The Parameterized Complexity of
p-Center Approximate Substring Problems

Patricia A. Evans', Andrew D. Smith!, and H. Todd Wareham?

Abstract

Problems associated with finding strings that are within a specified Hamming distance
of a given set of strings occur in several disciplines. All of the problems investigated
are N P-hard and have varying levels of approximability. In this paper, we use tech-
niques from parameterized computational complexity to assess non-polynomial time
algorithmic options for three of these problems, namely p-EXACT SUBSTRING (pES),
APPROXIMATE SUBSTRING (1AS), and p-APPROXIMATE SUBSTRING (pAS). These
problems vary whether the substring must be an exact match, and also whether a single
substring or a set of substrings (of cardinality p) is required. Our analyses indicate un-
der which parameter restrictions useful algorithms are possible, and include both class
membership and parameterized reductions to prove class hardness. Since variation in
parameter restrictions will lead to different algorithms being preferable, we give a va-
riety of algorithms for the fixed parameter tractable problem variations. One of these,
for 1As with alphabet, substring length, and distance all fixed, is an improvement of
one of the best previously known exact algorithms (under these restrictions). Other
algorithms solve parameterized variants previously unexplored. We also prove that pES
is NP-hard, and show inapproximability for pES and pAsS.

'Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada.
E-mail: {pevans,p7ka}@unb.ca

?Department of Computer Science, Memorial University of Newfoundland, St. John’s, NF, Canada.
E-mail: harold@cs.mun.ca

1 Introduction

Given two strings x and y of the same length over an alphabet 3, the Hamming distance
between x and y is the number of positions at which the symbols in z and y differ. Over
the last several years, a number of results have been derived for restricted versions of the
following problem involving Hamming distance:

pP-APPROXIMATE SUBSTRING (pAS)

Instance: A set F = {Sy,..., Sy} of strings over an alphabet %
such that |S;| =n, 1 <i < m, and positive integers p, [,
and d such that 1 <p<m, 1 <[<n,and 1 <d <.

Parameter: Alphabet ¥ and positive integers m, p,n,[and d.

Question: s there a subset C of strings in X! such that for each
string S € F, there is a string ¢ € C that has Hamming
distance < d from some length-/ substring of F7?

When [= n and p = 1, pAS is known as COVERING RADIUS [6] and has been investigated in
the context of coding theory. When [=n and p > 1, pAS is known as HAMMING RADIUS
p-CLUSTERING [8] and has been investigated in the context of string clustering. When
[<nand p=1, pAs is known as CLOSEST SUBSTRING |12, 13] and has been investigated
in the context of DNA probe design in molecular biology. All of these variants have been
shown to be NP-hard. All of these aspects can be seen as existing in a space relative to pAS
defined by three dimensions:

1. Length of requested string relative to length of given strings (I < n vs. [= n);
2. Number of requested substring “centers” (p =1 vs. p > 1); and

3. Exactness of match of requested and given strings (d =0 vs. d > 0).

Though several members of this space are admittedly trivial (pAS when [= n, p > 1, and
d = 0) or are known to be solvable in low-order polynomial time (pAS when [< n, p =1, and
d =0, i.e., LONGEST COMMON SUBSTRING), the N P-hardness of the problems mentioned
above suggest that the remainder of the problems in this space may be difficult. A patchwork
of associated polynomial-time approximation algorithms and inapproximability further hints
at interesting relationships as well as differences between these problems.

In this paper, we will provide a unified treatment of three versions of pASs existing along
the second and third dimensions listed above when [< n — namely, pAS when p > 1 and
d > 0, p-EXACT SUBSTRING (pES; pAS when p > 1 and d = 0), and APPROXIMATE SUB-
STRING (1AS; pAS when p =1 and d > 0). In particular, we will use techniques developed
within the theory of parameterized computational complexity [4] to systematically examine

the possible types of useful non-polynomial time algorithms for these problems. Such sys-
tematic treatments are useful both in selecting algorithms that will operate most efficiently
on instances of these problems that occur in practice and in guiding research on new algo-
rithms for these problems [23|. In general, several parameters must be restricted tegether in
order to produce a useful algorithm. For 1AS, the substring length [needs to be restricted
together with the alphabet size |X|, and more effective algorithms result if additional param-
eters are also restricted. For pES, it is sufficient to restrict the number of strings m in order
to obtain fixed parameter tractability. Further results give class membership and hardness
for many other parameter variations of the problems. We also prove that pES is N P-hard,
show polynomial-time inapproximability for pES and pAS, and give a new algorithm for 1AS
that improves on one of the best previously known exact algorithms [19].

Parameterized complexity analysis: According to the theory of N P-completeness [7], an
N P-hard problem does not have a polynomial time algorithm (and hence cannot be solved
quickly for all instances) modulo the strength of the conjecture that P # NP. However,
restricted instances of some N P-hard problems encountered in practice can be solved quickly
by invoking non-polynomial time algorithms. This is because the non-polynomial terms in
the running times of these algorithms are purely functions of sets of aspects of the problems
that are of bounded size or value in those instances, where an aspect of a problem is some
(usually numerical) characteristic that can be derived from instances of that problem, i.e.,
|X|, d, and [in the case of pAS. The theory of parameterized computational complexity [4]
provides explicit mechanisms for analyzing the effects of individual aspects on problem com-
plexity. Given a decision problem IT with a parameter p, let II(p) denote the parameterized
problem associated with II that is based on parameter p. To allow us to isolate components
of problem descriptions and hence parameters, we broadly define an aspect of a problem as
a characteristic that can be derived from instances of that problem, i.e., |X|, d, and [in the
case of pAS.

Definition 1.1 A parameterized problem Il(p) is fixed parameter tractable if there
erists an algorithm A to determine if instance x is in II(p) in time f(p) - |x|*, where
f: 3T — N is an arbitrary function and « is a constant independent of x and p.

One can establish that a parameterized problem II is not fixed parameter tractable by using a
parametric reduction® to show that I1(p) is hard for any of the classes of the W-hierarchy =

{FPT,W[1],W][2],...,W][P], X P} except FPT, where F'PT is the class of fixed parameter
tractable parameterized problems (see [4] for details). These classes are related as follows:

FPT C W[C W[C - CWIP|C - C XP

3Given parameterized problems II(p) and II'(p'), II(p) parametrically reduces to II'(p') if there is an
algorithm A that transforms an instance z of II(p) into an instance z’' of II'(p’) such that A runs in time
f(p)|z|* time for an arbitrary function f and a constant « independent of both = and p, p’ = g(p) for some
arbitrary function g, and x € II(p) if and only if ' € IT'(p').

If a parameterized problem can be shown to be C-hard for any class C in the W hierarchy
above F'PT, then that problem is not in F'/PT (and hence is not fixed parameter tractable)
modulo the strength of the conjecture that F'PT # C.

The following lemmas will be used in the analyses given in later sections of this paper.

Lemma 1.1 [16, Lemma 2.1.25] Given decision problems Il and II' with parameters p
and p', respectively, if T <, I such that p' = g(p) for an arbitrary function g, then TI(p)
parametrically reduces to T1'(p').

Lemma 1.2 [16, Lemma 2.1.35] Given a set S of aspects of a decision problem I1, if TI
ts N P-hard when the value of every aspect s € S 1is fized, then the parameterized problem
I1(S) is not in X P unless P = NP.

Note that in the lemmas above and the remainder of this paper, we use the symbol “<,,,” to
denote a polynomial-time many-one reduction between decision problems.

Organization of this paper: Sections 2, 3 and 4 give our results for the 1AS, pES and
pAS problems, respectively. There are two parts to each section; the first describes efficient
algorithmic solutions relative to certain problem aspects, the other thoroughly analyzes the
parameterized complexity relative to aspects for which the problems are not known to be
fixed parameter tractable. All parameterized analysis in these sections were done relative
to the following aspects: the size of the alphabet (|X|), the number of strings in F (m),
the length of the strings in F (n), the number of “centers” (p), the length of the requested
substrings (/), and the Hamming distance threshold (d). While n is usually considered
to describe the input size of an instance, we analyse it as a parameter for the purpose of
completeness. Section 5 lists some promising directions for future research.

