
The Parameterized Complexity of
p-Center Approximate Substring Problems

Patricia A. Evans1, Andrew D. Smith1, and H. Todd Wareham2

Abstract

Problems associated with �nding strings that are within a speci�ed Hamming distance

of a given set of strings occur in several disciplines. All of the problems investigated

are NP -hard and have varying levels of approximability. In this paper, we use tech-

niques from parameterized computational complexity to assess non-polynomial time

algorithmic options for three of these problems, namely p-exact substring (pes),

approximate substring (1as), and p-approximate substring (pas). These

problems vary whether the substring must be an exact match, and also whether a single

substring or a set of substrings (of cardinality p) is required. Our analyses indicate un-

der which parameter restrictions useful algorithms are possible, and include both class

membership and parameterized reductions to prove class hardness. Since variation in

parameter restrictions will lead to di�erent algorithms being preferable, we give a va-

riety of algorithms for the �xed parameter tractable problem variations. One of these,

for 1as with alphabet, substring length, and distance all �xed, is an improvement of

one of the best previously known exact algorithms (under these restrictions). Other

algorithms solve parameterized variants previously unexplored. We also prove that pes

is NP-hard, and show inapproximability for pes and pas.

1Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada.

E-mail: {pevans,p7ka}@unb.ca
2Department of Computer Science, Memorial University of Newfoundland, St. John's, NF, Canada.

E-mail: harold@cs.mun.ca

1

1 Introduction

Given two strings x and y of the same length over an alphabet �, the Hamming distance

between x and y is the number of positions at which the symbols in x and y di�er. Over

the last several years, a number of results have been derived for restricted versions of the

following problem involving Hamming distance:

p-approximate substring (pas)

Instance: A set F = fS1; : : : ; Smg of strings over an alphabet �

such that jSij = n, 1 � i � m, and positive integers p, l,

and d such that 1 � p � m, 1 � l � n, and 1 � d � l.

Parameter: Alphabet � and positive integers m; p; n; l and d.

Question: Is there a subset C of strings in �l such that for each

string S 2 F , there is a string c 2 C that has Hamming

distance � d from some length-l substring of F?

When l = n and p = 1, pas is known as covering radius [6] and has been investigated in

the context of coding theory. When l = n and p � 1, pas is known as hamming radius

p-clustering [8] and has been investigated in the context of string clustering. When

l � n and p = 1, pas is known as closest substring [12, 13] and has been investigated

in the context of DNA probe design in molecular biology. All of these variants have been

shown to be NP-hard. All of these aspects can be seen as existing in a space relative to pas

de�ned by three dimensions:

1. Length of requested string relative to length of given strings (l � n vs. l = n);

2. Number of requested substring �centers� (p = 1 vs. p � 1); and

3. Exactness of match of requested and given strings (d = 0 vs. d � 0).

Though several members of this space are admittedly trivial (pas when l = n, p � 1, and

d = 0) or are known to be solvable in low-order polynomial time (pas when l � n, p = 1, and

d = 0, i.e., longest common substring), the NP -hardness of the problems mentioned

above suggest that the remainder of the problems in this space may be di�cult. A patchwork

of associated polynomial-time approximation algorithms and inapproximability further hints

at interesting relationships as well as di�erences between these problems.

In this paper, we will provide a uni�ed treatment of three versions of pas existing along

the second and third dimensions listed above when l � n � namely, pas when p � 1 and

d � 0, p-exact substring (pes; pas when p � 1 and d = 0), and approximate sub-

string (1as; pas when p = 1 and d � 0). In particular, we will use techniques developed

within the theory of parameterized computational complexity [4] to systematically examine

2

the possible types of useful non-polynomial time algorithms for these problems. Such sys-

tematic treatments are useful both in selecting algorithms that will operate most e�ciently

on instances of these problems that occur in practice and in guiding research on new algo-

rithms for these problems [23]. In general, several parameters must be restricted tegether in

order to produce a useful algorithm. For 1as, the substring length l needs to be restricted

together with the alphabet size j�j, and more e�ective algorithms result if additional param-

eters are also restricted. For pes, it is su�cient to restrict the number of strings m in order

to obtain �xed parameter tractability. Further results give class membership and hardness

for many other parameter variations of the problems. We also prove that pes is NP -hard,

show polynomial-time inapproximability for pes and pas, and give a new algorithm for 1as

that improves on one of the best previously known exact algorithms [19].

Parameterized complexity analysis: According to the theory of NP -completeness [7], an

NP -hard problem does not have a polynomial time algorithm (and hence cannot be solved

quickly for all instances) modulo the strength of the conjecture that P 6= NP . However,

restricted instances of some NP -hard problems encountered in practice can be solved quickly

by invoking non-polynomial time algorithms. This is because the non-polynomial terms in

the running times of these algorithms are purely functions of sets of aspects of the problems

that are of bounded size or value in those instances, where an aspect of a problem is some

(usually numerical) characteristic that can be derived from instances of that problem, i.e.,

j�j, d, and l in the case of pas. The theory of parameterized computational complexity [4]

provides explicit mechanisms for analyzing the e�ects of individual aspects on problem com-

plexity. Given a decision problem � with a parameter p, let �(p) denote the parameterized

problem associated with � that is based on parameter p. To allow us to isolate components

of problem descriptions and hence parameters, we broadly de�ne an aspect of a problem as

a characteristic that can be derived from instances of that problem, i.e., j�j, d, and l in the

case of pas.

De�nition 1.1 A parameterized problem �(p) is �xed parameter tractable if there

exists an algorithm A to determine if instance x is in �(p) in time f(p) � jxj�, where

f : �+ 7! N is an arbitrary function and � is a constant independent of x and p.

One can establish that a parameterized problem � is not �xed parameter tractable by using a

parametric reduction3 to show that �(p) is hard for any of the classes of theW-hierarchy =

fFPT;W [1];W [2]; : : : ;W [P]; XPg except FPT , where FPT is the class of �xed parameter

tractable parameterized problems (see [4] for details). These classes are related as follows:

FPT � W [1] � W [2] � � � � � W [P] � � � � � XP

3Given parameterized problems �(p) and �0(p0), �(p) parametrically reduces to �0(p0) if there is an

algorithm A that transforms an instance x of �(p) into an instance x0 of �0(p0) such that A runs in time

f(p)jxj� time for an arbitrary function f and a constant � independent of both x and p, p0 = g(p) for some

arbitrary function g, and x 2 �(p) if and only if x0 2 �0(p0).

3

If a parameterized problem can be shown to be C-hard for any class C in the W hierarchy

above FPT , then that problem is not in FPT (and hence is not �xed parameter tractable)

modulo the strength of the conjecture that FPT 6= C.

The following lemmas will be used in the analyses given in later sections of this paper.

Lemma 1.1 [16, Lemma 2.1.25] Given decision problems � and �0 with parameters p

and p
0, respectively, if � �m �0 such that p0 = g(p) for an arbitrary function g, then �(p)

parametrically reduces to �0
(p

0
).

Lemma 1.2 [16, Lemma 2.1.35] Given a set S of aspects of a decision problem �, if �

is NP -hard when the value of every aspect s 2 S is �xed, then the parameterized problem

�(S) is not in XP unless P = NP .

Note that in the lemmas above and the remainder of this paper, we use the symbol ��m� to

denote a polynomial-time many-one reduction between decision problems.

Organization of this paper: Sections 2, 3 and 4 give our results for the 1as, pes and

pas problems, respectively. There are two parts to each section; the �rst describes e�cient

algorithmic solutions relative to certain problem aspects, the other thoroughly analyzes the

parameterized complexity relative to aspects for which the problems are not known to be

�xed parameter tractable. All parameterized analysis in these sections were done relative

to the following aspects: the size of the alphabet (j�j), the number of strings in F (m),

the length of the strings in F (n), the number of �centers� (p), the length of the requested

substrings (l), and the Hamming distance threshold (d). While n is usually considered

to describe the input size of an instance, we analyse it as a parameter for the purpose of

completeness. Section 5 lists some promising directions for future research.

