
   
The role of understanding the genome rearrangement is 
becoming more and more crucial in the modern life sciences.  
The new, alternative model explaining the process of genome 
rearrangement as well as the relationships between diverged 
gene-order sequences is proposed. The main characteristic 
feature of the model is its evolutionary nature: the gene-order 
sequences are viewed as the result of evolutionary genome 
development, that is, consecutive transformation of the 
ancestral genome via non-local genome mutations of two 
types, insertion and reversal. The close relationship of the 
above evolutionary-based mutations in the proposed model 
and “traditional” genome rearrangement mutations, such as, 
reversal and transposition, is discussed. A new, multiple 
longest common subsequence-based, method for extraction the 
evolutionary processes directly related to genome 
rearrangement is presented. Its advantages, disadvantages and 
future enhancements are outlined. 
 
Genome rearrangement, evolutionary model, gene 
transformations, longest common subsequence, dominant points 

I. INTRODUCTION 

In this paper we give a short introduction to a new 
alternative model for genome rearrangement. We first give 
the basic definitions that will be necessary throughout the 
paper (Section II). Then, we introduce a new concept, the 
concept of an evolutionary genome graph, and reformulate 
the rearrangement problem with and without the help of the 
concept of evolutionary distance. Next, in Section III, we 
introduce a basic evolutionary-based model with reversals 
and insertions as non-local evolutionary mutations 
(transformations). We present the corresponding 
evolutionary genome graph and discuss its properties. Then, 
we discuss the relationship between evolutionary 
transformations and “traditional” genome rearrangement 
mutations. Next, we introduce an evolutionary distance for 
the above model. Finally in this section, we talk about 
context sensitive genome transformations and how they 
could make the above model more precise. In Section IV 
we outline the idea of constructing the evolutionary genome 
graph from a set of genomes. We present the basic 
pseudocode of the algorithm and analyze its complexity. 
We briefly explained the idea of dominant-point based 
algorithm for computing MLCS. In the last section we 
conclude with a brief overview of what was done in the 
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paper and discussions about the future directions regarding 
the new model. 
 

II. BASIC DEFINITIONS AND PROBLEM FORMULATION 

In this chapter we introduce some basic definitions as well 
as formulate the problem of genome 
rearrangement/development reconstruction. 

A. Basic definitions 

 
Definition 1. Let  A = a1,a2, …, an  be a sequence of 
length  n over alphabet Σ = {A,C,G,T}. A mapping         
f: A Å B, where B = b1,b2, …, bn is a sequence of the 
same length  n over Σ, such that bi = aρ(i), for a fixed 
permutation ρ : [1..n]Å[1..n], is called a gene order 
transformation in genome A, or simply                        
g-transformation.  

 
Definition 2. A rearrangement of genome G∈ Σ* is a 
sequence f1, f2, … ,fN, where N≥1 and for each  i,  fi  is a 
g-transformation. 

 
Definition 3. Let  A1, A2, … , Ad  be a set of d sequences 
of length  n1, n2, … , nd, correspondingly, over alphabet 
Σ = {σ1,σ2, … , σs}. If A = s1 s2 … sn, then B = si1 si2 … 
sik is a subsequence of  A  if  ∀j ∈ {1,2, … ,k}:     
ij∈{1,2, … ,n}  and  ∀s,t ∈{1,2, … ,k}, s<t: is<it , where 
k is the length of B. The multiple longest common 
subsequence (MLCS) for a set of sequences A1, A2, … , 
Ad is a sequence B such that B is a subsequence of each 
Ai and it has the largest length. In the case of d = 2 
MLCS is simply called the longest common 
subsequence (LCS).  

 
Definition 4. Given a set of d genomes, G1, G2, … , Gd, a 
MLCS of them is called the longest gene pattern, or 
simply LG-pattern. 
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Definition 5. Let f be a g-transformation of genome A, 
A=a1,a2, …, an, and let B = f(A), B = b1,b2, …, bn. The 
g-transformation f is called a reversal (of a subsequence 
A1=am, am+1, …, am+k ) if the corresponding permutation 
ρ is such that for k, m ≥ 1 (see Fig. 1):  

(1) bi = ai,  1≤ i≤ (k-1) or (k+m+1)≤ i≤ n;  

(2) bk+i = ak+(m-i),   0≤ i≤ m. 