2 APPROXIMATE SUBSTRING

This problem is also known as CLOSEST SUBSTRING |12, 13]. It is N P-hard by results de-
rived independently in [6] and [12] for CLOSEST STRING, i.e., APPROXIMATE SUBSTRING
when [= n. Several polynomial-time approximation algorithms that give solutions within a
multiplicative factor of 2 of the optimal value of d are known [12, 13|, and a polynomial-time
approximation scheme (PTAS) has also recently been developed [14]. Unfortunately, the
high degree of the polynomial in the running time of the PTAS renders it of theoretical in-
terest only. The dependence of the N P-hardness results [6, 12| on the hardness of CLOSEST
STRING, a special case where [= n, indicates that this problem is worth investigating using
fixed parameter techniques. The CLOSEST STRING problem has been shown to be fixed
parameter tractable when d is fixed, by an algorithm that solves it in O(nm + md - d?) time

[9].

Table 1: Previously Known Exact Algorithms for 1AS.

| Running Time / Space | Source
O(nml|3|") time, O(nm) space Waterman et al. (’84) [24]
O(nmIN(%,1,d)) = O(nml|Z]44H1) time, O(nm|%]') space Waterman et al. (’84) [24]
O(nml|X|N(X,1,d)) = O(nm|X|*T1H) time, O(nml) space Sagot et al. (’95) [20]
O(nmlogl|SIN (3,1, d)) = O(nmlogl|S]4FH?) time, Sagot et al. (’95) [20]
O(nmN(%,1,d)) = O(nm|%]%?) space
O(nm?IN(%,1,d)) = O(nm?|2]%%tY) time, O(nml) space Sagot (’98) [19]
O(ml(n + |2]") = O(nml + ml|X|") time, O(mn) space Blanchette et al. (°00) |2]
O(nml + |3[*) time Evans and Wareham (01) [5]
O(nml + |X|"+49) time Evans and Wareham (’01) [5]
O(mnl + nmlogn + mlmin(n — [, |S])™[X[9m+49) time | Evans and Wareham ('01) [5]

2.1 Efficient Exact Solutions for 1AS

Exact F'PT algorithms for 1AS are of particular interest in computational biology to find
short segments that approximately occur in entire families of DNA or RNA sequences. These
can be used as DNA sequence primers, as probes to detect sequence presence and distinguish
sequences, as complementary sequences to block binding sites, and as other more general
sequence family motifs. Typically these examples require only small parameter values. For
example, instances of 1AS that occur in the design of DNA primers for groups of sequences
in molecular biology have very small values for |X|, d, and [, e.g., |[X| =4, d < 3, and [< 25
[5]. A general search for common sequence motifs has produced a challenge problem in the
computational biology community — namely, 1As when n = 600, m > 15, |X| =4, [= 15,
and d = 4 [17]. One result of this challenge is that 1AS is the only problem considered here
that has a substantial body of previous algorithmic work. Much of this work is on heuristic
algorithms and will not be discussed further here.

Explicit consideration of d-Hamming neighborhoods allows for better algorithms if one is
willing to add d to the parameter. Indeed, almost all previous exact algorithm work on 1AS
has proceeded along these lines. This work is summarized in Table 1. Each of the algorithms
listed in Table 1 is preferable under a specific range of values for |X|, m, n, [, and d. However,
the best algorithm overall is that by Sagot [19]. In this section, we introduce four algorithms
that are fixed parameter tractable relative to various subsets of the aspects of 1As. The first
three are entirely new. The fourth algorithm, which uses an approach similar to that used
in [19], runs in O(nmiIN (3,1, d)) = O(nm|3|4%*?) time and O(nml) space.

Algorithm #1. Generate all possible strings of length [over ¥ and examine each of these
strings to see if it is a center for F. There are ||’ such strings and each of these strings can
be checked in O(mnl) time; hence, the algorithm as a whole runs in O(|X|'mnl) time O(mn)
space. This is essentially the first algorithm given in [24|. The advantage of this approach
is that the total space required is only a constant function of the input size.

Algorithm #2. Build the table over all strings of length [over . For each string x in this
table, build a set of all strings in F with a length-/ substring in the d-Hamming neighborhood
of x. These sets indicate the subset of F covered by x. At the end of this process, any length-/
string over ¥ that is marked for each string in F is a center for F. As N(3,[, d), the number
of strings in the d-Hamming neighborhood of a length-/ string over ¥, is O(|3|44) |21,
Theorem 6], the table and substrings can be built in O(m|Z|'N (2,1, d)) = O(m|3|'X|44) =
O(|£]41%m) time. Hence, the algorithm as a whole runs in O(nml + m|X|4"?) time and
O(m|X|") space. In comparison with Algorithm #1, this algorithm eliminates multiplicative
dependence between n and X!, In fact, aside from reading the input, there is no dependence
on n in the time or space complexities, i.e., this is an on-line algorithm.

Algorithm #3. We introduce a new character x ¢ ¥, called the blocking character. The
importance of x is that it will always induce a mismatch when compared to a character in
F. Let s be a length-/ string containing at most d occurrences of the character z. Let S;[j]
be a length-/ substring of S; € F. A substitution of s under S;[j], denoted sub(s, S;[7]), is
a replacement of a subset of the occurrences of x in s with the characters at corresponding
positions in S;[j]. A minimal matching substitution, denoted minsub(s, S;[j]), is a substitu-
tion that results in disty (s, S;[j]) < d having the additional property that no substitution
replacing a subset of those same positions results in disty (s, S;[j]) < d (note that a minimal
matching substitution need not be unique).

The algorithm is based on the observation that to find a center, it is sufficient to obtain
an instance of the center and change characters in at most d positions of the instance. The
first step is to isolate a string, S’, in which we attempt to find an instance of a center. For
each length-[substring of S’, and each size d set of positions in S’, change the characters at
those positions to x. Then execute the procedure DevelopCenter(F \ S, S'[j]).

Consider the search space of this algorithm as corresponding to the recursion tree of the
procedure DevelopCenter (see Table 2). The time complexity of this algorithm has a factor
of n(fi) representing the out degree of the root of the search tree. A branch point refers to a
string that the center must accommodate through a substitution. Since there can be at most
d substitutions for blocking characters in a string, There are at most d branch points on any
path from root to leaf in the search space. The out degree at each branch point is n(dd2),
corresponding to the maximum number of substrings that must must be tried, multiplie({ by
the maximum number of minimal matching substitutions that must be tried. The maximum
number of leaves in the search space is n(é) (n(d‘/iQ))d and O(nm) time is required for each

leaf. The complexity of this algorithm is bounded by O(nm((é) (d'/iQ)n)d). Of note is the

absence of any parameter representing the alphabet (nm or X).

Algorithm #4. This is an improvement of an efficient algorithm due to Sagot [19]. The
algorithm begins by constructing, for each S; € F, the lexicographic tree T; of length-/
substrings of S;. This requires O(nml) time. The centers are searched enumeratively by
traversing the space of all possible centers. The centers of desired length [are not searched
directly. The search process iteratively searches for each prefix of a given center in order to

Table 2: Procedure DevelopCenter

procedure DevelopCenter(F, C)

Let S be an arbitrary string in F; branch < true;
for all1 <j<n—Il+1do
if disty (S[j],C) < d then
branch < false
DevelopCenter(F \ S, C)
if branch = true then
for all1 <j<n—Il+1do
if disty(S[j],C) < 2d then
for each C' «+— minsub(C, S[j]) do
0. DevelopCenter(F \ S, C)

2 O XN Ote W=

take advantage of the fact that prefixes are shared by many potential centers and eliminate
redundant processing.

Let « be a (length < [) center for F. Define fron® = {fronf,..., fron%}. For each
1 <i<m, fron = {(v,Verr) : v € nodes(T;), verr < d}. Think of frond as the frontier of
nodes in T; whose path labels are of Hamming distance < d from «. For any (v, ver) € fronf,
the path label of node v spells out an instance of «.

While searching the space of possible centers, if any fron$ € fron® is found to be empty,
the search space is pruned. This condition implies that there exists some member of F
containing no instance of «, the current center. Pseudocode for this algorithm is provided
in Table 3. For the initial call to FindCenters, a is the empty string and fron® is the set of
roots of T; with an error term of 0.

