
sequences.

TABLE 4
THE SET OF DOMINANTS AND MATCHES IN THE SCORE MATRIX FOR TWO
SEQUENCES, A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’. THE DOMINANT

POSITIONS ARE CIRCLED WHILE THE REMAINING MATCHES THAT ARE NOT
DOMINANT ARE SQUARED

 a a b c a a b c a b
 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 1 1 1 1 1 1 1 1
a 0 1 1 1 1 2 2 2 2 2 2
c 0 1 1 1 2 2 2 2 3 3 3
b 0 1 1 2 2 2 2 3 3 3 4
a 0 1 2 2 2 3 3 3 3 4 4

N Year Author(s) Time Ref.
1 1974 Wagner, Fischer O(n2) [2]
2 1975 Hirschberg O(n2) [3]
3 1980 Masek, Paterson O(n2 / log n) [4]
4 1984 Hsu, Du O(pn log(n/p)+pn) [5]
5 1986 Myers O(n(n - p)) [6]
6 1992 Apostolico et al. O(n(n - p)) [7]
7 1994 Rick O(ns + min(ms,pn)) [8]

/

b 0 1 2 3 3 3 3 4 4 4 5

B. Sequential algorithm
For the comparison with our parallel algorithm for MLCS,
an algorithm discussed by Hakata and Imai in [10,11] was
implemented. A simplified pseudocode for the above
dominant points-based sequential algorithm is given below.

Algorithm Seq_MCLS({A1,A2,…,Ad},Σ)
(1) D0 = {[0,0,…,0]}; k=0;
(2) while D k not empty do {
 A = B = ∅
(2.1) for p ∈ Dk do {
(2.1.1) Par(q,Σ) = Parents(p)
(2.1.1) A = A ∪ Par(q,Σ)
 }//for p
(2.2) Dk+1 =Minima(A)
(2.3) k = k + 1
 }//while
(3) pick a point p ∈ Dk-1
 while k-1 > 0 do
 { current LCS position = A1[p1]
(3.1) p = q, where q is such that

p ∈ Par(q,Σ)
(3.2) k = k – 1
 }

The algorithm uses two functions, Parents(p) that gives a
set of all parents of p, Par(q,Σ), and Minima(A) that gives
all the minimal elements for the given set of positions A.
While the former algorithm is pretty straight forward the
pseudocode for Minima is presented below.

Function Minima(S)
(1) A = ∅
(2) for i=1 to |S| do
 f [i]=1
(3) for i=1 to |S| do {
 if f[i]=1 then {
 for j=1 to |S| do {
 if y[j]=1 then {

 if S[i]=S[j] and j>i
 then f[j]=0

 if S[i]≠S[j] and S[i]≥S[j]
 then f[i]=0
 if S[i]≠S[j] and S[i]≤S[j]
 then f[j]=0
 } //if y[j]
 if f[i]=1 then A=A∪ {S[i]}
 } //for j
 } //if f[i]
 } // for i
(4) return A

C. Results
The theoretical results for Seq_MLCS algorithm are
presented by the following theorems (for convenience, here
and below we assume the lengths of all sequences are the
same and equal to n).

Theorem 1. Seq_MLCS algorithm correctly computes
the LCS of sequences A1, A2, …, Ad.

Lemma 1. Minima function takes O(dn2).

Hakata and Imai showed in [10,11]that the theoretical time
complexity for the algorithm for finding the set of minimal
points can be improved.

Lemma 2 [10,11]. For d ≥ 3, the minima of n points in
the d-dimensional space can be computed in
O(dn logd-2 n) time by a divide-and-conquer algorithm.

Based on this results the theoretical time complexity for a
slightly improved version of Seq_MLCS is given by the
following theorem.

Theorem 2 [10]. The MLCS problem for d ≥ 3 strings
of length n can be solved in time
 O(nsd + |D|sd (logd-3n + logd-2 s)), where |D|
is the size of the set of all dominant positions..

It is not hard to see that the size |D| of the set of all
dominants is much smaller than the size of set of all
positions. Although a nontrivial (rather than by nd)
estimation of |D| is still an open question the results
obtained by the implementation of dominant point-based
approach show the great advantage of this method in
contrast to classical dynamic programming approaches.
These results will be briefly discussed in Section IV.

III. PARALLELIZATION STRATEGY
Also there were series of successful parallelization
approaches to the LCS problem, which is a special case of
MLCS when d=2 (see, for example, [12]-[13]), we have not
seen any approaches for the general case of MLCS
problem.