 
 
 
 
 
 
 

 
Fig. 1 A reversal of subsequence A1 = ak, ak+1, …, ak+m.. . 

 
 

Definition 6. Let f be a g-transformation in genome A, 
A=a1, a2, …, an, and let B = f(A), B = b1, b2, …, bn. The 
g-transformation f is called a transposition (of a 
subsequence A1=am, am+1, …, am+k ) if the corresponding 
permutation ρ is such that for l, k, m ≥ 1 (see Fig. 2):  

(1) bi = ai,  1≤ i≤ l;  

(2) bl+i = ak+i,   1≤i≤ m; 

(3) bl+m+i = al+i,   1≤ i≤ (n-m-l),   

                             (l+m+i)∉[l+1, l+m]. 

 
 
 
 
 
 
 
 

 
Fig. 2 A transposition of subsequence A1 = ak, ak+1, …, ak+m.. 

 
  

Definition 7. A mapping  f: A Å B, where                        
A = a1,a2, …, an , B = b1,b2, …, bn+m, m>0, is called 
insertion transformation (of sequence c1,c2, …, cm)  in 
genome A or simply ins-transformation if ∃ k, 1≤ k≤ n, 
such that:  

(1) bi = ai,  1≤ i≤ k 

(2) bk+i = ci,  1≤ i≤ m 

(3) bi+m = ai+k,  1≤ i≤ n-k. 

 
Definition 8. A development of genome G∈ Σ* is a 
sequence f1, f2, … ,fN, where N≥1 and for each  i,  fi  is 
either a g-transformation or ins-transformation. 

 

B. Evolutionary genome graph and problem formulation 

 
Having defined the basic concepts, we next discuss the 
motivation for evolutionary approaches to the problem of 
genome rearrangement. 
 
The evolutionary approach for genome rearrangement has 
the ideas similar to phylogenetic approach for the protein 
sequences. The phylogeny of genes has been studied for 
more than ten years by a number of scientists [1]-[5]. So, 
what might be the reasons to choose an evolutionary based 
approach when studying the genome rearrangement 
problem? First of all, if genome B was obtained from 
genome A as a result of a certain g-transformation f, this 
process can be naturally represented through the common 
ancestral, C, of A and B. In this case A and B can be viewed 
as obtained from genome C by applying to the latter g- or 
ins-transformations fA and fB, correspondingly. Second, one 
can also assume that, since all the species are the subject of 
evolution, the genomes of the close species are obtained by 
corresponding developments of genomes involving the 
similar g- and ins-transformations. Finally, the evolutionary 
approach allows one to study a genome rearrangement (and 
development) not of only those genomes that have same 
genes but also of those, whose genes might be different. 
 
An example of the evolutionary genome graph (or simply 
EG-graph) is shown on Fig. 3.  Generally, EG-graph is 
defined as a directed graph DG (V, E) with labeled vertices, 
V, whose labels correspond to current genomes, and the 
labeled edges, E, whose labels correspond to g- or ins-
transformations. It’s not hard to see that, in general, it may 
not be a tree: we can have two or more different paths from 
one vertex into another one, e.g., when performing the 
insertion of a sequence in a genome and, then, the reversal 
of another subsequence in the same genome or, when 
performing the reversal first and, then, the insertion in the 
above genome. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 An evolutionary genome graph 
 
Thus, once defined a concept of EG-graph, we are able to 
formulate the basic problem of genome rearrangement/ 
development:  
 

Genome A:  
           a1, … ak-1, ak, ak+1, …, ak+m, ak+m+1, …, an  
 
 
Genome B:  
           a1, … ak-1, ak+m, ak+(m-1), …, ak, ak+m+1, …, an 

Genome A:  
           a1, … ak-1, ak, ak+1, …, ak+m, ak+m+1, …, an  
 
 
Genome B:  
           a1, … al, ak, ak+1, …, ak+m, al+1, …, an-l-m  
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Problem 1. Given a set of genomes G = {G1, G2, …, 
Gn}, construct an EG-graph,  DG(V, E), such that      
∀Gi  ∃ vj∈V: vj corresponds to Gi. 

 
Next, in order to be able to compare genomes to each other, 
one needs to specify the similarity measure. In evolutionary 
approaches, one of the basic and most natural ways is to 
define such a measure trough the evolutionary paths, i.e. the 
paths from genomes to their closest common ancestor, 
where each of the paths is a series of transformations 
leading from ancestral to one of the current genomes.  
 