The time complexity of the algorithm is proportional to the number of centers in the
search space multiplied by the size of the fron set that must be constructed for each iteration
of the search. In the worst case, for m strings of length n, there will be O(nN(X,1,d))
potential centers of length [with disty < d from any substring of a member of F. Let
the (d,l)-neighborhood of a string S refer to the set of strings within the d-Hamming
neighborhood of any length-/ substring of S. The maximum size of the (d,)-neighborhood
of a string S of length n is (n — [+ 1)N (X, [, d), and this is achieved when the d-Hamming
neighborhoods of all length-I substrings of S are disjoint. Further observe that the upper
bound of (n — 1+ 1)N(X,1,d) on the center search space can only occur when all (d,[)-
neighborhoods of members of F completely overlap. Attaining this limit on the search space
requires that each fron{ € fron® have only one element, i.e.,

Worst case running time = (Size of Search Space) x (Size of fron)
= O(nIN(%,1,d)) x O(m).

Table 3: Procedure FindCenters.

procedure FindCenters(«, fron®)
1. for each character 0 € ¥ do
2. for each set fron{ € fron® do
3. for each pair (v, ve,) € frond do
4. if there is an arc (v,v’) in T; labelled with o then
5. add (v', very) to frond®
6. if (verr < d) then
7. for all arcs in T} from v to some v’ labelled with ¢’ # o do
8. add (v', verr + 1) to frong?
9. if no member fron{” € fron®’ is empty then
10. if (|ao| =1) then
11. print out center ao
12. else
13. FindCenters(ao, fron®?)

Table 4: A Summary of the 1AS Algorithms Derived in this Paper.

‘ Alg # H Running Time ‘ Space ‘
1 O(nml|X|) O(nm)
2 O(nml + m|X|"%) | O(m|2])
3 O(m2% 19pd+T) O(nm)
4 O(nm|3]4eT) O(nml)

Consider the effect on the search space of any fron; having more than one element. The
d-Hamming neighborhoods of substrings of S; would no longer be disjoint and the (d, [)-
neighborhood of S; would have at least one fewer member, thus eliminating a node from
the search space. Hence, the overall running time of the algorithm is O(nmIN(%,1,d)) =
O(nm|3[44rL).

The algorithm in [19] actually solves a generalized “quorum” version of 1AS that searches
for strings in X! that are within Hamming distance d of substrings in at least ¢ < m (as
opposed to m) of the given strings. We have improved on [19] by replacing the traversal of a
single generalized suffix tree with the simultaneous traversal of a set of lexicographic trees.

Table 5: Known fixed parameter tractable aspects of 1AS

| Parameter | - | ¥ [m [mX |
d

l FPT FPT

Id FPT FPT

n FPT | FPT | FPT | FPT

n,d FPT | FPT | FPT | FPT

n,l FPT | FPT | FPT | FPT

nld | FPT | FPT | FPT | FPT

2.2 Parameterized Complexity of 1AS

We begin by identifying the combinations of parameters that are sufficient to render 1AS
fixed parameter tractable. We present two results that anchor all known fixed parameter
tractability results.

Theorem 2.1 Fized Parameter Tractability of APPROXIMATE SUBSTRING.

1. 1as(%,1) € FPT.
2. 1as(n) € FPT.

Proof (1). Follows from Algorithm #1 above, which solves 1AS in time O(nml|%|).
Proof (2). Consider Algorithm #3 with time complexity O(m2% 1%n?+1). Since m2% [¢nd+! =
O(mn®™")), 1as(n) is in FPT. 1

The picture we have so far of the complexity of 1AS is shown in Table 5. The results in
the bottom half of the table are obtained by noting that the result of Theorem 2.1 where
n is fixed applies to all of these. Similarly for the entries where |X| and [are fixed. The
algorithms used in the proof of Theorem 2.1 anchor the known fixed parameter tractability
results for 1AS.

The following problems will serve as source problems to demonstrate hardness:

CLIQUE |7, Problem GT19]
Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Is there a set of k vertices V' C V that form a complete
subgraph of G(that is, a clique of size k)?

DOMINATING CLIQUE [4, Page 463|
Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Is there a set of k vertices V' C V that form a complete
subgraph of G(that is, a clique of size k) and also form
a dominating set for G?

To show W][1]-hardness for 1as(m,[,d) we reduce from CLIQUE. Let G = (V, E) be a
graph for which we wish to determine whether G has a k-clique. We show how to construct
a family Fg of m = fi(k) strings over alphabet ¥ that has a center of length [= fo(k)
if and only if G contains a k-clique. Assume for convenience that the vertex set of G is
V=A{1,...,|V|}.

Target Parameters. The number of strings in Fg is m = fi(k) = (g) The length of
center Cg is [= fo(k) = k + 2, and the maximum distance between instance and center is
d = f3(k) = k — 2. The maximum length of any string in Fg (which is not fixed in the
reduction) is n = f4(G, k) = (2k + 4)(| E]).

The Alphabet. The string alphabet is ¥ = ¥; U ¥, U X3. We refer to these as vertex
characters (), unique characters (X5), and alignment characters (X3).

¥ o= {1,...,|V]},

Yo = {Set of characters occurring uniquely in Fg},

23 - {A, B}
The characters of Y5 are denoted by u. All occurrences of this character are unique charac-
ters.

Substring Gadgets. We next describe the two “high level” component substrings used in
the construction.

Edge Selectors: | N |
<€dg€(i, j)(pa q)> = Au(z_l)pu(]_l_l)qu(’c—J)B,

Separators:

(separator) = uF*+2.

The Reduction. The (’2“) strings in Fg correspond to the (’2“) edges in a k-clique:

String S;; is composed of all edge components from &;; arranged in the following manner
(where product notation refers to concatenation):

Si= T (edgeli,)p.) (separator).

(p,9)EE
Pp<g,i<p
J—i<q—p

a<|V|—k+j

10

Figure 1: Graph 1

Si9: A12uuBuSA13uuBub Al4uuBub A23uuBub A24uu B
Sis: AluduBuSAluduBub AlubuBub A2uduBub A2ubuB
Sia: Aluud Bub AluubBu® A2uubBub A3uu6B

Sos: Au23uBu® Au24uBub Au25uBub AudbuB

Sou: Au2ud Bub Au2ubBub Au3u6B

Sas: Auu36Bub AuudbBub Auub6 B

Figure 2: 1AS(m, 1, d) representation for Graph 1 (desired clique size k = 4).

An example of the reduction for the graph in Figure 1 and a desired clique size 4 can be seen
in Figure 2. It is evident from the example that any center for F; will have the property
that all positions other than the terminal positions will be occupied by vertex characters in
ascending order (this will be proven below).

Preliminary Results. Some additional conventions are used in discussing F5. An instance
that begins and ends with alignment characters is said to be in-phase. Vertex positions
are those positions in a string or substring occupied by characters from ¥; (the vertex
characters). Note that for string S;;, the vertex positions are positions ¢ and j to the right
of the initial alignment character. For any vertex position 7, the vertex group of i, denoted
V;, is defined as the set:

Vi={Su: i<z <k}U{Sy:1<z<i}

The intended role of V; is that the instances of center C from V; determine the character at
position ¢ in C. Without loss of generality, it is assumed that no two instances can come
from the same string.

11

Lemma 2.1 Let Cq be a center for Fg. The following are true:

1. Cq begins with character A and ends with character B.
2. No position in Cq s occupied by a character from ¥,.
3. If T is an instance of Cq, then I is in-phase.

4. The k — 1 instances from any vertex group are sufficient to completely determine Cq.

Proof (1). Suppose Cg begins with a character other than A. Then the separation between
A and B in members of Fg prevents any instance from matching both A and B in Cg. In
order to match Cq at 4 positions, each instance must then match in a position occupied by
a character from Y,. By the pigeonhole principle, this results in a contradiction.

Proof (2). Suppose Cq contains a character from ¥, in position z. Then at most one
instance matches Cg at position z. Consider the vertex group V,. Any instance from V, that
matches C out-of-phase must determine a unique character, since it can’t match both A and
B. Suppose some instance from), matches C in phase. Then it will not match C at position
z and therefore must determine a unique character. Since all instances from), determine
unique characters, and |V,| = k — 1 at most one instance can match C at 4 positions, the
pigeonhole principle once again presents a contradiction.