2 approximate substring

This problem is also known as closest substring [12, 13]. It is NP -hard by results de-

rived independently in [6] and [12] for closest string, i.e., approximate substring

when l = n. Several polynomial-time approximation algorithms that give solutions within a

multiplicative factor of 2 of the optimal value of d are known [12, 13], and a polynomial-time

approximation scheme (PTAS) has also recently been developed [14]. Unfortunately, the

high degree of the polynomial in the running time of the PTAS renders it of theoretical in-

terest only. The dependence of the NP -hardness results [6, 12] on the hardness of closest

string, a special case where l = n, indicates that this problem is worth investigating using

�xed parameter techniques. The closest string problem has been shown to be �xed

parameter tractable when d is �xed, by an algorithm that solves it in O(nm+md � dd) time

[9].

4

Table 1: Previously Known Exact Algorithms for 1as.

Running Time / Space Source

O(nmlj�jl) time, O(nm) space Waterman et al. ('84) [24]

O(nmlN(�; l; d)) = O(nmlj�jdld+1) time, O(nmj�jl) space Waterman et al. ('84) [24]

O(nmlj�jN(�; l; d)) = O(nmj�jd+1
l
d+1) time, O(nml) space Sagot et al. ('95) [20]

O(nm log lj�jN(�; l; d)) = O(nm log lj�jd+1
l
d) time, Sagot et al. ('95) [20]

O(nmN(�; l; d)) = O(nmj�jdld) space

O(nm2
lN(�; l; d)) = O(nm2j�jdld+1) time, O(nml) space Sagot ('98) [19]

O(ml(n+ j�jl)) = O(nml +mlj�jl) time, O(mn) space Blanchette et al. ('00) [2]

O(nml + j�j2l) time Evans and Wareham ('01) [5]

O(nml + j�jl+dld) time Evans and Wareham ('01) [5]

O(mnl + nm logn+mlmin(n� l; j�jl)mj�jdm+d
l
d) time Evans and Wareham ('01) [5]

2.1 E�cient Exact Solutions for 1AS

Exact FPT algorithms for 1as are of particular interest in computational biology to �nd

short segments that approximately occur in entire families of DNA or RNA sequences. These

can be used as DNA sequence primers, as probes to detect sequence presence and distinguish

sequences, as complementary sequences to block binding sites, and as other more general

sequence family motifs. Typically these examples require only small parameter values. For

example, instances of 1as that occur in the design of DNA primers for groups of sequences

in molecular biology have very small values for j�j, d, and l, e.g., j�j = 4, d � 3, and l � 25

[5]. A general search for common sequence motifs has produced a challenge problem in the

computational biology community � namely, 1as when n = 600, m � 15, j�j = 4, l = 15,

and d = 4 [17]. One result of this challenge is that 1as is the only problem considered here

that has a substantial body of previous algorithmic work. Much of this work is on heuristic

algorithms and will not be discussed further here.

Explicit consideration of d-Hamming neighborhoods allows for better algorithms if one is

willing to add d to the parameter. Indeed, almost all previous exact algorithm work on 1as

has proceeded along these lines. This work is summarized in Table 1. Each of the algorithms

listed in Table 1 is preferable under a speci�c range of values for j�j, m, n, l, and d. However,

the best algorithm overall is that by Sagot [19]. In this section, we introduce four algorithms

that are �xed parameter tractable relative to various subsets of the aspects of 1as. The �rst

three are entirely new. The fourth algorithm, which uses an approach similar to that used

in [19], runs in O(nmlN(�; l; d)) = O(nmj�jdld+1) time and O(nml) space.

Algorithm #1. Generate all possible strings of length l over � and examine each of these

strings to see if it is a center for F . There are j�jl such strings and each of these strings can

be checked in O(mnl) time; hence, the algorithm as a whole runs in O(j�jlmnl) time O(mn)

space. This is essentially the �rst algorithm given in [24]. The advantage of this approach

is that the total space required is only a constant function of the input size.

5

Algorithm #2. Build the table over all strings of length l over �. For each string x in this

table, build a set of all strings in F with a length-l substring in the d-Hamming neighborhood

of x. These sets indicate the subset of F covered by x. At the end of this process, any length-l

string over � that is marked for each string in F is a center for F . As N(�; l; d), the number

of strings in the d-Hamming neighborhood of a length-l string over �, is O(j�jdld) [21,

Theorem 6], the table and substrings can be built in O(mj�jlN(�; l; d)) = O(mj�jlj�jdld) =

O(j�jd+lldm) time. Hence, the algorithm as a whole runs in O(nml +mj�jd+lld) time and

O(mj�jl) space. In comparison with Algorithm #1, this algorithm eliminates multiplicative

dependence between n and �l. In fact, aside from reading the input, there is no dependence

on n in the time or space complexities, i.e., this is an on-line algorithm.

Algorithm #3. We introduce a new character x =2 �, called the blocking character. The

importance of x is that it will always induce a mismatch when compared to a character in

F . Let s be a length-l string containing at most d occurrences of the character x. Let Si[j]

be a length-l substring of Si 2 F . A substitution of s under Si[j], denoted sub(s; Si[j]), is

a replacement of a subset of the occurrences of x in s with the characters at corresponding

positions in Si[j]. A minimal matching substitution, denoted minsub(s; Si[j]), is a substitu-

tion that results in distH(s; Si[j]) � d having the additional property that no substitution

replacing a subset of those same positions results in distH(s; Si[j]) � d (note that a minimal

matching substitution need not be unique).

The algorithm is based on the observation that to �nd a center, it is su�cient to obtain

an instance of the center and change characters in at most d positions of the instance. The

�rst step is to isolate a string, S 0, in which we attempt to �nd an instance of a center. For

each length-l substring of S 0, and each size d set of positions in S
0, change the characters at

those positions to x. Then execute the procedure DevelopCenter(F n S 0, S 0[j]).

Consider the search space of this algorithm as corresponding to the recursion tree of the

procedure DevelopCenter (see Table 2). The time complexity of this algorithm has a factor

of n
�
l

d

�
representing the out degree of the root of the search tree. A branch point refers to a

string that the center must accommodate through a substitution. Since there can be at most

d substitutions for blocking characters in a string, There are at most d branch points on any

path from root to leaf in the search space. The out degree at each branch point is n
�

d

d=2

�
,

corresponding to the maximum number of substrings that must must be tried, multiplied by

the maximum number of minimal matching substitutions that must be tried. The maximum

number of leaves in the search space is n
�
l

d

�
(n
�

d

d=2

�
)d and O(nm) time is required for each

leaf. The complexity of this algorithm is bounded by O(nm(
�
l

d

��
d

d=2

�
n)d). Of note is the

absence of any parameter representing the alphabet (nm or �).

Algorithm #4. This is an improvement of an e�cient algorithm due to Sagot [19]. The

algorithm begins by constructing, for each Si 2 F , the lexicographic tree Ti of length-l

substrings of Si. This requires O(nml) time. The centers are searched enumeratively by

traversing the space of all possible centers. The centers of desired length l are not searched

directly. The search process iteratively searches for each pre�x of a given center in order to

6

Table 2: Procedure DevelopCenter

procedure DevelopCenter(F , C)

1 Let S be an arbitrary string in F ; branch true;

2. for all 1 � j � n�l+1 do

3. if distH(S[j]; C) � d then

4. branch false

5. DevelopCenter(F n S, C)

6. if branch = true then

7. for all 1 � j � n�l+1 do

8. if distH(S[j]; C) � 2d then

9. for each C 0 minsub(C; S[j]) do

10. DevelopCenter(F n S, C 0)

take advantage of the fact that pre�xes are shared by many potential centers and eliminate

redundant processing.

Let � be a (length � l) center for F . De�ne fron
� = ffron�1 ; : : : ; fron

�

m
g. For each

1 � i � m, fron�
i
= f(v; verr) : v 2 nodes(Ti); verr � dg. Think of fron�

i
as the frontier of

nodes in Ti whose path labels are of Hamming distance� d from �. For any (v; verr) 2 fron
�

i
,

the path label of node v spells out an instance of �.

While searching the space of possible centers, if any fron�
i
2 fron� is found to be empty,

the search space is pruned. This condition implies that there exists some member of F

containing no instance of �, the current center. Pseudocode for this algorithm is provided

in Table 3. For the initial call to FindCenters, � is the empty string and fron
� is the set of

roots of Ti with an error term of 0.