Having specified a similarity measure on a set of genomes, 
one can come with the computationally much more 
complex problem: 
 

Problem 2. Given a set of genomes G = {G1, G2, …, 
Gn}, and a similarity measure µ defined on G, construct 
an EG-graph,  DG(V, E), such that ∀Gi  ∃ vj∈V:             
vj corresponds to Gi , and  
 

 µA(DG)= min( ρA(DG’)), 
 
where   

ρA(DG) =  ( Σ  µ(Gi,Gj)) / n. 
 

III. A NOVEL GENOME REARRANGEMENT MODEL 

In this section we introduce a novel evolutionary-based 
model for genome rearrangement and development. First, 
we consider the case of two basic types of transformations, 
reversals and ins-transformations, and discuss their 
relationship. Then, we introduce a similarity measure based 
on the above transformations. Finally, we briefly discuss a 
new conceptthe context of transformationand show 
how it can be encapsulated into the model. 

A. Basic evolutionary-based genome development and 
rearrangement model 

Consider a set of genes g = {g1, g2 , …, gn | gi ≠ gj , i≠j}, that 
is, a set of strings over alphabet  Σ = {A,C,G,T}. Then, a set 
G of genomes will be defined as  

G = {gi1 ° gi2° … ° gik  |  i1, i2,… ik∈ {1,2..n}, 
                                                   k≤ n,   i1≠i2≠ …≠ ik}. 

Next, we need  to specify the type of the corresponding EG-
graph. The EG-graph  DG(V, E)  is specified  as follows: 

- There is one-to-one correspondence between the 
elements of V and the elements of G; 

- Each of the edges from E corresponds either to 
reversal or to insertion transformations; 

- A reversal transformation cannot be applied twice 
in the same genome. 

Note, that we use an additional restriction (the last item in 
the above specification) on the EG-graph: it allows us to 
avoid the case, where a reversal transformation can be 

applied infinitely many times in a genome. Moreover, the 
following Lemma is valid: 
 

Lemma 1. With the condition defined above, DG(V,E) is 
a directed acyclic graph.  

The above Lemma gives us two related and very important 
properties: first, the genome development cannot ever 
return to one of the points it has already passed and, what 
follows from this, if one allows to copy (that is, insert) each 
of the genes only for a finite number of times (in the case of 
the above model – only once), then the process of 
constructing all possible genomes is finite. 

The model discussed above has also the strong relation with 
the basic ‘traditional’ genome-level mutations. Namely, it is 
not hard to obtain the following results: 

Lemma 2. Let A and B be two genomes, A,B∈ G, and let 
genome C be their closest ancestor. Then: 

1) If  B=f(A), where f  is a transposition, then there exist 
two insertions  fA , fB , such that   A = fA(C),   B =  fB(C); 

2) If  B=f(A), where f  is a reversal, then A = C. 

In other words, genomes related to each other by either 
reversal or transposition, are also related via the closest 
ancestor with the help of corresponding g- or                    
ins-transformations. This is partially explains the need for a 
evolutionary similarity measure of genomes to be based on 
transformations leading to these genomes. 
 
Next we introduce a similarity measure for the model. In 
order to specify the similarity measure formally, we need to 
assign a weight to each of the reversal and insertion 
transformations used  in the corresponding EG-graph. There 
are many ways to assign a weight to a genome-level 
mutation. On of the basic ways is to consider the size of the 
inserted, reversed, or transposed substring. In our model we 
will use this weight determination schema: 
 

Definition 9. For any reversal f of a string a, the weight 
of this g-transformation is defined as w(f) = |a|, where 
|a| is the length of the string a. For any insertion g of a 
string b, the weight of this ins-transformation is defined 
as w(f) = |b|, where |b| is the length of the string b. 

 
Having assigned the weights of transformations, now we 
can define one of the possible similarity measures. 
 