Proof (3). Suppose some instance matches the center out-of-phase, then that instance
cannot match both A and B and so must match some position containing a character from
Yo, contradicting Part 2.

Proof (4). Suppose Ce has been partially determined by instances from V, C V,, for
vertex position z. Consider instance Z from S,, € V, \ V.. By Parts (2) and (3), Z must
match the alignment positions, and positions z and x. Since Z is the only member of V,
that can determine a non-unique character at position z, that position has not yet been
determined. In order for Z to match 4 positions of Cq, Z must determine position z in Cg.
The first instance determines 4 positions in the center, and the remaining £ — 2 instances
each determine an additional position, a total of k + 2 positions. |

Lemma 2.2 CLIQUE <,, 1As(m,[,d).

Proof. Suppose there is a k-clique in G. Given the vertices in a clique, place their corre-
sponding characters from >; in ascending order between characters A and B. It is easy to
verify that the resulting string is a center for F5. Conversely, suppose there is no k-clique
in G and there is a center Cg for those strings in vertex group V, where vertex v occupies
vertex position z. By Part (4) of the lemma, instances from V, completely determine Cg.
Consider any set of vertices N, |[N| = k — 1, neighboring v in G. Since there is no k-clique,
some pair of vertices a,b € N are not adjacent in G. By the construction of Fg, for any pair
i, 7 of positions, no length-/ substring of S;; can have both character a at position ¢ and b at
positions j. Therefore Cq is not a center for Fg. |

12

Figure 3: Graph 2.

Next we investigate the complexity of 1AS when parameterized by [and d. To show W/[2]-
hardness, we reduce from the W[2]-complete problem DOMINATING CLIQUE [4]. Let G =
(V, E) be a graph for which we wish to determine whether G has a dominating clique of size
k. We show how to construct a family Fg of m strings, over alphabet ¥, that has a common
approximate substring of length-/ and distance d if, and only if, G contains a dominating
clique of size k. Assume for convenience that the vertex set of G is V' = {1,...,z}. The
alphabet and substring gadgets are exactly the same as for the previous reduction.

The Target Parameters. The number of strings in F¢ is m = fi(k, G) = (§) + |V, which
is no longer independent of |G|. The functions f, to f; remain as defined above.

The Reduction. The strings will form two groups F¢ = Fg, U Fg, having distinct roles.
The (k) strings in F¢, are exactly those described in the previous reduction. These have

2
the same role: determining a center that corresponds to a k-clique in G.

The strings of F,, are responsible for verifying that any center determined by instances
from F¢, corresponds not only to a k-clique, but to a dominating set as well:

Fa, ={Svp: 1 <p < |V}

String Sy, is composed of all edge components having the character ¢ € ¥; such that ¢
is a neighbor of p. The components are arranged in the following manner (where product
notation refers to concatenation and for any vertex x, Nz| is the set of neighbors of z):

Svv=][]

gENIp]
q'ENIq]
1<i<j<k

{ (edge(i, j)(d', q))(separator) if ¢ <q,

(edge(i, j)(q,¢')) (separator) if q <q'.
An example of this reduction for the graph in Figure 3 and a desired dominating clique size
of 3 can be seen in Figure 4.

Lemma 2.3 DOMINATING CLIQUE <, 1As(/,d).

13

Sio: Al12uBu®Al4uBu® A23uBu’® A24uBu® A34uB
Si3: AludBu® A2u4Bu® A3ubB
Sos: Au23Bu® Au24Bu® Au34 Bu® Au35B

Svi: Al2uBu’Al4uBu’ A23uBu’ A24uBu’ A34uB
AludBu® A2u4 Bu® Au23 Bu® Au24Bu® Au34B

Sv,: Al2uBu’ Al4uBu® A23uBu’ A24uBu’ A34uB
Alu4 Bu® A2u4 Bu® A3ub Bu® Au23 Bu® Au24 B
Au34Bu® Au3bB

Svy: Al2uBu’ Al4uBu® A23uBu’ A24uBu’ A34uB
AludBu® A2u4 Bu® A3ubBu® Au23 Bu® Au24B
Au34Bu® Au3bB

Sy, Al2uBu’ Al4uBu’ A23uBu’ A24uBu’ A34uB
Alu4 Bu® A2u4 Bu® A3ub Bu® Au23 Bu® Au24 B
Au34Bu’Au35B

Svi: A23uBu’A34uBu’ A3u5Bu’ Au23 Bu® Au34B
Au3bB

Figure 4: 1AS([,d) representation for Graph 2 (with desired dominating clique size k = 3).

Proof. As was shown in Theorem 1, a center for F, can be obtained from any k-clique
in G. Suppose some V' C V is both a k-clique and a dominating set for G. For all vertices
p € V, there exists vertex ¢ € V' such that pg € E. The substring of Sy, that encodes any of
the k —1 clique edges incident on vertex p will serve as an instance for the center. Therefore
a dominating k-clique in G implies a center for F5. Conversely, the absence of a k-clique
in G implies the absence of a center for F¢;,. Suppose no k-clique is also a dominating set
in GG. If there is a clique in GG, there will be some vertex p € V having no neighbors in the
clique. For all substrings of Sy, € Fg, , none will correspond to an edge in the clique and
therefore none will match the center sufficiently to be an instance. |

The following result of Francis and Litman [6] is important in establishing the hardness a
version of 1AS. The result will be used again in Section 4.2 to establish the hardness of
many versions of pAS.

Theorem 2.2 [6/ pAS is NP-hard when |X| =2, p=1, and [= n.
Theorem 2.3 Hardness of APPROXIMATE SUBSTRING:

1. 1as(m,l,d) is hard for W[1].

2. 1as(l,d) is hard for W|[2].

3. 1A8(X) is not in XP unless P = NP.

14

Proof (1). This follows from Lemma 2.2 and the W[l]-hardness of CLIQUE [4].

Proof (2). This follows from Lemma 2.3 and the 7W[2]-hardness of DOMINATING CLIQUE
[4].

Proof (3). This follows immediately from Theorem 2.2, which demonstrated that 1AS is
NP-hard when |X| = 2. |

Now we show inclusion in classes of the W-hierarchy for restricted aspects of 1As. The
idea is to use a truth assignment of weight d to indicate the characters occupying the [center
positions. This circuit will be called the center testing circuit.

Center Testing Circuit: Let F = {Si,..., S} be an instance of 1AS, and C is any center
for F. The j-th length-I substring of S; will be denoted S;[j]. The set X will be used to
index size [—d subsequences of a length-[string:

X={X,: X, c{lL.. . ILIX|=l-d1<p< ()}

Let A ={ali,j,p,q]: 1 <i<m, 1<j<n—I+1, 1<p<|X|,1<q<I[l-d} denote
position ¢ in X, N S;[j]. Let B = {blu,v] : 1 < u < [,1 < v < |X|} be a set of boolean
variables. The intended interpretation of variable b[u, v] is that character v occupies position
u in C. The variable a[i, 7, p, ¢] will take on the value of b[u, v] if and only if position ¢ of X,
is u and that position is occupied by character v in S;[j], otherwise a[i, j, p, q] is set to false.

Let E = E|FE, be the boolean expression over the set of variables B, where:

E, = H H (_'b[uv U] + _'b[uv UI])a

u=1 1<v<v’ <[3)|

[—

m n—4H | X]|
Ey, = HZZHa[i’j’p’q]'
i=1 j=1 p=1

q=1

For example consider the set of strings S} = tggtca, So = accgac, and S3 = cggtag over
alphabet ¥ = {a,c, g,t}. We assume the order a = 1, c =2, g =3 and t =4 on . If
p=(1,2,3), then a[l, 1, p, 1] = b[1, 4] because both correspond to the character ¢ at position
1 in a length-l string. Similarly, a[3, 1,p, 1] = b[1, 2] corresponding to ¢ at position 1 and if
p=(1,3,5), then a[2,2,p, 2] = b[4, 3] corresponding to g at position 4.