The time complexity of the algorithm is proportional to the number of centers in the

search space multiplied by the size of the fron set that must be constructed for each iteration

of the search. In the worst case, for m strings of length n, there will be O(nN(�; l; d))

potential centers of length l with distH � d from any substring of a member of F . Let

the (d; l)-neighborhood of a string S refer to the set of strings within the d-Hamming

neighborhood of any length-l substring of S. The maximum size of the (d; l)-neighborhood

of a string S of length n is (n� l + 1)N(�; l; d), and this is achieved when the d-Hamming

neighborhoods of all length-l substrings of S are disjoint. Further observe that the upper

bound of (n � l + 1)N(�; l; d) on the center search space can only occur when all (d; l)-

neighborhoods of members of F completely overlap. Attaining this limit on the search space

requires that each fron
�

i
2 fron� have only one element, i.e.,

Worst case running time = (Size of Search Space)� (Size of fron)

= O(nlN(�; l; d))� O(m):

7

Table 3: Procedure FindCenters.

procedure FindCenters(�; fron�)

1. for each character � 2 � do

2. for each set fron�
i
2 fron� do

3. for each pair (v; verr) 2 fron
�

i
do

4. if there is an arc (v; v0) in Ti labelled with � then

5. add (v0; verr) to fron
��

i

6. if (verr < d) then

7. for all arcs in Ti from v to some v0 labelled with �
0 6= � do

8. add (v0; verr + 1) to fron��
i

9. if no member fron��
i
2 fron�� is empty then

10. if (j��j = l) then

11. print out center ��

12. else

13. FindCenters(��, fron��)

Table 4: A Summary of the 1as Algorithms Derived in this Paper.

Alg # Running Time Space

1 O(nmlj�jl) O(nm)

2 O(nml +mj�jd+lld) O(mj�jl)

3 O(m2d
2

l
d
n
d+1) O(nm)

4 O(nmj�jdld+1) O(nml)

Consider the e�ect on the search space of any froni having more than one element. The

d-Hamming neighborhoods of substrings of Si would no longer be disjoint and the (d; l)-

neighborhood of Si would have at least one fewer member, thus eliminating a node from

the search space. Hence, the overall running time of the algorithm is O(nmlN(�; l; d)) =

O(nmj�jdld+1).

The algorithm in [19] actually solves a generalized �quorum� version of 1as that searches

for strings in �l that are within Hamming distance d of substrings in at least q � m (as

opposed to m) of the given strings. We have improved on [19] by replacing the traversal of a

single generalized su�x tree with the simultaneous traversal of a set of lexicographic trees.

8

Table 5: Known �xed parameter tractable aspects of 1as

Parameter � � m m;�

�

d

l FPT FPT

l; d FPT FPT

n FPT FPT FPT FPT

n; d FPT FPT FPT FPT

n; l FPT FPT FPT FPT

n; l; d FPT FPT FPT FPT

2.2 Parameterized Complexity of 1AS

We begin by identifying the combinations of parameters that are su�cient to render 1as

�xed parameter tractable. We present two results that anchor all known �xed parameter

tractability results.

Theorem 2.1 Fixed Parameter Tractability of approximate substring.

1. 1as(�; l) 2 FPT .

2. 1as(n) 2 FPT .

Proof (1). Follows from Algorithm #1 above, which solves 1as in time O(nmlj�jl).

Proof (2). Consider Algorithm#3 with time complexityO(m2d
2

l
d
n
d+1). Sincem2d

2

l
d
n
d+1 =

O(mn
O(n2)), 1as(n) is in FPT .

The picture we have so far of the complexity of 1as is shown in Table 5. The results in

the bottom half of the table are obtained by noting that the result of Theorem 2.1 where

n is �xed applies to all of these. Similarly for the entries where j�j and l are �xed. The

algorithms used in the proof of Theorem 2.1 anchor the known �xed parameter tractability

results for 1as.

The following problems will serve as source problems to demonstrate hardness:

clique [7, Problem GT19]

Instance: A graph G = (V;E).

Parameter: A positive integer k.

Question: Is there a set of k vertices V 0 � V that form a complete

subgraph of G(that is, a clique of size k)?

9

dominating clique [4, Page 463]

Instance: A graph G = (V;E).

Parameter: A positive integer k.

Question: Is there a set of k vertices V 0 � V that form a complete

subgraph of G(that is, a clique of size k) and also form

a dominating set for G?

To show W[1]-hardness for 1as(m; l; d) we reduce from clique. Let G = (V;E) be a

graph for which we wish to determine whether G has a k-clique. We show how to construct

a family FG of m = f1(k) strings over alphabet � that has a center of length l = f2(k)

if and only if G contains a k-clique. Assume for convenience that the vertex set of G is

V = f1; : : : ; jV jg.

Target Parameters. The number of strings in FG is m = f1(k) =
�
k

2

�
. The length of

center CG is l = f2(k) = k + 2, and the maximum distance between instance and center is

d = f3(k) = k � 2. The maximum length of any string in FG (which is not �xed in the

reduction) is n = f4(G; k) = (2k + 4)(jEj).

The Alphabet. The string alphabet is � = �1 [�2 [�3. We refer to these as vertex

characters (�1), unique characters (�2), and alignment characters (�3).

�1 = f1; : : : ; jV jg;

�2 = fSet of characters occurring uniquely in FGg;

�3 = fA;Bg:

The characters of �2 are denoted by u. All occurrences of this character are unique charac-

ters.

Substring Gadgets. We next describe the two �high level� component substrings used in

the construction.

Edge Selectors:

hedge(i; j)(p; q)i = Au
(i�1)

pu
(j�i�1)

qu
(k�j)

B;

Separators:

hseparatori = u
k+2

:

The Reduction. The
�
k

2

�
strings in FG correspond to the

�
k

2

�
edges in a k-clique:

FG = fSij : 1 � i < j � kg:

String Sij is composed of all edge components from Eij arranged in the following manner

(where product notation refers to concatenation):

Sij =
Y

(p;q)2E
p<q;i�p
j�i�q�p

q<jV j�k+j

hedge(i; j)(p; q)ihseparatori:

10

1 2 3

4 5 6

Figure 1: Graph 1

S12: A12uuBu6A13uuBu6A14uuBu6A23uuBu6A24uuB

S13: A1u3uBu6A1u4uBu6A1u5uBu6A2u4uBu6A2u5uB

S14: A1uu4Bu6A1uu5Bu6A2uu5Bu6A3uu6B

S23: Au23uBu6Au24uBu6Au25uBu6Au45uB

S24: Au2u4Bu6Au2u5Bu6Au3u6B

S34: Auu36Bu6Auu45Bu6Auu56B

Figure 2: 1as(m; l; d) representation for Graph 1 (desired clique size k = 4).

An example of the reduction for the graph in Figure 1 and a desired clique size 4 can be seen

in Figure 2. It is evident from the example that any center for FG will have the property

that all positions other than the terminal positions will be occupied by vertex characters in

ascending order (this will be proven below).

Preliminary Results. Some additional conventions are used in discussing FG. An instance

that begins and ends with alignment characters is said to be in-phase. Vertex positions

are those positions in a string or substring occupied by characters from �1 (the vertex

characters). Note that for string Sij, the vertex positions are positions i and j to the right

of the initial alignment character. For any vertex position i, the vertex group of i, denoted

Vi, is de�ned as the set:

Vi = fSix : i < x � kg [fSxi : 1 � x < ig:

The intended role of Vi is that the instances of center C from Vi determine the character at

position i in C. Without loss of generality, it is assumed that no two instances can come

from the same string.

11

Lemma 2.1 Let CG be a center for FG. The following are true:

1. CG begins with character A and ends with character B.

2. No position in CG is occupied by a character from �2.

3. If I is an instance of CG, then I is in-phase.

4. The k � 1 instances from any vertex group are su�cient to completely determine CG.

Proof (1). Suppose CG begins with a character other than A. Then the separation between

A and B in members of FG prevents any instance from matching both A and B in CG. In

order to match CG at 4 positions, each instance must then match in a position occupied by

a character from �2. By the pigeonhole principle, this results in a contradiction.

Proof (2). Suppose CG contains a character from �2 in position z. Then at most one

instance matches CG at position z. Consider the vertex group Vz. Any instance from Vz that

matches C out-of-phase must determine a unique character, since it can't match both A and

B. Suppose some instance from Vz matches C in phase. Then it will not match C at position

z and therefore must determine a unique character. Since all instances from Vz determine

unique characters, and jVzj = k � 1 at most one instance can match C at 4 positions, the

pigeonhole principle once again presents a contradiction.