A. Method
When designing our parallel algorithm based on dominant
points approach we need, first, to analyze, which parts of
Seq_MCLS algorithm can be parallelized, then, to
implement the parallelization of the above parts, and
finally, to combine the parallelized parts with the remaining
parts of the algorithms. It turns out that because of the
nature of dynamic programming-based approaches for
MLCS problem (as well as for many others), it is very
difficult and, sometimes, impossible to implement a
parallelization approach based on the static partition of
initial data (e.g. dividing some of the given sequences onto
subsequences and distributing them among the processors).
Taking this fact into consideration we developed a dynamic

distribution of data approach. Given P processors, one of
which is a master and the rest of which are slaves, the main
idea is to distribute each time all elements of a current k-
dominant set, Dk, among P processors in order to parallelize
the computation of sets of parents for each of the k-
dominants (steps 2.1, 2.1.1, and 2.1.2 in Seq_MCLS). After
calculating the sets of parents in parallel mode, all the slave
processors return the parent sets back to the master
processor, which performs, then, a computation of the next
dominant set, Dk +1.
The data flow during execution of the algorithm can be
illustrated by the following example of LCS problem for
two sequences given in Table 4. Suppose, P = 4 processors.
Then, based on the size of a current k-dominant set, |Dk|, we
need to use |Dk| processors, if |Dk|<P and P processors
otherwise (see Fig.1). Note, that in real examples (e.g. DNA
or protein sequences), generally, the number of a current
k-dominant set is relatively big (several hundreds and
sometimes, thousands).

Fig. 1 Data flow for the example of LCS problems for two strings

presented in Table 4. Black arrows show incoming data flow, gray arrows
show outcoming data flow. The active processors are colored gray.

B. Parallel algorithm

Summarized the ideas discussed above, we designed and
implemented the parallel algorithm for MLCS problem. The
algorithm was implemented on the MPI (message-passing
interface) system and run on local IBM SP3 machine. The
simplified pseudocode of the algorithm is given below.

Algorithm Par_MCLS({A1,A2,…,Ad},Σ)
(1) D0 = {[0,0,…,0]}; k=0;
(2) while D k not empty do {
 A = ∅
(2.1) Proc0: Distribute elements of Dk
 // Each processor performs:
(2.2) Get my_Dk: a subset of elements

 of Dk
 for p ∈ my_Dk do {
(2.2.1) Par(q,Σ) = Parents(p)
(2.2.2) my_A = my_A ∪ Par(q,Σ)
 }//for p
 //Each slave processor finishes
(2.3) Proc0: Gather elements of my_A

 into A
(2.4) Dk+1 =Minima(A)
(2.3) k = k + 1
 }//while

 (3) pick a point p ∈ Dk-1
 while k-1 > 0 do
 { current LCS position = A1[p1]

(3.1) p = q, where q is such that p
∈ Par(q,Σ)

(3.2) k = k – 1
 }

C. Implementation issues
Since all slave processors during the while-loop in the
above algorithm perform computation of the parents sets
based on the elements of current k-dominant set, Dk, the
process of sending-receiving data between the master
processor, on one side, and the slave processors, on the
other, requires synchronization. The synchronization is
performed via a standard barrier implementation in a
message-passing system. The process of data exchange is
performed via MPI_Bcast and MPI_Gather routines.

IV. RESULTS AND DISCUSSIONS

Since in the Par_LCS algorithm we were able to
parallelize only a part of the sequential Seq_LCS
algorithm, we cannot expect a linear speedup even in the
theoretical analysis of the time complexity. The best
performance will obviously be in a case when, for each
current k-dominant Dk, all P available processors
participate in computing of the parent sets for the elements
of Dk, that is, when for each k: |Dk| ≥ P. However, as it was
mentioned in the previous section, it turns out, that for the
most of real applications the most of the k-dominants have
several hundreds and even thousands of elements, so the
following estimation of time complexity for the
parallelized part of Par_LCS algorithm is useful..

Lemma 2. If ∀ k: |Dk| ≥ P, then the parallelized part of
Par_CLS takes O(T/P), where T is a time taken by the
corresponding part in a sequential algorithm, and
T is O(s|D|), where D is a set of all dominant positions,
and s is the size of alphabet Σ.

To investigate the practical behavior of Par_MLCS
algorithm we tested it on two main types of examples:

 Nodes 0 1 2 3 k

 0

 1

 2

 3

 4

 5

 6

|Dk|

 1

 2

 4

 4

 3

 1

 0

• Examples where the size of a current k-dominant
set is small and might not exceed the total
number of processors available (Figs. 2,3);

• Examples where the size of current k-dominants

for most k is much larger than the number of
processors available (Figs. 3,4). As the example
of the ‘real world ‘ application we took a family
of 6 protein sequences with the maximal
sequence length equal to 63.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

1 2 3 4 5 6 7 8

Number of Procs.