The purpose of E; is to force a correspondence between satisfying interpretations and
strings over X!, Notice that a weight [interpretation falsifies F if more than one b[i, j] is
assigned true for any .

e Proof of Correctness. We claim that E has a weight [truth assignment if, and only if, there
exists a center C for F. If C exists, it is easy to verify that a truth assignment corresponding
to C satisfies E. Conversely, let 7 be a weight [satisfying truth assignment for E. The
clauses of E; ensure that 7 indicates a unique string s € X'. The clauses of F, ensure that

15

for each i, some substring S;[j] matches [—d positions of s. This implies that in each S;,
there is a substring of length-/ that is distance less than d from s. Therefore s is a center for
F.

Instance Testing Circuit. We construct a new circuit, called the instance testing circuit,
having little resemblance to the center testing circuit. Our goal here is to show membership
for versions of 1AS when [is left free. The idea this time is to select m instances and, for each
instance, d positions where the instance is exempted from having to match a center. The
circuit is only a slight modification of a circuit that solves the length-I common substring
problem.

Let B = {b[i,j] : 1 < i < m,1 < j < n—I1+1} be a set of boolean variables with
the intended interpretation that b[i, j] will be set true when S;[j] is an instance of C. Let
W ={wli,r,p]: 1<i<m, 1<r<d, 1<p<I} bea set of boolean variables with the
intended meaning that any instance of C in S; need not match C at position p. The index r
is used to restrict the number of such exemptions to d for any instance. In the description of
the circuit, the set of variables A = {a[i, j,p,q] : 1<i<m, 1<j<n—Il+1,1<p<I[1<
q < |X|} will act as an alias for the variables from B. For any occurrence of the variable
ali, j,p, q|, the substitution a[i, j, p, q] < b[i, j] is assumed exactly when S;[j] has character
q at position p. Otherwise a[i, 7, p, q] takes value false.

Let E = FE1F>E3 be the boolean expression over the set of variables of B U W, where:

Ev = I 11 (0l g+l 51),

i=1 1<j<j/<n—I+1

Bo= T[T I wlirsl + -ulirs).

=1 r=1 1<p<p’<l

I n—H1

IZ m
E; = ZH Z H"p]+z ali, j,p,q

p=1 =1 r=1

For example consider the set of strings S} = tggtca, Sy = accgac, and S5 = cggtag. 1f
= (1,2, 3), then a[l, 1, p, 1] = b[1, 4] because both correspond to the character ¢ at position
1 in a length-[string. Similarly, a[3, 1,p, 1] = b[1, 2] corresponding to ¢ at position 1 and if
= (1,3,5), then a[2, 2, p, 2] = b[4, 3] corresponding to g at position 4.
e Proof of Correctness. We claim that F has a weight m + md satisfying truth assignment
if, and only if, there is a center C for F. Given center C, a satisfying truth assignment for £
can be obtained by setting b[i, j] to true for each instance S;[j] of C, and also setting w[i, r, p]
to true if the r-th mismatch in the instance from .S; occurs at position p. This can be easily
verified. For the converse case, let 7 be a weight m + md satisfying truth assignment for
E. The clauses of E; ensure that 7 corresponds to at most m instances, one from each S;.
The clauses of E, ensure that at most d mismatching positions are selected for the instance
from any S;. F; and F5 combined force 7 to correspond directly to a set of instances and a

16

set of positions where each instance may differ from a center. The fact that 7 satisfies E3
implies that all instances agree in all positions with the possible and permitted exception of
the exempted positions. Hence F has a center. |

Single Instance 4+ Modifications Testing Circuit. The idea behind this circuit comes
from the observation that a center can be obtained by isolating an arbitrary string from F(we
use S1), and applying substitutions for characters in up to d positions in each substring S;[7]
of S;. We use a guess and test strategy: first guess a center by selecting some S;[j], then
guess the positions and characters by which the center differs from S;[j]. The goal here is
to have a weight d + 1 truth assignment represent the selection of some j (1 < j < n—I[+1),
and d substitutions to positions of S;[j] that transform S;[j] into a center.
To describe the input to the circuit, we use the following inputs:

Xl = {ZUl[Z,],p,T] 1§Z§m7 1§]§Tl—l+1, 1§p§l7 1§T§|E|}7
XS = {x?)[pa’r]: 1§p§la 1§7"§|E|},

where the value of x1[i, j, p, r] corresponds to the truth of S;[j] being occupied by character
r at position p (these values are fixed for each instance and are not part of a truth assign-
ment). The weight d+1 truth assignment will come from selecting exactly one member of
X, (representing a substring of S;) and d members of Xj(representing the substitutions).
Once the center has been “guessed”; it remains to test it against potential instances from the
other strings in F. Unlike the center testing circuit above, [is not fixed, so we cannot
use the same strategy to test the “guessed” center.

The set of variables {g[p,r] : 1 < p <[, 1 <r < |X]|} describes the “guessed” center,
where

glp,r] = (Z (z2[s] A 5U1[1aj,p,7“])> : H —as[p, '] | + zs[p, r].

1< <3
r!Ar

j=1

The lower layers of the circuit are described by the variables:
B={bijp]: 2<i<m, 1<j<n—l+1l, 1<p<l},

with the interpretation that bi, j, p] = true if and only if S;[j] matches the guessed center
at position p or is one of at most d mismatches.

Members of B occur at different depths. We stack the variables of B so that b[i, 7, p]
depends on variables used to generate bli, j, p—1]. The purpose of this is to prevent having
to count the number of mismatches (between the guessed center and an instance) at a single
level. To do so would introduce an exponential number of gates. The strategy we use is to
maintain a count of the amount of permitted mismatches, a count that is decremented each
time a mismatch occurs. The set of variables A implement the counter for each S;[j]:

A={afi,jpal: 2<i<m, 1<j<n—1+1, 0<p<l 1<q<d+1},

17

such that

=
ali, j,p,q) = | ali,j,p—1,q] A Z(/\:clup,r]> +ali, j,p—1,q+1].

For all 4,5 and p, the value of ali, j, p, d+1] is set to false, and for all i,j and ¢, the value of
ali, 7,0, q| is set to true.

We now define the variables of B:

Rl

il = alicgop 11+ 3 (alpr Al o]

r=1

The circuit C' is described by expression £ = E|FEyE3 defined as:

By = H (mz2[j] + ~z2[5]),

1<j<j/ <n—I+1

E, = H H (_':U?,[par]_'__'x?)[parl])a

L1<r<r' <3|

m n—Il+1 [

By = HZHpr]

e Proof of Correctness. It is easily verified that the circuit is satisfied if and only if some
“oguess” matches at least [—d positions in at least one substring for every member of F. The
size of the circuit is O(nml(|X]| +d)). The depth of the circuit is O(() since, for each i, j and
r, there is a path passing through ali, j, 1,7],a[é, j,2,7] ... ali, 5,1, 7]. |

Theorem 2.4 Membership of APPROXIMATE SUBSTRING in classes of the W -hierarchy:

~

1as(l) € W[2].
2. 1as(m,l) € W/1].
3. 1as(m,d) € W][3].
4. 1as(m, X, d) € W[2].
5. 1as(d) € W[P].
Proof (1). This follows trivially by observing that when [is fixed, the center testing circuit

has weft 2.
Proof (2). If m is fixed along with [, the center testing circuit has weft 1.

18

Table 6: The Parameterized Complexity of the 1As Problem.

| Parameter | —~ | X] m | m, % |
- N P-Complete ¢ XP W[1]-Hard
d W2]-Hard, in W[P] | in W[P] | W[1]-Hard, in W3] | in W|2]
l W[2]-Complete FPT W[1]-Complete FPT
l,d W12]-Complete FPT W1]-Complete FPT
n FPT FPT FPT FPT
n,d FPT FPT FPT FPT
n,l FPT FPT FPT FPT
il d FPT FPT FPT FPT

Proof (3). This follows trivially by observing that when m and d are fixed, the instance
testing circuit has weft 3.

Proof (4). This follows from (3) because fixing |X| reduces the weft of the instance testing
circuit by one.