Definition 10. Let A and B be two genomes, A,B∈G, and 
let genome C be their closest ancestor. Let                    
A= fn ° fn-1°…°f1(C), B = gm ° gm-1°…°g1(C) (Fig. 4). 
Then the similarity measure is defined as : 

µ(A,B) = ∑ =
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where w(fi) and w(gi) are the corresponding weights of 
the transformations. 
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Fig. 4 The closest common ancestor of two genomes, A and B 
 
Once specified the type of EG-graph, weighting schema, 
and the similarity measure, it becomes possible to define 
the relationships between genomes. Namely, given a set of 
genomes G, we need, first, to compute a particular EG-
graph, thus specifying the particular mutation pathways that 
would lead to each of the genomes in G. Then, any genome 
in G can be compared with any other genome in G and their 
similarity measure, in terms of similar transformations 
occurring in the ancestor of the above genomes, can be 
calculated. 

B. The case of context sensitive gene transformations 

In this section we introduce the idea of using the context-
sensitive genome-level mutations. It is natural to assume 
that the process of genome rearrangement depends on what 
constitutes the current genome being rearranged. In other 
words, the mutation of a genome can depend on a particular 
region of this genome (the case of a local context) or it can 
depend on the regions that are not close to each other and, 
even, on the entire structure of genome (the case of a global 
context). Since the issue of a global context-sensitive 
mutation is very complex, in this introductory paper we will 
discuss the local context-sensitive mutations only.  We next 
consider the basic types of the local context for both, 
reversals and ins-transformations. 
 

Definition 11. Given a set of genomes, G, and a 
transformation  fX , where  f  is either reversal or ins-
transformation,  X is a subsequence, which is to be 
inversed/inserted, the local context of fX is a pair of 
sequences, (C1,C2),  C1,C2 ∈ Σ*, such that: 

1) If  fX  is a  reversal, and  X’ is the reversed image of 
X, then  ∀ A,B∈G  |  B = fX (A): 

A = A’° C1°  X ° C2 ° A’’ and B = B’° C1°  X’ ° C2 ° B’’,  

                                             where  A’, A’’, B’, B’’∈ Σ*. 

2) If  fX  is an ins-transformation, then   

                     ∀  A,B∈G  |  B = fX (A): 

A = A’° C1° C2 ° A’’ and B = B’° C1°  X ° C2 ° B’’,       

                                            where  A’, A’’, B’, B’’∈ Σ*. 
 

Note, that C1 and/or C2 can be empty. In a case when both, 
C1 and C2, are empty the corresponding transformation  fX  
is said to be context-free. 
 
How would the concept of context be reflected on a 
similarity measure? There are many ways to redefine the 
similarity measure, such that the presence of a context 
would be taken into account. It goes without saying that the  
context-sensitive transformation when applying to genome 
would be more specific to the above genome, than the same 
transformation but without any context. Therefore, after 
applying a context-free operation fX , the new genome B = 
fX(A) can be considered  as a farther genome than the one 
obtained by applying the same transformation fX but with 
non-empty context.  In other words, in a view of  the 
additive nature of the similarity measure, the weight of a 
context-free transformation should be larger than that one 
of the same transformation but with non-empty context. 
Below we give one of the possible ways to define such the 
weighting schema for context-sensitive transformations. 
 

Definition 12. Let be a transformation and (A,B) be its 
context. Then, the context-sensitive weight of 
transformation  fX  is defined as 
 

,
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where wCS(fX) is a “standard” weighting schema of  a 
(context-free) transformation defined in Def. 9. 

 
The weighting schema in Def. 12 has two important 
features. First of all, for any context-free transformation fX, 
its context-sensitive weight wCS(fX) is equal to the 
“standard” weight of fX , and the bigger the context of fX , 
the smaller its context-sensitive weight. The latter, as was 
already mentioned above, can be explained by the fact that 
the bigger is the context of a transformation, the more 
specific is this transformation for a genome, in which it is 
applied, and thus, the resulting new genome should be 
closer to its ancestor than the one obtained by applying a 
context-free “version” of the same transformation fX . 
Second, the smaller weight of context-sensitive 
transformation necessitates the search for the latter when 
solving the Problem 2 defined above, since the similarity 
measure between two genomes obtained by using context-
sensitive transformations will be also smaller in comparison 
with using of the same transformation but without context. 
 