Proof (3). Suppose some instance matches the center out-of-phase, then that instance

cannot match both A and B and so must match some position containing a character from

�2, contradicting Part 2.

Proof (4). Suppose CG has been partially determined by instances from V 0
z
� Vz, for

vertex position z. Consider instance I from Sz;x 2 Vz n V
0
z
. By Parts (2) and (3), I must

match the alignment positions, and positions z and x. Since I is the only member of Vz
that can determine a non-unique character at position x, that position has not yet been

determined. In order for I to match 4 positions of CG, I must determine position x in CG.

The �rst instance determines 4 positions in the center, and the remaining k � 2 instances

each determine an additional position, a total of k + 2 positions.

Lemma 2.2 clique �m 1as(m; l; d).

Proof. Suppose there is a k-clique in G. Given the vertices in a clique, place their corre-

sponding characters from �1 in ascending order between characters A and B. It is easy to

verify that the resulting string is a center for FG. Conversely, suppose there is no k-clique

in G and there is a center CG for those strings in vertex group Vz where vertex v occupies

vertex position z. By Part (4) of the lemma, instances from Vz completely determine CG.

Consider any set of vertices N , jN j = k � 1, neighboring v in G. Since there is no k-clique,

some pair of vertices a; b 2 N are not adjacent in G. By the construction of FG, for any pair

i; j of positions, no length-l substring of Sij can have both character a at position i and b at

positions j. Therefore CG is not a center for FG.

12

1

2

3

4

5

Figure 3: Graph 2.

Next we investigate the complexity of 1as when parameterized by l and d. To show W[2]-

hardness, we reduce from the W[2]-complete problem dominating clique [4]. Let G =

(V;E) be a graph for which we wish to determine whether G has a dominating clique of size

k. We show how to construct a family FG of m strings, over alphabet �, that has a common

approximate substring of length-l and distance d if, and only if, G contains a dominating

clique of size k. Assume for convenience that the vertex set of G is V = f1; : : : ; xg. The

alphabet and substring gadgets are exactly the same as for the previous reduction.

The Target Parameters. The number of strings in FG is m = f1(k;G) =
�
k

2

�
+ jV j, which

is no longer independent of jGj. The functions f2 to f4 remain as de�ned above.

The Reduction. The strings will form two groups FG = FGE
[FGV

having distinct roles.

The
�
k

2

�
strings in FGE

are exactly those described in the previous reduction. These have

the same role: determining a center that corresponds to a k-clique in G.

The strings of FGV
are responsible for verifying that any center determined by instances

from FGE
corresponds not only to a k-clique, but to a dominating set as well:

FGV
= fSV p : 1 � p � jV jg:

String SV p is composed of all edge components having the character q 2 �1 such that q

is a neighbor of p. The components are arranged in the following manner (where product

notation refers to concatenation and for any vertex x, N [x] is the set of neighbors of x):

SV p =
Y

q2N [p]

q
02N [q]

1�i<j�k

(
hedge(i; j)(q0; q)ihseparatori if q

0
< q;

hedge(i; j)(q; q0)ihseparatori if q < q
0
:

An example of this reduction for the graph in Figure 3 and a desired dominating clique size

of 3 can be seen in Figure 4.

Lemma 2.3 dominating clique �m 1as(l; d).

13

S12: A12uBu5A14uBu5A23uBu5A24uBu5A34uB

S13: A1u4Bu5A2u4Bu5A3u5B

S23: Au23Bu5Au24Bu5Au34Bu5Au35B

SV1 : A12uBu5A14uBu5A23uBu5A24uBu5A34uB

A1u4Bu5A2u4Bu5Au23Bu5Au24Bu5Au34B

SV2 : A12uBu5A14uBu5A23uBu5A24uBu5A34uB

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24B

Au34Bu5Au35B

SV3 : A12uBu5A14uBu5A23uBu5A24uBu5A34uB

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24B

Au34Bu5Au35B

SV4 : A12uBu5A14uBu5A23uBu5A24uBu5A34uB

A1u4Bu5A2u4Bu5A3u5Bu5Au23Bu5Au24B

Au34Bu5Au35B

SV5 : A23uBu5A34uBu5A3u5Bu5Au23Bu5Au34B

Au35B

Figure 4: 1as(l; d) representation for Graph 2 (with desired dominating clique size k = 3).

Proof. As was shown in Theorem 1, a center for FGE
can be obtained from any k-clique

in G. Suppose some V 0 � V is both a k-clique and a dominating set for G. For all vertices

p 2 V , there exists vertex q 2 V 0 such that pq 2 E. The substring of SV p that encodes any of

the k� 1 clique edges incident on vertex p will serve as an instance for the center. Therefore

a dominating k-clique in G implies a center for FG. Conversely, the absence of a k-clique

in G implies the absence of a center for FGE
. Suppose no k-clique is also a dominating set

in G. If there is a clique in G, there will be some vertex p 2 V having no neighbors in the

clique. For all substrings of SV p 2 FGV
, none will correspond to an edge in the clique and

therefore none will match the center su�ciently to be an instance.

The following result of Francis and Litman [6] is important in establishing the hardness a

version of 1as. The result will be used again in Section 4.2 to establish the hardness of

many versions of pas.

Theorem 2.2 [6] pas is NP -hard when j�j = 2, p = 1, and l = n.

Theorem 2.3 Hardness of approximate substring:

1. 1as(m; l; d) is hard for W [1].

2. 1as(l; d) is hard for W [2].

3. 1as(�) is not in XP unless P = NP.

14

Proof (1). This follows from Lemma 2.2 and the W [1]-hardness of clique [4].

Proof (2). This follows from Lemma 2.3 and the W [2]-hardness of dominating clique

[4].

Proof (3). This follows immediately from Theorem 2.2, which demonstrated that 1as is

NP -hard when j�j = 2.

Now we show inclusion in classes of the W -hierarchy for restricted aspects of 1as. The

idea is to use a truth assignment of weight d to indicate the characters occupying the l center

positions. This circuit will be called the center testing circuit.

Center Testing Circuit: Let F = fS1; : : : ; Smg be an instance of 1as, and C is any center

for F . The j-th length-l substring of Si will be denoted Si[j]. The set X will be used to

index size l�d subsequences of a length-l string:

X = fXp : Xp � f1; : : : ; lg; jXpj = l � d; 1 � p �
�
l

d

�
g:

Let A = fa[i; j; p; q] : 1 � i � m; 1 � j � n� l+1; 1 � p � jXj; 1 � q � l�dg denote

position q in Xp \ Si[j]. Let B = fb[u; v] : 1 � u � l; 1 � v � j�jg be a set of boolean

variables. The intended interpretation of variable b[u; v] is that character v occupies position

u in C. The variable a[i; j; p; q] will take on the value of b[u; v] if and only if position q of Xp

is u and that position is occupied by character v in Si[j], otherwise a[i; j; p; q] is set to false.

Let E = E1E2 be the boolean expression over the set of variables B, where:

E1 =

lY
u=1

Y
1�v<v0�j�j

(:b[u; v] + :b[u; v0]);

E2 =

mY
i=1

n�l+1X
j=1

jXjX
p=1

l�dY
q=1

a[i; j; p; q]:

For example consider the set of strings S1 = tggtca, S2 = accgac, and S3 = cggtag over

alphabet � = fa; c; g; tg. We assume the order a = 1, c = 2, g = 3 and t = 4 on �. If

p = (1; 2; 3), then a[1; 1; p; 1] = b[1; 4] because both correspond to the character t at position

1 in a length-l string. Similarly, a[3; 1; p; 1] = b[1; 2] corresponding to c at position 1 and if

p = (1; 3; 5), then a[2; 2; p; 2] = b[4; 3] corresponding to g at position 4.

The purpose of E1 is to force a correspondence between satisfying interpretations and

strings over �l. Notice that a weight l interpretation falsi�es E1 if more than one b[i; j] is

assigned true for any i.