Proof (5). When d is fixed, and all other parameters left free, the single instance -+
modification circuit has weft O(1). |

3 p-EXACT SUBSTRING

For many families of sequences, there may not be a single substring that is contained in
each sequence. When no single substring is found in all sequences, it is useful to investigate
whether there can be a set of substrings that between them are found in all sequences. This
problem is applicable in computational biology to characterize more diverse sequence families,
and to find a small set of probes that would detect an entire group of DNA sequences. No
results prior to those in this paper are known for this problem.

3.1 Efficient Exact Solutions for pES

Algorithm #5. Consider the algorithm that first determines, for each length-/ substring
of a string in F, the subsets of F whose strings have that substring, and then checks each
of the possible p-partitions of F to see if each subset in that partition is covered by some
length-{ substring. Finding the sets of F covered by length-l substrings of F can be done
in O(mn) time using a generalized suffix tree [10, Section 6.4]. Marking the presence or
absence of each possible subset of F can be done in O(m2™) time using a table with 2™ 1-bit
entries. Since each of the O(2™) tree-derived subsets has at most m—1 immediate supersets
containing exactly one more element, it will be added at most once for itself and once per
immediate superset. As there are p™ partitions of F, each of which can be checked in O(mp)
time, the the algorithm as a whole runs in O(nm + m2™ + mp™*1) time and O(2™) space.

19

Algorithm #6. Consider the following algorithm based on the classical pseudo-polynomial
time algorithm for INTEGER KNAPSACK |15, Section 16.2]: Let f : 2% — {0,...,2m}
be the one-to-one correspondence that associates each subset of F with the integer value
corresponding to the m-bit representation of that subset. Determine the set C' of subsets
of F covered by the length-I substrings of the strings in F, construct the directed graph
G = (V,A) where V = {0,...,2™}, A ={(4,j) : j =i V f(c) for some c € C}, and V
is the bit-wise OR operation, and use breadth-first search from vertex 0 to determine the
length of the shortest path from 0 to 2™. In this graph, vertices correspond to subsets of
F and each edge (7,) encodes the fact that subset j of F can be obtained by the union of
subset ¢ of F and some set in C'. Note that a path from vertex 0 to vertex i corresponds
to a subset of C' whose union is subset ¢ of F; hence, there is a p-Center for F if and only
if there is a path of length p from vertex 0 to vertex 2™ in G. Set C' can be computed
in O(nm + 2™) time and O(2™) space as in part (3) above, graph G can be constructed
in O(|V] + |A]) = O(2™ + 2™|C|) = O(min(nm,2™)2™) time and space, and a breadth-
first search can be done in O(|V| + |A|) = O(min(nm,2™)2™) time and space. Hence, the
algorithm as a whole runs in O(nm + min(nm, 2™)2™) time and space.

Algorithm #7. Examine each p-selection of the |Z|' strings of length [over ¥ to see if they
form a set of centers for F. As there are ('i‘l) = O(|X|") such p-selections, each of which
can be checked in O(nmp) time, the algorithm as a whole runs in O(nmp|X|”) time.

Algorithm #8. Determine, for each of the |X|" strings of length [over X, the subset of F
whose strings have that substring, and then check each p-selection of these strings to see if
they form a set of centers for F. The first step can be done in O(nml+m/|3|") time (initialize
the table to empty and then mark each length-/ substring appropriately in a one-pass scan
over the strings in F). As there are O(|X|"?) p-selections, each of which can be checked in
O(mp) time, the algorithm as a whole runs in O(nml + mp|%|"?) time and O(m|X|') space.

Algorithm #9. Consider the following algorithm based on the search-tree algorithm for
VERTEX COVER [4]|. Each node in this search tree is labeled with subsets of F. The root
node is labeled with the set F, and the tree is constructed recursively for each node v with
associated set F' as follows:

1. If F' = ¢, v is a leaf in the search tree.

2. If F' # ¢, select an arbitrary string S from F' and create (n — [) + 1 children of v
such that the i-th child node, 1 < i < (n—1)+1, is labeled with the subset of F’ that
does not contain the length-/ substring of S beginning at position .

Note that any leaf in the search tree of depth p corresponds to a set of < p substring centers
for F, and if there is no such leaf, there is no solution for the given instance of pES. As,
the search tree contains at most (n — [+ 1)? — 1 nodes, each of which requires O(m) space
and can be created in O(nm) time, the algorithm as a whole runs in O(min?*") time and
O(mnP) space.

20

Table 7: A Summary of pES Algorithms Derived in this Paper.

‘ Alg # H Running Time ‘ Space ‘
5 O(nm + m2™ + mp™*) o(2m)
6 O(nm + min(nm, 2™)2™) | O(nm + min(nm, 2™)2™)
7 O (nmp|X|P) O(nm)
8 O(nml 4+ mp|X|'?) O(m|X]")
9 O(minP*h) O(mnP)

Table 8: Fixed parameter tractable aspects of pES

‘ Parameter H — ‘ X ‘ m ‘ m, 2 ‘
- FPT | FPT

[FPT | FPT | FPT

n FPT | FPT | FPT

n,l FPT | FPT | FPT

P FPT | FPT

p, 1l FPT | FPT | FPT

D, N FPT | FPT | FPT | FPT
p,m,l FPT | FPT | FPT | FPT

3.2 Parameterized Complexity of pES

Theorem 3.1 Fized Parameter Tractability of p-EXACT SUBSTRING:
1. pES(m) € FPT
2. pES(p,n) € FPT

3. pes(Z,1) € FPT.

Proof (1). Follows from Algorithm #6 in section 3.1 which has time complexity O(mn+4™).
Proof (2). Follows from Algorithm #9 in section 3.1, which has time complexity O(mn°®)).
Proof (3). Follows from Algorithm #7 in section 3.1, and the observation that p < |X|. |

The results of Theorem 3.1 (and all results that follow by inheritance) are presented in
Table 8. In the rest of this section we show that unless P = NP, Table 8 actually represents
all fixed parameter tractability results for pES. No hardness results prior to those in this
paper are known for this problem. All hardness results in this section will be derived via
reductions from the following problems:

21

VERTEX COVER |7, Problem GT?2|
Instance: A graph G = (V, E) and a positive integer k.
Parameter: A positive integer k.

Question: Does G have a vertex cover of size at most k, i.e., a set
of vertices V! C V', |[V'| <k, such that for each edge
(u,v) € E, at least one of u and v belongs to V'?

HITTING SET |7, Problem SP§|

Instance: A collection C of subsets of a finite set S and a positive
integer k£ < |C].

Parameter: A positive integer k.

Question: Is there a subset of S' C S with |S'| < k such that S’
contains at least one element from each subset in C'?

Lemma 3.1 VERTEX COVER <,, pES, for anyn > 2 and [> 1.

Proof. Given an instance (G, k) of VERTEX COVER, construct the following instance
(X, 8", p',I') of pES: Let X' =V, S = {uv | (u,v) € E}, p' =k, and I' = 1. Note that in
the constructed instance of pES, p' =k, n=2and [= 1. |

Lemma 3.2 HITTING SET <, pES(p,[).

Proof. Given an instance (S,C,k) of HITTING SET, construct the following instance
(X, 8, p' ') of pES(p,l): Let X' = S, 8" = {cica...cq | ¢ = {c1,¢2,..., ¢} € C}H D =k,
and ! = 1. Note that in the constructed instance of pEs(p,l), p=Fk and [= 1. |

Lemma 3.3 HITTING SET <, pES(X, p), for any X with |X| > 2.

Proof. Given an instance (S, C, k) of HITTING SET and any alphabet ¥ such that |X| > 2,
construct the following instance (X, 5", p',l') of pES(X,p): Let f: S — {1,2,...,|S]|} be a
one-to-one correspondence that induces an order on S and let @ and b be any pair of distinct
elements of . For any x € S, let w, be the string obtained from the length d = [logs(|S|)]
bit-wise representation of f(x) by substituting a for 0 and b for 1. Let

SI — {bd+1ad+lw61 ad+1bd+1ad+1 adedH. N d+

We, a 1wc‘clad“bdﬂa | c={ei,e0,...,¢0} € CY,

p =k, ,and [= 5d+5. If a set ¢ € C contains an element x, its corresponding string s,
in S’ will contain the substring b a1 w,a® 6% q of length 5d + 5. Moreover, any center

22

string of length 5d 4 5 for a subset of S’ will have a substring of the form aw;a for some
1 < j <|S|, and this substring will occur in a string s, € S if and only if j € ¢. Note that
p' =k in the constructed instance of pES(X, p). |

Note that none of these reductions changes the cost of a solution (since p’ = k in all cases),
so they are also L-reductions [16] that preserve polynomial-time approximability.