IV. IMPLEMENTATION 

In this section we discuss how to reconstruct an EG-graph, 
given a set of genomes. We consider a basic type of 
rearrangement that uses only transpositions. The EG-graph 
reconstruction algorithm described in this section use the 
idea of multiple longest common subsequence (MLCS) as 
well as its partial case – longest common subsequence 
(LCS). One of the most recent and promising improvements 
for the methods solving the MLCS problemthe idea of 
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dominant pointsthat makes our model very 
implementable, is briefly discussed at the end of the 
section.  

A. Genome rearrangement using translocations only 

 
1) Some basic ideas and assumptions 

 
The basic and easiest in terms of computational complexity 
is the case when any genome from G can be obtained from 
any other by applying a finite set of transpositions of one or 
several genes from a set of genes g. In terms of 
evolutionary models this means that we assume the same 
set of the genes (but in different order) to be inserted by 
applying the corresponding ins-transformations in the 
ancestral genome. This assumption results the following 
lemmas: 
 

Lemma 3. Each of genomes consists of the same number 
of genes from g. 

 
Lemma 4.Let DG(V,E) be any EG-graph whose set of 
leaves corresponds to the set G (see section II B). Then, 
for any set V0⊆V, the MLCS of V0 will contain at least 
one gene from g. 

 
The last lemma follows from the previous one and allows 
us to use successfully the idea of MLCS in the algorithm 
whose pseudocode is shown next. 
 

2) Algorithm 
 
The algorithm outputs one of the possible EG-graphs, 
DG(E, V),  given a set of genomes G consist of genes from 
a set g. The pseudocode of the algorithm consists of two 
parts. In the first part the common ancestor of all genomes 
in G is built. In the second (main) part the transformations 
leading to each of genome are consecutively extracted. The 
pseudocode of the algorithm is presented below (note that 
we use notation  //---//  for comments). 
 
Algorithm EG-graph 

Input: G, | G | = N 

Output: DG(V,E), where V = {v1, v2, … , vK} is the 

set of labeled vertices, E = {e1, e2, … , eM} – the set 

of labeled edges. 

1. Construct ancestor 

Ancestor = v0 = MLCS(G) 

2. Construct transformations: 

cur_level = V = {v0}; 

level = 0; 

cur_Gv(v0)={1, 2, … ,N}; 

// contains indices of all genomes// 

While cur_level is not empty do 

{ 

For all vertices  v in cur_level 

 { 

    New_level = ∅; 

    // cur_Gv: indices of all current genomes  

      corresponding to a current vertix from  

    Cur_level // 

    cur_S = MLCS(cur_Gv); 

    cur_Tr = Transform(S); 

    // Transforms the MLCS  cur_S to the sequence  

       of ins-transformations, cur_Tr // 

 For each transformation f in cur_Tr 

   { 

    (V1,E1, cur_Gv) = Children_v (v, f, cur_ Gv, V, E); 

     // Returns new vertices (V1) together with edges 

       (E1), connecting vertex v and new vertices, 

        based on the transformation f and the set of 

        genomes corresponding to vertex v, cur_Gv 

            plus the set of indices Cur_Gv(w) 

        corresponding to genomes that are children of 

         the genome corresponding to a vertex w∈V1// 

    V = V ∪ V1; 

    E = E ∪ E1; 

    } // End  For each transformation // 

    New_level = New_level ∪ V1; 

       // Adds vertices, corresponding to the last  

       transformation in the sequence cur_Tr to the  

       new level // 

    } //End For all vertices  v in cur_level // 

  cur_level = new_level; 

  level = level+1; 

      } //End While// 
 
END //Algorithm// 
 
The algorithm’s pseudocode presented above depends on 
two basic subroutines. While the first subroutine, MLCS() 
will be discussed in the section 5) below, the second one, 
Children_v(), can be described as follows. Given a vertex 
vA corresponding to a genome A, the set of indices cur_Gv 
(v) of those genomes in G, who have A as a common 



ancestor, and an ins-transformation f, the subroutine 
Children_v() builds: 
 
1) the set of vertices V1 = {vA1, vA2, …, vAd} 

corresponding to the set {A1,A2, …, Ad} of immediate  
descendants  of A obtained by applying f in A; 

2) the set of edges E1 , each of which is labeled by f, 
connecting each vertex in V1 with vA ; 

3) for each of Ai  the set of indices cur_Gv(Ai) 
corresponding to those genomes in G,  who have Ai as 
a common ancestor. 