� Proof of Correctness. We claim that E has a weight l truth assignment if, and only if, there

exists a center C for F . If C exists, it is easy to verify that a truth assignment corresponding

to C satis�es E. Conversely, let T be a weight l satisfying truth assignment for E. The

clauses of E1 ensure that T indicates a unique string s 2 �l. The clauses of E2 ensure that

15

for each i, some substring Si[j] matches l�d positions of s. This implies that in each Si,

there is a substring of length-l that is distance less than d from s. Therefore s is a center for

F .

Instance Testing Circuit. We construct a new circuit, called the instance testing circuit,

having little resemblance to the center testing circuit. Our goal here is to show membership

for versions of 1as when l is left free. The idea this time is to select m instances and, for each

instance, d positions where the instance is exempted from having to match a center. The

circuit is only a slight modi�cation of a circuit that solves the length-l common substring

problem.

Let B = fb[i; j] : 1 � i � m; 1 � j � n� l+1g be a set of boolean variables with

the intended interpretation that b[i; j] will be set true when Si[j] is an instance of C. Let

W = fw[i; r; p] : 1 � i � m; 1 � r � d; 1 � p � lg be a set of boolean variables with the

intended meaning that any instance of C in Si need not match C at position p. The index r

is used to restrict the number of such exemptions to d for any instance. In the description of

the circuit, the set of variables A = fa[i; j; p; q] : 1 � i � m; 1 � j � n�l+1; 1 � p � l; 1 �

q � j�jg will act as an alias for the variables from B. For any occurrence of the variable

a[i; j; p; q], the substitution a[i; j; p; q] b[i; j] is assumed exactly when Si[j] has character

q at position p. Otherwise a[i; j; p; q] takes value false.

Let E = E1E2E3 be the boolean expression over the set of variables of B [W , where:

E1 =

mY
i=1

Y
1�j<j0�n�l+1

(:b[i; j] + :b[i; j 0]);

E2 =

mY
i=1

dY
r=1

Y
1�p<p0�l

(:w[i; r; p] + :w[i; r; p0]);

E3 =

lY
p=1

j�jX
q=1

mY
i=1

� dX
r=1

w[i; r; p] +

n�l+1X
j=1

a[i; j; p; q]
�
:

For example consider the set of strings S1 = tggtca, S2 = accgac, and S3 = cggtag. If

p = (1; 2; 3), then a[1; 1; p; 1] = b[1; 4] because both correspond to the character t at position

1 in a length-l string. Similarly, a[3; 1; p; 1] = b[1; 2] corresponding to c at position 1 and if

p = (1; 3; 5), then a[2; 2; p; 2] = b[4; 3] corresponding to g at position 4.

� Proof of Correctness. We claim that E has a weight m +md satisfying truth assignment

if, and only if, there is a center C for F . Given center C, a satisfying truth assignment for E

can be obtained by setting b[i; j] to true for each instance Si[j] of C, and also setting w[i; r; p]

to true if the r-th mismatch in the instance from Si occurs at position p. This can be easily

veri�ed. For the converse case, let T be a weight m + md satisfying truth assignment for

E. The clauses of E1 ensure that T corresponds to at most m instances, one from each Si.

The clauses of E2 ensure that at most d mismatching positions are selected for the instance

from any Si. E1 and E2 combined force T to correspond directly to a set of instances and a

16

set of positions where each instance may di�er from a center. The fact that T satis�es E3

implies that all instances agree in all positions with the possible and permitted exception of

the exempted positions. Hence F has a center.

Single Instance + Modi�cations Testing Circuit. The idea behind this circuit comes

from the observation that a center can be obtained by isolating an arbitrary string from F(we

use S1), and applying substitutions for characters in up to d positions in each substring S1[j]

of S1. We use a guess and test strategy: �rst guess a center by selecting some S1[j], then

guess the positions and characters by which the center di�ers from S1[j]. The goal here is

to have a weight d+ 1 truth assignment represent the selection of some j (1 � j � n�l+1),

and d substitutions to positions of S1[j] that transform S1[j] into a center.

To describe the input to the circuit, we use the following inputs:

X1 = fx1[i; j; p; r] : 1 � i � m; 1 � j � n�l+1; 1 � p � l; 1 � r � j�jg;

X2 = fx2[j] : 1 � j � n�l+1g;

X3 = fx3[p; r] : 1 � p � l; 1 � r � j�jg;

where the value of x1[i; j; p; r] corresponds to the truth of Si[j] being occupied by character

r at position p (these values are �xed for each instance and are not part of a truth assign-

ment). The weight d+1 truth assignment will come from selecting exactly one member of

X2 (representing a substring of S1) and d members of X3(representing the substitutions).

Once the center has been �guessed�, it remains to test it against potential instances from the

other strings in F . Unlike the center testing circuit above, l is not �xed, so we cannot

use the same strategy to test the �guessed� center.

The set of variables fg[p; r] : 1 � p � l; 1 � r � j�jg describes the �guessed� center,

where

g[p; r] =

n�l+1X
j=1

(x2[j] ^ x1[1; j; p; r])

!
�

0
BB@ Y

1�r0�j�j

r0 6=r

:x3[p; r
0]

1
CCA+ x3[p; r]:

The lower layers of the circuit are described by the variables:

B = fb[i; j; p] : 2 � i � m; 1 � j � n�l+1; 1 � p � lg;

with the interpretation that b[i; j; p] = true if and only if Si[j] matches the guessed center

at position p or is one of at most d mismatches.

Members of B occur at di�erent depths. We stack the variables of B so that b[i; j; p]

depends on variables used to generate b[i; j; p�1]. The purpose of this is to prevent having

to count the number of mismatches (between the guessed center and an instance) at a single

level. To do so would introduce an exponential number of gates. The strategy we use is to

maintain a count of the amount of permitted mismatches, a count that is decremented each

time a mismatch occurs. The set of variables A implement the counter for each Si[j]:

A = fa[i; j; p; q] : 2 � i � m; 1 � j � n�l+1; 0 � p � l; 1 � q � d+1g;

17

such that

a[i; j; p; q] =

0
@ a[i; j; p�1; q] ^

j�jX
r=1

�
g[p; r] ^ x1[i; j; p; r]

�1A + a[i; j; p�1; q+1]:

For all i,j and p, the value of a[i; j; p; d+1] is set to false, and for all i,j and q, the value of

a[i; j; 0; q] is set to true.

We now de�ne the variables of B:

b[i; j; p] = a[i; j; p; 1] +

j�jX
r=1

�
g[p; r] ^ x1[i; j; p; r]

�
:

The circuit C is described by expression E = E1E2E3 de�ned as:

E1 =
Y

1�j<j0�n�l+1

(:x2[j] + :x2[j
0]);

E2 =

lY
p=1

Y
1�r<r0�j�j

(:x3[p; r] + :x3[p; r
0]);

E3 =

mY
i=2

n�l+1X
j=1

lY
p=1

b[i; j; p]:

� Proof of Correctness. It is easily veri�ed that the circuit is satis�ed if and only if some

�guess� matches at least l�d positions in at least one substring for every member of F . The

size of the circuit is O(nml(j�j+ d)). The depth of the circuit is O(l) since, for each i; j and

r, there is a path passing through a[i; j; 1; r] ; a[i; j; 2; r] : : : a[i; j; l; r].

Theorem 2.4 Membership of approximate substring in classes of the W -hierarchy:

1. 1as(l) 2 W [2].

2. 1as(m; l) 2 W [1].

3. 1as(m; d) 2 W [3].

4. 1as(m;�; d) 2 W [2].

5. 1as(d) 2 W [P].

Proof (1). This follows trivially by observing that when l is �xed, the center testing circuit

has weft 2.

Proof (2). If m is �xed along with l, the center testing circuit has weft 1.

18

Table 6: The Parameterized Complexity of the 1as Problem.

Parameter � � m m;�

� NP -Complete 62 XP W [1]-Hard

d W [2]-Hard, in W [P] in W [P] W [1]-Hard, in W [3] in W [2]

l W [2]-Complete FPT W [1]-Complete FPT

l; d W [2]-Complete FPT W [1]-Complete FPT

n FPT FPT FPT FPT

n; d FPT FPT FPT FPT

n; l FPT FPT FPT FPT

n; l; d FPT FPT FPT FPT

Proof (3). This follows trivially by observing that when m and d are �xed, the instance

testing circuit has weft 3.