Theorem 3.2 Hardness of p-EXACT SUBSTRING:
1. pES(p,1) is W|2]-hard.
2. pES(X,p) is W|[2]-hard.
3. pES(n,l) is not in X P unless P = NP.

4. pES(X) is not in X P unless P = NP.

Proof (1). This follows from Lemma 3.2 and the W[2]-hardness of HITTING SET [4].
Proof (2). This follows from Lemma 3.3 and the W[2]-hardness of HITTING SET [4].
Proof (3). This follows from Lemma 3.1 and the N P-hardness of VERTEX COVER |7].
Proof (4). This follows from Lemma 3.3 and the N P-hardness of HITTING SET [7]. |

Theorem 3.3 pEs(p) € W|2].

Proof. We use a simple reduction to HITTING SET. Given instance (F,[,p) of pES(p),
construct the following instance (S, C, k) of HITTING SET: Let S be a set with elements
corresponding to length-/ substrings of members of F, let C' = {C},...,Cp,} such that C; is
the subset of S with members corresponding to substrings of S; € F, and let & = p. The
correctness of the reduction is easily verified. The membership of HITTING SET in W[2] [4]
implies the membership of pES(p). |

Corollary 3.4 There is no polynomial time approximation algorithm relative to p for pES
within a logarithmic factor (clogp for any constant ¢) when |3| > 2 unless P = NP.

Proof. Raz and Safra [18] showed that SET COVER cannot be approximated relative to
k in polynomial time within a logarithmic factor unless P = NP. As the HITTING SET
and SET COVER problems are equivalent [1| and HITTING SET is L-reducible to pES when
|¥| > 2 by Lemma 3.3, pES has the same restrictions on approximability. |

23

Table 9: The Parameterized Complexity of pES

‘ Parameter H — ‘ by ‘ m ‘ m, % ‘

- N P-Complete ¢ XP FPT | FPT

l ¢ XP FPT FPT | FPT

n ¢ XP FPT FPT | FPT

n,l ¢ XP FPT FPT | FPT

p W2]-Complete | W[2]-Complete | FPT | FPT

p,l W2]-Complete FPT FPT | FPT

p,N FPT FPT FPT | FPT
N FPT FPT FPT | FPT

4 p-APPROXIMATE SUBSTRING

Just as pES can be applied to find a set of strings that at least one from the set exactly occurs
in each sequence, pAS can be used to find a set of strings such that at least one from the set
approximately occurs in each sequence. The set of strings will cover all sequences between
them. For small values of d, pAS can also be applied to finding a set of DNA probes, or a
motif for a large and more general family of sequences. There has been no work done directly
on this problem prior to that reported in this paper. However, various results are implicit
in results derived for restricted versions of this problem. The N P-hardness results for 1AS
given in [6, 12| trivially imply the N P-hardness of pAs. Similarly, the inapproximability
of pAS relative to d when [= n and |X| = 2 within a multiplicative factor of ¢ < 2 unless
P = NP [8, Theorem 6| implies the same for pAs.

4.1 Efficient Exact Solutions for pAS

Algorithm #10. Modify Algorithm #7 from Section 3.1 by replacing the (n +) term
for simple pattern matching with an nl term for computation of Hamming distance, as in
Algorithm #1 from Section 2.1. The resulting algorithm runs in O(nmlp|X|') time.

Algorithm #11. Modify Algorithm #8 from Section 3.1 to use the table computed in
Algorithm #2 from Section 2.1. The resulting algorithm runs in O (nml+m|%|? 1" +mp|X|?)
time and O(m|%|') space.

Algorithm #12. We modify Algorithm #4 in Section 2.1 in two ways. First, explicitly
maintain a tree representing the search space that is traversed. The result is a lexicographic
tree of all length-/ strings that are in the d-Hamming neighborhood of a substring from each
string in F. Next, modify the pruning policy so that pruning occurs only when all frontiers
are empty. Mark each leaf of the new lexicographic tree with the indices of the members of F
having a substring in the d-Hamming neighborhood of the leaf. The tree that is constructed

24

Table 10: A Summary of the pAs Algorithms Derived in this Paper.

‘ Alg # H Running Time ‘ Space
10 O(nmip|2|?) O(nm)
11 O(nml + m|X|% + mip| X)) O(m|2]")
12 O (nm?|X |4 + min(nm 2|49, 2m) 2™) | O(nm?| S|4 + min(nm|X|¢44TL, 2m) 2m)

encodes all strings in the d-Hamming neighborhood of a substring of any S; € F. We also
have a set of indices for each leaf a to indicate which S; € F has a substring in the d-
Hamming neighborhood of the path label of a. Once this tree has been constructed, we use
it in place of the generalized suffix tree and proceed with Algorithm #6 of Section 3.1.

The search space has grown from O(n|%|%%!) to O(nm|3|%%*!) due to the fact that
we now must encode the union of m d-Hamming neighborhoods (instead of their intersec-
tion). Since we need an m-bit vector at each leaf, the time complexity for constructing the
lexicographic tree is O(nm?|X|%%™). The space complexity has increased to equal the time
complexity for this stage in the algorithm, since now we must explicitly store the lexico-
graphic tree, where before we stored only a single path from root to leaf.

For the second stage in the algorithm, the complexity becomes O(min(2™, nm|X|%¢F) 2m).
Therefore, the total time (and space) required by the algorithm is

O(nm?|S|4U%F! 4 min(nm|S|44H, 2m) 2m),

The advantage of this algorithm is that exponential dependence on m can be separated from
the other variables.

4.2 Parameterized Complexity of pAS

All known fixed parameter tractability results can be established through inheritance from
the variant pAs(X, p).

Theorem 4.1 Fized Parameter Tractability of p-APPROXIMATE SUBSTRING: pAS(X,[)
15 in F'PT.

Proof. By observing that p is bounded from above by |S|, we have a bound of O(nmip|S|H ")
on the total time taken by Algorithm #10 in Section 4.1. |

All known fixed parameter tractability results for pAS are presented in Table 11. The entries
with m and n fixed are obtained by inheritance by observing that [< n and |X| < nm.

The following reductions relate 1AS and pES to the more general problem of pAS. These
allow us to partially map the hardness of pAs by using the transitivity of the <, relation
and “lifting” results derived in Sections 2 and 3.

25

Table 11: Known Fixed Parameter Tractable Aspects of pAS

‘ Parameter H — ‘ by ‘ m ‘ m, % ‘
d
[FPT FPT
l,d FPT FPT
n FPT | FPT | FPT
n,d FPT | FPT | FPT
n,l FPT | FPT | FPT
n,l,d FPT | FPT | FPT
p
p,d
p, 1 FPT FPT
p,l,d FPT FPT
DN FPT | FPT | FPT
p,n,d FPT | FPT | FPT
p,n,l FPT | FPT | FPT
p,n,l,d FPT | FPT | FPT

Lemma 4.1 1As <,, pAS such that p = 1.

Proof. Given an instance (3, S, [, d) of 1AS, construct the following instance (X', S’ p, I, d')
of pas: Let ¥' =%, 8 =S, p=1,I'=1,and d' = d. |

Lemma 4.2 pES <,, pAS such that d = 0.

Proof. Given an instance (3,5, p,) of pES, construct the following instance (3, S’ p', l', d)
of pas: Let ¥' =%, 5" =S, p'=p, ' =1, and d = 0. |

Theorem 4.2 Hardness of p-APPROXIMATE SUBSTRING :
1. pas(m,p,l,d) is W|1]-hard.
2. pAs(p,l,d) is W[2]-hard.
3. pAS(X,p) is not in X P unless P = NP.

4. pAs(n,l,d) is not in X P unless P = NP.

Proof (1). This follows from Part 1 of Theorem 2.3, and the reduction in Lemma 4.1 in
which p = 1.