 
 

3) Example 
 
This example is rather illustrative than taken from the “real 
life”. However, it reflects all the necessary aspects of the 
algorithm as well as allows comparing the results of 
“traditional” genome rearrangement with the evolutionary 
genome rearrangement represented by the corresponding 
EG-graph. Table 1 and Fig. 3 present the initial data and the 
resulting EG-graph, correspondingly.  
 
 

TABLE 1 
THE INITIAL DATA G CONSISTS OF 6 GENOMES OVER THE SET OF GENES          

G ={A, B, C, D, E, F, G, H} 
 
 

G1 = D A B E C F G H; 
G2 = A D G B C F H E; 
G3 = A G B D C F E H; 
G4 = G A B D C F E H; 
G5 = E G C A F D B H; 
G6 = C E A F B G H D. 

 
 

4) Complexity 
 
In order to estimate the computational time complexity of 
the algorithm we use the following result. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5 An EG-graph for the set of genomes G = {G1,G2, …,G6} defined 
in the Table 1. 

Lemma 5. Suppose |G| = d, |g| = s. Then: 
 

1. In the algorithm one walks through the EG-graph  
    only once; 
2. For each level the MLCS algorithm can be  
    performed no more than d/2 times; 
3. There are no more than s levels in EG-graph; 
4. Transform() takes no more than O(d*L), where                   
    L = max{|G1|, |G2|, … , |Gd|}; 
5. During the running of the main algorithm,  
    Children() takes no more than O(ds) 

 
Based on the above Lemma, it is not hard to find the time 
complexity of the algorithm given in 2). Namely, let O(T) 
be a time complexity for MLCS() subroutine. Then the 
following result can be obtained. 
 

Theorem 1. The time complexity of the algorithm EG-
graph is O( s*((d/2)*T + d*L) + (d*s)). 
 
  
5) The extraction of genes from genome 

 
So far we considered a problem where all genomes were 
represented as the sets of given genes. What if each of the 
genomes is given simply as a sequence over alphabet          
Σ = {A,C,G,T}? Suppose all genomes in G satisfy the 
following two conditions: 
1. ∀ Gi∈ G: | Gi |>LMIN, where LMIN is a minimal length 

of a gene; 
2. ∀ Gi, Gj ∈ G: LCS(Gi, Gj)<LMIN, where LCS is a 

longest common subsequence of two sequences. 
 
Then, using the slightly modified version of the algorithm 
described above, one can reconstruct genes from the given 
genomes sequences. The simplified pseudocode is 
represented below. 
 
Algorithm EG-graph 

Input: G, | G | = N 

Output: g = {g1, g2, …gs} 

cur_G = G; g =∅;  

While cur_G is not empty do 

 {    cur_S = MLCS(cur_G); 

   cur_ g = Transform(S); 

   // Transforms the MLCS  cur_S to the sequence  

       of genes, cur_g // 

   Update(cur_G, cur_g) 

   //Removes the genes of cur_g from eachelement   

     of cur_G // 

     g = g ∪ cur_g 

  } // End While // 
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As one can see, both of the algorithms described above use, 
as one of the key ideas, the idea of extracting the common 
patterns of genomes using multiple longest common 
subsequence method. Thus, the effectiveness of those 
algorithms will depend on how good is the method for 
finding MLCS, given a set of strings. The next section 
describes the most recent and promising method  the 
method of dominant points. 

B. Dominant point-based method for multiple longest 
common subsequence 

 
The method is based on several ideas. In order to describe 
these ideas, let us introduce some definitions and notations. 
Given a set of sequences,  A1, A2, … , Ad , over alphabet      
Σ = {σ1,σ2, … , σs}, the position p in the corresponding 
score matrix L is denoted as  p[ p1, p2, … , pd ], where each   
pi is a coordinate of p for the corresponding string, Ai. For a 
sequence A we denote a symbol corresponding to the k-th 
position in A as A[k]. 
 

Definition 13. Position p in L is called a match iff 
                     A1[p1] = A2[p2] =… = Ad[pd]. 
A match  p, corresponding to a symbol σ is denoted as 
p(σ). 
 
Definition 14. We say that point  p  dominates point q  if  
pi ≤ qi for all i =1,2, … ,d. We denote this fact as           
p ≤  q. The relation  p < q can be defined similarly.  

 
Definition 15. A match  p is called a k-dominant iff 

                    L[p] = L[ p1, p2, … , pd ] =k. 