Ti
m

e

 Fig. 2 Time table for a MLCS problem; d = 3, n = 10, and the

maximal size of k-dominant is 4.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Number of Procs.

Sp
ee

du
p/

Ef
fic

ie
nc

y

 Fig. 3 Speedup (circled) and efficiency (squared) for a MLCS

problem; d = 3, n = 10, and the maximal size of k-dominants is 4.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12

Number of Procs.

Ti
m

e

 Fig. 4 Time table for a MLCS problem; d = 6, n = 63.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12
Number of Procs.

Sp
ee

du
p/

Ef
fic

ie
nc

y

Fig. 5 Speedup (circled) and efficiency (squared) for a MLCS problem;

d = 6, n = 63.

The results presented on the Figs. 2-5 confirm all our
theoretical predictions. If in the case of small-size example
it is not efficient to use a lot of processors for parallel
computing of MLCS, in a case of ‘real world’ we can see a
quite opposite picture. The results obtained, for example, in
the case of P =12 processors were almost twice better than
the results obtained by Hakata and Imai in [10,11] for the
same data set even although they were using an optimized
version of the algorithm that we used as a base for our
approach. Note, that for the same problem a classical
dynamic programming algorithm would need about 190 Mb
of memory and take more than 70 hours to run.

V. CONCLUSIONS AND FUTURE RESEARCH

Although the MLCS problem and its special case, LCS
problem, have been studied by a relatively large number of
researchers, and there has been some success reached in the
parallelization of LCS problem, currently we don’t know
any satisfactory approaches for parallelization of the
general MLCS problem. We proposed a novel approach for

parallelization of the one of most recent and advanced
method for computing MLCS, proposed by Hakata and
Imai and based on the concept of dominant points. We
discussed the idea , implementation issues, and both,
theoretical and experimental results of the new parallel
approach to MLCS problem.
In the future we will be continuing work on the complete
parallelization of the dominant point-based approach. In
fact, the following result will allow us to parallelize the
remaining part of the Seq_MLCS algorithm that has not
been parallelized.

Proposition. If Dk = D1
k ∪ D2

k ∪ … ∪ DP
k and for each

i: Di
k+1 is the k+1-dominant based on Di

k, then:

 Dk+1 = Minima (D1

k+1 ∪ D2
k+1 ∪ … ∪ DP

k+1),

 where Minima(S) is a set of minimal elements of S.

VI. REFERENCE

[1] Sankoff, D, “Matching sequences under deletion/insertion

constraints,” Proc. Natl. Acad. Sci. USA, 69,4-6, 1972.
[2] Wagner, R. A., and M. J. Fischer, “The string-to-string correction

problem,” J. ACM, Vol.21, No.1, 1974, pp.168-173.
[3] Hirschberg, D. S., “A linear space algorithm for computing

maximal common subsequences”, C. J. Kaufman, Rocky
Mountain Research Laboratories, Boulder, CO, 1992.

[4] Masek, W. J., and M. S. Paterson, “A faster algorithm computing
string edit distances,” JCSS, 1980, pp.18-31.

[5] Hsu, W. J., and M. W. Du, “Computing a longest common
subsequence for a set of strings,” BIT, Vol.24, 1984, pp.45-59.

[6] E. W. Myers, “An O(ND) Difference Algorithm and Its
Variations,” Algorithmica, Vol.2, 1986, 251-266.

[7] Apostolico, A., and C. Guerra, “The longest common subsequence
problem revisited,” Algorithmica, Vol.2, 1987, pp.315-336.

[8] Claus Rick, “New Algorithms for the Longest Common
Subsequence Problem”, Research Report No. 85123-CS,
University of Bonn, October 1994.

[9] Chin, F., and C. K. Poon, “Performance analysis of some simple
heuristics for computing longest common subsequences,”
Algorithmica, Vol.12, No.4-5, 1994, pp.293--311.

[10] K. Hakata and H. Imai, “Algorithms for the Longest Common
Subsequence Problem for Multiple Strings Based on Geometric
Maxima,” Preprint, 1998.

[11] K. Hakata and H. Imai, “The Longest Common Subsequence
Problem for Small Alphabet Size between Many Strings,”
Proceedings of the 3rd International Symposium on Algorithms
and Computation, Nagoya, Lecture Notes in Computer Science
Vol.650, December 1992, pp.469-478.

[12] Tieng K. Yap and Ophir Frieder and Robert L. Martino, “Parallel
Computation in Biological Sequence Analysis,” IEEE
Transactions on Parallel and Distributed Systems, Vol.9, No. 3,
pp.283-294, 1998.

[13] Myoupo J-F. and Seme D., “Time-Efficient Parallel Algorithms
for the Longest Common Subsequence and Related Problems,”
Journal of Parallel and Distributed Computing, 57, 212-223,
1999.