26

Table 12: The Parameterized Complexity of pAs

‘ Parameter H — ‘ b ‘ m ‘ m, ‘
- NP-Complete | ¢ XP | W][l]-Hard
d ZXP T [1]-Hard
I ZXP FPT | W[l]-Hard | FPT
l.d ZXP FPT | W[l]-Hard | FPT
n Z XP FPT FPT FPT
n,d ¢ XP FPT FPT FPT
n,l ¢ XP FPT FPT FPT
nil,d ZXP FPT | FPT | FPT
» ZXP Z XP | W[l|-Hard
p,d W2]-Hard Wl]-Hard
1 W[2]-Hard | FPT | W[1]-Hard | FPT
p.l.d W[2]-Hard | FPT | W[1]-Hard | FPT
oo FPT | FPT | FPT
p,n,d FPT | FPT | FPT
PN FPT | FPT | FPT
ool d FPT | FPT | FPT

Proof (2). Follows from Part 1 of Theorem 3.2, and the reduction in Lemma 4.2 from pES
to pAS in which d = 0. The result also follows from Part 2 of Theorem 2.3, and the reduction
in Lemma 4.1 in which p = 1.

Proof (3). This follows from Lemma 1.2, and the reduction in Lemma 4.2.

Proof (4). This follows from Lemma 1.2, and the reductions in Lemma 3.1 and Lemma
4.2. |

Corollary 4.3 There is no polynomial time approzimation algorithm relative to p for pAS
when |X| > 2 with a logarithmic factor (clogp for any constant ¢) unless P = NP.

Proof. Follows from Corollary 3.4 and the L-reduction in in Lemma 4.2. |

5 Conclusions and Future Research

These results show that many of the problems examined here become fixed parameter-
tractable with between one and four of the aspects considered here. This is only the begin-
ning of algorithmic work on this problem. Our experience working on DNA primer design
problems [5] has shown that even for variants composed of many aspects that “inherit” F'PT
algorithms based on subsets of these aspects, it is still very useful to do further algorithm
development in order to produce the best useable algorithms. Different applications can

27

lead to different restrictions on the parameters, such as the primer design and motif finding
challenge problems. These applications benefit from algorithms whose parameterized time
and space useage are most suited to the parameter restrictions inherent in the problem.
Probe and primer design, which use larger lengths and smaller distances, can have a more
suitable algorithm than that used for general motif finding, which has smaller lengths but
larger distances. With respect to the parameterized complexity results presented in Tables
6, 9 and 12, some observations are worth noting:

e Among aspects of 1AsS, the best candidate for membership in FPT is 1aAs(m, X, d).

e It is difficult to imagine 1AS(m, X) residing in F'PT. However, it has yet to be shown
hard for any class in the W-hierarchy.

e Our analysis has not revealed a difference in complexity between the aspects of 1AS
in the first row and those in the second row of Table 6. What is the effect of fixing d
alone?

e Considering the fixed parameter tractability of 1As(n) and pES(p,n), it is plausible
that pAs(p,n) is also in FPT. Is this the case?

e The bottom half of Table 12 is quite similar to Table 6. None of our results suggest a
difference in complexity between pAs(p) and 1As.

In addition to determining the parameterized complexity of pES, 1AS, and pAS relative to
the few remaining “open” parameters, there are several other promising directions for future
research:

e What is the parameterized complexity of the non-trivial versions of pAS relative to the
third dimension mentioned in the Introduction, i.e., 1AS (I = n) (CLOSEST STRING)
and pAS (I = n)? Such results might in turn shed further light on the parameterized
complexity of 1AS and pAS.

e What types of polynomial-time approximation algorithms exist for pES and pAs? Given
the exponential-time approximation scheme for pAs when [= n and |X| = 2 described
in [8], it would also be of interest to investigate the existence of fixed parameter ap-
proximation schemes for 1As, pES, and pAs [3].

Such research would be a useful prelude to examinations of the parameterized complexity of
various string median problems under Hamming and edit distance [11, 13].

28

References

1]

2]

3]

4]

[5]

[6]

17l

8]

9]

[10]

[11]

[12]

[13]

G. Ausiello, A. D’Atri, and M. Protasi. 1980. Structure Preserving Reductions Among
Convex Optimization Problems. Journal of Computer and System Sciences, 21, 136—
153.

M. Blanchette, B. Schwikowski, and M. Tompa. 2000. An Exact Algorithm to Identify
Motifs in Orthologous Sequences from Multiple Species. In ISMB 2000. AAAI Press.
37-45.

M. Cesati and L. Trevisan. 1997. On the Efficiency of Polynomial Time Approximation
Schemes. Information Processing Letters, 64(4), 165-171.

R.G. Downey and M.R. Fellows. 1999. Parameterized Complezity. Springer-Verlag;
Berlin.

P. Evans and T. Wareham. 2001. Practical Algorithms for Universal DNA Primer
Design: An Exercise in Algorithm Engineering (Poster Abstract). In N. El-Mabrouk,

T. Lengauer, and D. Sankoff (eds.) Currents in Computational Molecular Biology 2001.
Les Publications CRM; Montreal, PQ. 25-26.

M. Frances and A. Litman. 1997. On Covering Problems of Codes. Theory of Computing
Systems, 30, 113-119.

M.R. Garey and D.S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company; San Francisco.

L. Gasieniec, J. Jansson, and A. Lingas. 2000. Approximation Algorithms for Hamming
Clustering Problems. In R. Giancarlo and D. Sankoff (eds.) CPM 2000. Lecture Notes
in Computer Science no. 1848. Springer-Verlag; Berlin. 108-118.

J. Gramm, R. Niedermeier, and P. Rossmanith. 2001. Exact Solutions for CLOSEST
STRING and Related Problems. To appear, ISAAC’01.

D. Gusfield. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press.

C. de la Higuera and F. Casacuberta. 2000. Topology of strings: Median string is
NP-complete. Theoretical Computer Science, 230, 39—48.

J.K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. 1999. Distinguishing String
Selection Problems. In Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms. ACM Press; New York. 633-642.

M. Li, B. Ma, and L. Wang. 1999. Finding Similar Regions in Many Sequences. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing. ACM Press;
New York. 473-482.

29

[14] B. Ma. 2000. A Polynomial Time Approximation Scheme for the Closest Substring
Problem. In R. Giancarlo and D. Sankoff (eds.) CPM 2000. Lecture Notes in Computer
Science no. 1848. Springer-Verlag; Berlin. 99-107.

[15] C. Papadimitriou and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall; Englewood Cliffs, NJ.

[16] C. Papadimitriou and M. Yannakakis. 1991. Optimization, Approximation, and Com-
plexity Classes. Journal of Computer and System Sciences, 43, 425-440.

[17] P.A. Pevzner and S.-H. Sze. 2000. Combinatorial Approaches to Finding Subtle Signals
in DNA Sequences. In ISMB 2000. AAAI Press. 269-278.

[18] R. Raz and S. Safra. 1997. A Sub-Constant Error-Probability Low-Degree-Test and a
Sub-Constant Error-Probability PCP Characterization of NP. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing. ACM Press; New York. 475-484.

[19] M.-F. Sagot. 1998. Spelling approximate repeated or common motifs using a suffix tree.
In V.L. Lucchesi and A. Moura (eds.) LATIN’98. Lecture Notes in Computer Science
no. 1380. Springer-Verlag; Berlin. 111-127.

[20] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldana. 1995. Searching for repeated words
in a text allowing for mismatches and gaps. In Proceedings of the Second South American
Workshop on String Processing. University of Chile. 87-100.

[21] E. Ukkonen. 1993. Approximate String Matching over Suffix Trees. In CPM 1995.
Lecture Notes in Computer Science no. 684. Springer-Verlag; Berlin. 228-242.

[22] E. Ukkonen. 1995. On-line construction of suffix trees. Algorithmica, 14, 249-260.

[23] H.T. Wareham. 1999. Systematic Parameterized Complexity Analysis in Computational
Phonology. Ph.D. thesis, Department of Computer Science, University of Victoria.

[24] M.S. Waterman, R. Arratia, and D.J. Galas. 1984. Pattern recognition in several
sequences: consensus and alignment. Bulletin of Mathematical Biology, 46, 515-527.

30