The set of all k-dominants for a point p is denoted as 
Dk(p). The set of all k-dominants is denoted as D(p). 

 
Definition 16. A match p(σ) is called a σ-parent of a 
point q iff  q < p and there is no match r(σ) such that    
q < r < p. The set of all σ-parents of q is denoted as 
Par(q, σ). 

 
Definition 17.  A point  p  in a set of points S is a 
minimal element of S, if  ∀q ∈ S:  q ≤ p. 
 

There are several main ideas leading to the above method. 
First, it is not hard to see that one should search among only 
matches since each position in a MLCS should at least be a 
match. Second, it can be shown that the ‘special’ points in 
the lowest-cost path corresponding to positions in the 
MLCS, which were discussed in the previous section, are               
k-dominants,  k = 1, …, |MLCS|.   Finally, for each k,             
k = 1, …, |LCS|, only minimal points of Dk can be the 
candidates for positions in the MLCS (see Table 4). Based 
on these ideas and some more advanced properties of 
dominant points properties Hakata and Imai developed an 
algorithm for computing a MLCS of a set of d sequences. 
 
 

 

TABLE 2 
THE SET OF DOMINANTS AND MATCHES IN THE SCORE MATRIX FOR TWO 

SEQUENCES, A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’. THE DOMINANT 

POSITIONS ARE CIRCLED WHILE THE REMAINING MATCHES THAT ARE NOT 

DOMINANT ARE SQUARED 
  

  a a b c a a b c a b 

 0 0 0 0 0 0 0 0 0 0 0 

b 0 0 0 1 1 1 1 1 1 1 1 

a 0 1 1 1 1 2 2 2 2 2 2 

c 0 1 1 1 2 2 2 2 3 3 3 

b 0 1 1 2 2 2 2 3 3 3 4 

a 0 1 2 2 2 3 3 3 3 4 4 

b 0 1 2 3 3 3 3 4 4 4 5 
 
 
The theoretical time complexity for the above MLCS 
algorithm is given by the following theorem. 

Theorem 2 [10]. The MLCS problem for  d ≥ 3  strings 
of length  n can be solved in time  
                  O(nsd + |D|sd (logd-3n + logd-2 s)),  

where |D| is the size of the set of all dominant positions. 
 
It is not hard to see that the size |D| of the set of all 
dominants is much less than the set of all positions. 
Although a nontrivial (rather than by nd ) estimation of |D| is 
still an open question the results obtained by the 
implementation of dominant point-based approach show the 
great advantage of this method in contrast to classical 
dynamic programming approaches. 
 

V. DISCUSSIONS AND FUTURE RESEARCH 

In this paper we introduced an alternative, evolutionary-
based, way to study genome rearrangement. The 
development of genomes can be represented via special 
directed graph, called EG-graph, with labeled edges and 
vertices. One of the main advantages of the evolutionary 
method is that it allows reconstructing not only binary 
relations between genomes: e.g., EG-graph can represent 
three genomes having one common ancestor. In order to 
represent such relationships, the idea of a multiple longest 
common subsequence was used. Although “classical” 
dynamic programming methods for computing MLCS, 
practically, can be used only for the case of two, maximum 
three strings, the dominant points-based method allows one 
to get a MLCS for a much larger set of genome sequences. 
 
There are many directions for the future research regarding 
this model. First of all, the next step can be the 
reconstruction of EG-graph when the models of genome 
rearrangement are more complex, e.g. models based on the 
following genome-level mutations: 

/ 



1) transpositions and reversals of genes; 
2) transpositions and insertions of genes.  

Each of the above two cases is not trivial and needs careful 
studying.  
 
Next, there is a computationally more complex problem of 
reconstructing an optimal EG-graph  (see Problem 2 in 
section II.B.). 
 
Another problem is the reconstruction of context-sensitive 
transformations. One of the possible solutions, if the 
optimal EG-graph is not necessary, is to search for the 
context of transformations after EG-graph with context-free 
transformations is built. 
 
Finally, one can consider a model of genome rearrangement 
with the presence of a noise, that is, point mutations 
occurring when performing genome-level mutations. The 
weighting schema should take this fact into consideration, 
in such a way that the presence of some point mutations 
would affect the change of similarity measure between two 
genome sequences.  
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