Proof (4). This follows from (3) because �xing j�j reduces the weft of the instance testing

circuit by one.

Proof (5). When d is �xed, and all other parameters left free, the single instance +

modi�cation circuit has weft O(l).

3 p-exact substring

For many families of sequences, there may not be a single substring that is contained in

each sequence. When no single substring is found in all sequences, it is useful to investigate

whether there can be a set of substrings that between them are found in all sequences. This

problem is applicable in computational biology to characterize more diverse sequence families,

and to �nd a small set of probes that would detect an entire group of DNA sequences. No

results prior to those in this paper are known for this problem.

3.1 E�cient Exact Solutions for pES

Algorithm #5. Consider the algorithm that �rst determines, for each length-l substring

of a string in F , the subsets of F whose strings have that substring, and then checks each

of the possible p-partitions of F to see if each subset in that partition is covered by some

length-l substring. Finding the sets of F covered by length-l substrings of F can be done

in O(mn) time using a generalized su�x tree [10, Section 6.4]. Marking the presence or

absence of each possible subset of F can be done in O(m2m) time using a table with 2m 1-bit

entries. Since each of the O(2m) tree-derived subsets has at most m�1 immediate supersets

containing exactly one more element, it will be added at most once for itself and once per

immediate superset. As there are pm partitions of F , each of which can be checked in O(mp)

time, the the algorithm as a whole runs in O(nm+m2m +mp
m+1) time and O(2m) space.

19

Algorithm #6. Consider the following algorithm based on the classical pseudo-polynomial

time algorithm for integer knapsack [15, Section 16.2]: Let f : 2F ! f0; : : : ; 2mg

be the one-to-one correspondence that associates each subset of F with the integer value

corresponding to the m-bit representation of that subset. Determine the set C of subsets

of F covered by the length-l substrings of the strings in F , construct the directed graph

G = (V;A) where V = f0; : : : ; 2mg, A = f(i; j) : j = i _ f(c) for some c 2 Cg, and _

is the bit-wise OR operation, and use breadth-�rst search from vertex 0 to determine the

length of the shortest path from 0 to 2m. In this graph, vertices correspond to subsets of

F and each edge (i; j) encodes the fact that subset j of F can be obtained by the union of

subset i of F and some set in C. Note that a path from vertex 0 to vertex i corresponds

to a subset of C whose union is subset i of F ; hence, there is a p-Center for F if and only

if there is a path of length p from vertex 0 to vertex 2m in G. Set C can be computed

in O(nm + 2m) time and O(2m) space as in part (3) above, graph G can be constructed

in O(jV j + jAj) = O(2m + 2mjCj) = O(min(nm; 2m)2m) time and space, and a breadth-

�rst search can be done in O(jV j + jAj) = O(min(nm; 2m)2m) time and space. Hence, the

algorithm as a whole runs in O(nm+min(nm; 2m)2m) time and space.

Algorithm #7. Examine each p-selection of the j�jl strings of length l over � to see if they

form a set of centers for F . As there are
�
j�jl

p

�
= O(j�jlp) such p-selections, each of which

can be checked in O(nmp) time, the algorithm as a whole runs in O(nmpj�jlp) time.

Algorithm #8. Determine, for each of the j�jl strings of length l over �, the subset of F

whose strings have that substring, and then check each p-selection of these strings to see if

they form a set of centers for F . The �rst step can be done in O(nml+mj�jl) time (initialize

the table to empty and then mark each length-l substring appropriately in a one-pass scan

over the strings in F). As there are O(j�jlp) p-selections, each of which can be checked in

O(mp) time, the algorithm as a whole runs in O(nml +mpj�jlp) time and O(mj�jl) space.

Algorithm #9. Consider the following algorithm based on the search-tree algorithm for

vertex cover [4]. Each node in this search tree is labeled with subsets of F . The root

node is labeled with the set F , and the tree is constructed recursively for each node v with

associated set F 0 as follows:

1. If F 0 = �, v is a leaf in the search tree.

2. If F 0 6= �, select an arbitrary string S from F 0 and create (n � l) + 1 children of v

such that the i-th child node, 1 � i � (n� l)+ 1, is labeled with the subset of F 0 that

does not contain the length-l substring of S beginning at position i.

Note that any leaf in the search tree of depth p corresponds to a set of � p substring centers

for F , and if there is no such leaf, there is no solution for the given instance of pes. As,

the search tree contains at most (n � l + 1)p � 1 nodes, each of which requires O(m) space

and can be created in O(nm) time, the algorithm as a whole runs in O(mln
p+1) time and

O(mn
p) space.

20

Table 7: A Summary of pes Algorithms Derived in this Paper.

Alg # Running Time Space

5 O(nm+m2m +mp
m+1) O(2m)

6 O(nm+min(nm; 2m)2m) O(nm+min(nm; 2m)2m)

7 O(nmpj�jlp) O(nm)

8 O(nml +mpj�jlp) O(mj�jl)

9 O(mln
p+1) O(mn

p)

Table 8: Fixed parameter tractable aspects of pes

Parameter � � m m;�

� FPT FPT

l FPT FPT FPT

n FPT FPT FPT

n; l FPT FPT FPT

p FPT FPT

p; l FPT FPT FPT

p; n FPT FPT FPT FPT

p; n; l FPT FPT FPT FPT

3.2 Parameterized Complexity of pES

Theorem 3.1 Fixed Parameter Tractability of p-exact substring:

1. pes(m) 2 FPT

2. pes(p; n) 2 FPT

3. pes(�; l) 2 FPT .

Proof (1). Follows from Algorithm#6 in section 3.1 which has time complexityO(mn+4m).

Proof (2). Follows from Algorithm#9 in section 3.1, which has time complexity O(mn
O(p)).

Proof (3). Follows from Algorithm #7 in section 3.1, and the observation that p � j�jl.

The results of Theorem 3.1 (and all results that follow by inheritance) are presented in

Table 8. In the rest of this section we show that unless P = NP , Table 8 actually represents

all �xed parameter tractability results for pes. No hardness results prior to those in this

paper are known for this problem. All hardness results in this section will be derived via

reductions from the following problems:

21

vertex cover [7, Problem GT2]

Instance: A graph G = (V;E) and a positive integer k.

Parameter: A positive integer k.

Question: Does G have a vertex cover of size at most k, i.e., a set

of vertices V 0 � V , jV 0j � k, such that for each edge

(u; v) 2 E, at least one of u and v belongs to V 0?

hitting set [7, Problem SP8]

Instance: A collection C of subsets of a �nite set S and a positive

integer k � jCj.

Parameter: A positive integer k.

Question: Is there a subset of S 0 � S with jS 0j � k such that S 0

contains at least one element from each subset in C?

Lemma 3.1 vertex cover �m pes, for any n � 2 and l � 1.

Proof. Given an instance hG; ki of vertex cover, construct the following instance

h�0
; S

0
; p

0
; l
0i of pes: Let �0 = V , S = fuv j (u; v) 2 Eg, p0 = k, and l

0 = 1. Note that in

the constructed instance of pes, p0 = k, n = 2 and l = 1.

Lemma 3.2 hitting set �m pes(p; l).

Proof. Given an instance hS;C; ki of hitting set, construct the following instance

h�0
; S

0
; p

0
; l
0i of pes(p; l): Let �0 = S, S 0 = fc1c2: : :cjcj j c = fc1; c2; : : : ; cjcjg 2 Cg, p0 = k,

and l
0 = 1. Note that in the constructed instance of pes(p; l), p = k and l = 1.

Lemma 3.3 hitting set �m pes(�; p), for any � with j�j � 2.

Proof. Given an instance hS;C; ki of hitting set and any alphabet � such that j�j � 2,

construct the following instance h�; S 0
; p

0
; l
0i of pes(�; p): Let f : S ! f1; 2; : : : ; jSjg be a

one-to-one correspondence that induces an order on S and let a and b be any pair of distinct

elements of �. For any x 2 S, let wx be the string obtained from the length d = dlog2(jSj)e

bit-wise representation of f(x) by substituting a for 0 and b for 1. Let

S
0 = fbd+1

a
d+1

wc1
a
d+1

b
d+1

a
d+1

wc2
a
d+1

b
d+1

: : :a
d+1

wcjcj
a
d+1

b
d+1

a j c = fc1; c2; : : : ; cjcjg 2 Cg;

p
0 = k, and l = 5d + 5. If a set c 2 C contains an element x, its corresponding string sc

in S
0 will contain the substring bd+1

a
d+1

wxa
d+1

b
d+1

a of length 5d+ 5. Moreover, any center

22

string of length 5d + 5 for a subset of S 0 will have a substring of the form awja for some

1 � j � jSj, and this substring will occur in a string sc 2 S
0 if and only if j 2 c. Note that

p
0 = k in the constructed instance of pes(�; p).

Note that none of these reductions changes the cost of a solution (since p0 = k in all cases),

so they are also L-reductions [16] that preserve polynomial-time approximability.

Theorem 3.2 Hardness of p-exact substring:

1. pes(p; l) is W [2]-hard.

2. pes(�; p) is W [2]-hard.

3. pes(n; l) is not in XP unless P = NP .

4. pes(�) is not in XP unless P = NP .

Proof (1). This follows from Lemma 3.2 and the W [2]-hardness of hitting set [4].

Proof (2). This follows from Lemma 3.3 and the W [2]-hardness of hitting set [4].

Proof (3). This follows from Lemma 3.1 and the NP -hardness of vertex cover [7].

Proof (4). This follows from Lemma 3.3 and the NP -hardness of hitting set [7].

Theorem 3.3 pes(p) 2 W [2].

Proof. We use a simple reduction to hitting set. Given instance hF ; l; pi of pes(p),

construct the following instance hS;C; ki of hitting set: Let S be a set with elements

corresponding to length-l substrings of members of F , let C = fC1; : : : ; Cmg such that Ci is

the subset of S with members corresponding to substrings of Si 2 F , and let k = p. The

correctness of the reduction is easily veri�ed. The membership of hitting set in W [2] [4]

implies the membership of pes(p).

Corollary 3.4 There is no polynomial time approximation algorithm relative to p for pes

within a logarithmic factor (c log p for any constant c) when j�j � 2 unless P = NP .

Proof. Raz and Safra [18] showed that set cover cannot be approximated relative to

k in polynomial time within a logarithmic factor unless P = NP . As the hitting set

and set cover problems are equivalent [1] and hitting set is L-reducible to pes when

j�j � 2 by Lemma 3.3, pes has the same restrictions on approximability.

23

Table 9: The Parameterized Complexity of pes

Parameter � � m m;�

� NP -Complete =2 XP FPT FPT

l =2 XP FPT FPT FPT

n =2 XP FPT FPT FPT

n; l =2 XP FPT FPT FPT

p W [2]-Complete W [2]-Complete FPT FPT

p; l W [2]-Complete FPT FPT FPT

p; n FPT FPT FPT FPT

p; n; l FPT FPT FPT FPT

4 p-approximate substring

Just as pes can be applied to �nd a set of strings that at least one from the set exactly occurs

in each sequence, pas can be used to �nd a set of strings such that at least one from the set

approximately occurs in each sequence. The set of strings will cover all sequences between

them. For small values of d, pas can also be applied to �nding a set of DNA probes, or a

motif for a large and more general family of sequences. There has been no work done directly

on this problem prior to that reported in this paper. However, various results are implicit

in results derived for restricted versions of this problem. The NP -hardness results for 1as

given in [6, 12] trivially imply the NP -hardness of pas. Similarly, the inapproximability

of pas relative to d when l = n and j�j = 2 within a multiplicative factor of c < 2 unless

P = NP [8, Theorem 6] implies the same for pas.

4.1 E�cient Exact Solutions for pAS

Algorithm #10. Modify Algorithm #7 from Section 3.1 by replacing the (n + l) term

for simple pattern matching with an nl term for computation of Hamming distance, as in

Algorithm #1 from Section 2.1. The resulting algorithm runs in O(nmlpj�jlp) time.

Algorithm #11. Modify Algorithm #8 from Section 3.1 to use the table computed in

Algorithm #2 from Section 2.1. The resulting algorithm runs in O(nml+mj�j2lll+mpj�jlp)

time and O(mj�jl) space.

Algorithm #12. We modify Algorithm #4 in Section 2.1 in two ways. First, explicitly

maintain a tree representing the search space that is traversed. The result is a lexicographic

tree of all length-l strings that are in the d-Hamming neighborhood of a substring from each

string in F . Next, modify the pruning policy so that pruning occurs only when all frontiers

are empty. Mark each leaf of the new lexicographic tree with the indices of the members of F

having a substring in the d-Hamming neighborhood of the leaf. The tree that is constructed

24

Table 10: A Summary of the pas Algorithms Derived in this Paper.

Alg # Running Time Space

10 O(nmlpj�jlp) O(nm)

11 O(nml +mj�jd+lld +mlpj�jlp) O(mj�jl)

12 O(nm2j�jdld+1 +min(nmj�jdld+1
; 2m) 2m) O(nm2j�jdld+1 +min(nmj�jdld+1

; 2m) 2m)

encodes all strings in the d-Hamming neighborhood of a substring of any Si 2 F . We also

have a set of indices for each leaf � to indicate which Si 2 F has a substring in the d-

Hamming neighborhood of the path label of �. Once this tree has been constructed, we use

it in place of the generalized su�x tree and proceed with Algorithm #6 of Section 3.1.

The search space has grown from O(nj�jdld+1) to O(nmj�jdld+1) due to the fact that

we now must encode the union of m d-Hamming neighborhoods (instead of their intersec-

tion). Since we need an m-bit vector at each leaf, the time complexity for constructing the

lexicographic tree is O(nm2j�jdld+1). The space complexity has increased to equal the time

complexity for this stage in the algorithm, since now we must explicitly store the lexico-

graphic tree, where before we stored only a single path from root to leaf.

For the second stage in the algorithm, the complexity becomesO(min(2m; nmj�jdld+1) 2m).

Therefore, the total time (and space) required by the algorithm is

O(nm2j�jdld+1 +min(nmj�jdld+1
; 2m) 2m):

The advantage of this algorithm is that exponential dependence on m can be separated from

the other variables.

4.2 Parameterized Complexity of pAS

All known �xed parameter tractability results can be established through inheritance from

the variant pas(�; p).

Theorem 4.1 Fixed Parameter Tractability of p-approximate substring: pas(�; l)

is in FPT .

Proof. By observing that p is bounded from above by j�jl, we have a bound ofO(nmlpj�jl j�j
l

)

on the total time taken by Algorithm #10 in Section 4.1.

All known �xed parameter tractability results for pas are presented in Table 11. The entries

with m and n �xed are obtained by inheritance by observing that l � n and j�j � nm.

The following reductions relate 1as and pes to the more general problem of pas. These

allow us to partially map the hardness of pas by using the transitivity of the �m relation

and �lifting� results derived in Sections 2 and 3.

25

Table 11: Known Fixed Parameter Tractable Aspects of pas

Parameter � � m m;�

�

d

l FPT FPT

l; d FPT FPT

n FPT FPT FPT

n; d FPT FPT FPT

n; l FPT FPT FPT

n; l; d FPT FPT FPT

p

p; d

p; l FPT FPT

p; l; d FPT FPT

p; n FPT FPT FPT

p; n; d FPT FPT FPT

p; n; l FPT FPT FPT

p; n; l; d FPT FPT FPT

Lemma 4.1 1as �m pas such that p = 1.

Proof. Given an instance h�; S; l; di of 1as, construct the following instance h�0
; S

0
; p; l

0
; d

0i
of pas: Let �0 = �, S 0 = S, p = 1, l0 = l, and d

0 = d.

Lemma 4.2 pes �m pas such that d = 0.

Proof. Given an instance h�; S; p; li of pes, construct the following instance h�0
; S

0
; p

0
; l
0
; di

of pas: Let �0 = �, S 0 = S, p0 = p, l0 = l, and d = 0.

Theorem 4.2 Hardness of p-approximate substring:

1. pas(m; p; l; d) is W [1]-hard.

2. pas(p; l; d) is W [2]-hard.

3. pas(�; p) is not in XP unless P = NP .

4. pas(n; l; d) is not in XP unless P = NP .

Proof (1). This follows from Part 1 of Theorem 2.3, and the reduction in Lemma 4.1 in

which p = 1.

26

Table 12: The Parameterized Complexity of pas

Parameter � � m m;�

� NP -Complete 62 XP W [1]-Hard

d 62 XP W [1]-Hard

l 62 XP FPT W [1]-Hard FPT

l; d 62 XP FPT W [1]-Hard FPT

n 62 XP FPT FPT FPT

n; d 62 XP FPT FPT FPT

n; l 62 XP FPT FPT FPT

n; l; d 62 XP FPT FPT FPT

p 62 XP 62 XP W [1]-Hard

p; d W [2]-Hard W [1]-Hard

p; l W [2]-Hard FPT W [1]-Hard FPT

p; l; d W [2]-Hard FPT W [1]-Hard FPT

p; n FPT FPT FPT

p; n; d FPT FPT FPT

p; n; l FPT FPT FPT

p; n; l; d FPT FPT FPT

Proof (2). Follows from Part 1 of Theorem 3.2, and the reduction in Lemma 4.2 from pes

to pas in which d = 0. The result also follows from Part 2 of Theorem 2.3, and the reduction

in Lemma 4.1 in which p = 1.

Proof (3). This follows from Lemma 1.2, and the reduction in Lemma 4.2.

Proof (4). This follows from Lemma 1.2, and the reductions in Lemma 3.1 and Lemma

4.2.

Corollary 4.3 There is no polynomial time approximation algorithm relative to p for pas

when j�j � 2 with a logarithmic factor (c log p for any constant c) unless P = NP .

Proof. Follows from Corollary 3.4 and the L-reduction in in Lemma 4.2.

5 Conclusions and Future Research

These results show that many of the problems examined here become �xed parameter-

tractable with between one and four of the aspects considered here. This is only the begin-

ning of algorithmic work on this problem. Our experience working on DNA primer design

problems [5] has shown that even for variants composed of many aspects that �inherit� FPT

algorithms based on subsets of these aspects, it is still very useful to do further algorithm

development in order to produce the best useable algorithms. Di�erent applications can

27

lead to di�erent restrictions on the parameters, such as the primer design and motif �nding

challenge problems. These applications bene�t from algorithms whose parameterized time

and space useage are most suited to the parameter restrictions inherent in the problem.

Probe and primer design, which use larger lengths and smaller distances, can have a more

suitable algorithm than that used for general motif �nding, which has smaller lengths but

larger distances. With respect to the parameterized complexity results presented in Tables

6, 9 and 12, some observations are worth noting:

� Among aspects of 1as, the best candidate for membership in FPT is 1as(m;�; d).

� It is di�cult to imagine 1as(m;�) residing in FPT . However, it has yet to be shown

hard for any class in the W -hierarchy.

� Our analysis has not revealed a di�erence in complexity between the aspects of 1as

in the �rst row and those in the second row of Table 6. What is the e�ect of �xing d

alone?

� Considering the �xed parameter tractability of 1as(n) and pes(p; n), it is plausible

that pas(p; n) is also in FPT . Is this the case?

� The bottom half of Table 12 is quite similar to Table 6. None of our results suggest a

di�erence in complexity between pas(p) and 1as.

In addition to determining the parameterized complexity of pes, 1as, and pas relative to

the few remaining �open� parameters, there are several other promising directions for future

research:

� What is the parameterized complexity of the non-trivial versions of pas relative to the

third dimension mentioned in the Introduction, i.e., 1as (l = n) (closest string)

and pas (l = n)? Such results might in turn shed further light on the parameterized

complexity of 1as and pas.

� What types of polynomial-time approximation algorithms exist for pes and pas? Given

the exponential-time approximation scheme for pas when l = n and j�j = 2 described

in [8], it would also be of interest to investigate the existence of �xed parameter ap-

proximation schemes for 1as, pes, and pas [3].

Such research would be a useful prelude to examinations of the parameterized complexity of

various string median problems under Hamming and edit distance [11, 13].

28

References

[1] G. Ausiello, A. D'Atri, and M. Protasi. 1980. Structure Preserving Reductions Among

Convex Optimization Problems. Journal of Computer and System Sciences, 21, 136�

153.

[2] M. Blanchette, B. Schwikowski, and M. Tompa. 2000. An Exact Algorithm to Identify

Motifs in Orthologous Sequences from Multiple Species. In ISMB 2000. AAAI Press.

37�45.

[3] M. Cesati and L. Trevisan. 1997. On the E�ciency of Polynomial Time Approximation

Schemes. Information Processing Letters, 64(4), 165�171.

[4] R.G. Downey and M.R. Fellows. 1999. Parameterized Complexity. Springer-Verlag;

Berlin.

[5] P. Evans and T. Wareham. 2001. Practical Algorithms for Universal DNA Primer

Design: An Exercise in Algorithm Engineering (Poster Abstract). In N. El-Mabrouk,

T. Lengauer, and D. Sanko� (eds.) Currents in Computational Molecular Biology 2001.

Les Publications CRM; Montreal, PQ. 25�26.

[6] M. Frances and A. Litman. 1997. On Covering Problems of Codes. Theory of Computing

Systems, 30, 113�119.

[7] M.R. Garey and D.S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP -Completeness. W. H. Freeman and Company; San Francisco.

[8] L. G�asieniec, J. Jansson, and A. Lingas. 2000. Approximation Algorithms for Hamming

Clustering Problems. In R. Giancarlo and D. Sanko� (eds.) CPM 2000. Lecture Notes

in Computer Science no. 1848. Springer-Verlag; Berlin. 108�118.

[9] J. Gramm, R. Niedermeier, and P. Rossmanith. 2001. Exact Solutions for Closest

String and Related Problems. To appear, ISAAC'01.

[10] D. Gus�eld. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press.

[11] C. de la Higuera and F. Casacuberta. 2000. Topology of strings: Median string is

NP-complete. Theoretical Computer Science, 230, 39�48.

[12] J.K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. 1999. Distinguishing String

Selection Problems. In Proceedings of the 10th Annual ACM-SIAM Symposium on

Discrete Algorithms. ACM Press; New York. 633�642.

[13] M. Li, B. Ma, and L. Wang. 1999. Finding Similar Regions in Many Sequences. In

Proceedings of the 31st Annual ACM Symposium on Theory of Computing. ACM Press;

New York. 473�482.

29

[14] B. Ma. 2000. A Polynomial Time Approximation Scheme for the Closest Substring

Problem. In R. Giancarlo and D. Sanko� (eds.) CPM 2000. Lecture Notes in Computer

Science no. 1848. Springer-Verlag; Berlin. 99�107.

[15] C. Papadimitriou and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall; Englewood Cli�s, NJ.

[16] C. Papadimitriou and M. Yannakakis. 1991. Optimization, Approximation, and Com-

plexity Classes. Journal of Computer and System Sciences, 43, 425�440.

[17] P.A. Pevzner and S.-H. Sze. 2000. Combinatorial Approaches to Finding Subtle Signals

in DNA Sequences. In ISMB 2000. AAAI Press. 269�278.

[18] R. Raz and S. Safra. 1997. A Sub-Constant Error-Probability Low-Degree-Test and a

Sub-Constant Error-Probability PCP Characterization of NP. In Proceedings of the 29th

Annual ACM Symposium on Theory of Computing. ACM Press; New York. 475�484.

[19] M.-F. Sagot. 1998. Spelling approximate repeated or common motifs using a su�x tree.

In V.L. Lucchesi and A. Moura (eds.) LATIN'98. Lecture Notes in Computer Science

no. 1380. Springer-Verlag; Berlin. 111�127.

[20] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldana. 1995. Searching for repeated words

in a text allowing for mismatches and gaps. In Proceedings of the Second South American

Workshop on String Processing. University of Chile. 87�100.

[21] E. Ukkonen. 1993. Approximate String Matching over Su�x Trees. In CPM 1993.

Lecture Notes in Computer Science no. 684. Springer-Verlag; Berlin. 228�242.

[22] E. Ukkonen. 1995. On-line construction of su�x trees. Algorithmica, 14, 249�260.

[23] H.T. Wareham. 1999. Systematic Parameterized Complexity Analysis in Computational

Phonology. Ph.D. thesis, Department of Computer Science, University of Victoria.

[24] M.S. Waterman, R. Arratia, and D.J. Galas. 1984. Pattern recognition in several

sequences: consensus and alignment. Bulletin of Mathematical Biology, 46, 515�527.

30

