

The role of understanding the genome rearrangement is
becoming more and more crucial in the modern life sciences.
The new, alternative model explaining the process of genome
rearrangement as well as the relationships between diverged
gene-order sequences is proposed. The main characteristic
feature of the model is its evolutionary nature: the gene-order
sequences are viewed as the result of evolutionary genome
development, that is, consecutive transformation of the
ancestral genome via non-local genome mutations of two
types, insertion and reversal. The close relationship of the
above evolutionary-based mutations in the proposed model
and “traditional” genome rearrangement mutations, such as,
reversal and transposition, is discussed. A new, multiple
longest common subsequence-based, method for extraction the
evolutionary processes directly related to genome
rearrangement is presented. Its advantages, disadvantages and
future enhancements are outlined.

Genome rearrangement, evolutionary model, gene
transformations, longest common subsequence, dominant points

I. INTRODUCTION

In this paper we give a short introduction to a new
alternative model for genome rearrangement. We first give
the basic definitions that will be necessary throughout the
paper (Section II). Then, we introduce a new concept, the
concept of an evolutionary genome graph, and reformulate
the rearrangement problem with and without the help of the
concept of evolutionary distance. Next, in Section III, we
introduce a basic evolutionary-based model with reversals
and insertions as non-local evolutionary mutations
(transformations). We present the corresponding
evolutionary genome graph and discuss its properties. Then,
we discuss the relationship between evolutionary
transformations and “traditional” genome rearrangement
mutations. Next, we introduce an evolutionary distance for
the above model. Finally in this section, we talk about
context sensitive genome transformations and how they
could make the above model more precise. In Section IV
we outline the idea of constructing the evolutionary genome
graph from a set of genomes. We present the basic
pseudocode of the algorithm and analyze its complexity.
We briefly explained the idea of dominant-point based
algorithm for computing MLCS. In the last section we
conclude with a brief overview of what was done in the

Dmitry Korkin is with the Faculty of Computer Science, University of
New Brunswick, P.O.Box 4400, Fredericton, NB, Canada, E3B 5A3
(phone: 506-451-6931, e-mail: z17b3@unb.ca).

paper and discussions about the future directions regarding
the new model.

II. BASIC DEFINITIONS AND PROBLEM FORMULATION

In this chapter we introduce some basic definitions as well
as formulate the problem of genome
rearrangement/development reconstruction.

A. Basic definitions

Definition 1. Let A = a1,a2, …, an be a sequence of
length n over alphabet Σ = {A,C,G,T}. A mapping
f: A Å B, where B = b1,b2, …, bn is a sequence of the
same length n over Σ, such that bi = aρ(i), for a fixed
permutation ρ : [1..n]Å[1..n], is called a gene order
transformation in genome A, or simply
g-transformation.

Definition 2. A rearrangement of genome G∈ Σ* is a
sequence f1, f2, … ,fN, where N≥1 and for each i, fi is a
g-transformation.

Definition 3. Let A1, A2, … , Ad be a set of d sequences
of length n1, n2, … , nd, correspondingly, over alphabet
Σ = {σ1,σ2, … , σs}. If A = s1 s2 … sn, then B = si1 si2 …
sik is a subsequence of A if ∀j ∈ {1,2, … ,k}:
ij∈{1,2, … ,n} and ∀s,t ∈{1,2, … ,k}, s<t: is<it , where
k is the length of B. The multiple longest common
subsequence (MLCS) for a set of sequences A1, A2, … ,
Ad is a sequence B such that B is a subsequence of each
Ai and it has the largest length. In the case of d = 2
MLCS is simply called the longest common
subsequence (LCS).

Definition 4. Given a set of d genomes, G1, G2, … , Gd, a
MLCS of them is called the longest gene pattern, or
simply LG-pattern.

Dmitry Korkin

Definition 5. Let f be a g-transformation of genome A,
A=a1,a2, …, an, and let B = f(A), B = b1,b2, …, bn. The
g-transformation f is called a reversal (of a subsequence
A1=am, am+1, …, am+k) if the corresponding permutation
ρ is such that for k, m ≥ 1 (see Fig. 1):

(1) bi = ai, 1≤ i≤ (k-1) or (k+m+1)≤ i≤ n;

(2) bk+i = ak+(m-i), 0≤ i≤ m.

Fig. 1 A reversal of subsequence A1 = ak, ak+1, …, ak+m.. .

Definition 6. Let f be a g-transformation in genome A,
A=a1, a2, …, an, and let B = f(A), B = b1, b2, …, bn. The
g-transformation f is called a transposition (of a
subsequence A1=am, am+1, …, am+k) if the corresponding
permutation ρ is such that for l, k, m ≥ 1 (see Fig. 2):

(1) bi = ai, 1≤ i≤ l;

(2) bl+i = ak+i, 1≤i≤ m;

(3) bl+m+i = al+i, 1≤ i≤ (n-m-l),

 (l+m+i)∉[l+1, l+m].

Fig. 2 A transposition of subsequence A1 = ak, ak+1, …, ak+m..

Definition 7. A mapping f: A Å B, where
A = a1,a2, …, an , B = b1,b2, …, bn+m, m>0, is called
insertion transformation (of sequence c1,c2, …, cm) in
genome A or simply ins-transformation if ∃ k, 1≤ k≤ n,
such that:

(1) bi = ai, 1≤ i≤ k

(2) bk+i = ci, 1≤ i≤ m

(3) bi+m = ai+k, 1≤ i≤ n-k.

Definition 8. A development of genome G∈ Σ* is a
sequence f1, f2, … ,fN, where N≥1 and for each i, fi is
either a g-transformation or ins-transformation.

B. Evolutionary genome graph and problem formulation

Having defined the basic concepts, we next discuss the
motivation for evolutionary approaches to the problem of
genome rearrangement.

The evolutionary approach for genome rearrangement has
the ideas similar to phylogenetic approach for the protein
sequences. The phylogeny of genes has been studied for
more than ten years by a number of scientists [1]-[5]. So,
what might be the reasons to choose an evolutionary based
approach when studying the genome rearrangement
problem? First of all, if genome B was obtained from
genome A as a result of a certain g-transformation f, this
process can be naturally represented through the common
ancestral, C, of A and B. In this case A and B can be viewed
as obtained from genome C by applying to the latter g- or
ins-transformations fA and fB, correspondingly. Second, one
can also assume that, since all the species are the subject of
evolution, the genomes of the close species are obtained by
corresponding developments of genomes involving the
similar g- and ins-transformations. Finally, the evolutionary
approach allows one to study a genome rearrangement (and
development) not of only those genomes that have same
genes but also of those, whose genes might be different.

An example of the evolutionary genome graph (or simply
EG-graph) is shown on Fig. 3. Generally, EG-graph is
defined as a directed graph DG (V, E) with labeled vertices,
V, whose labels correspond to current genomes, and the
labeled edges, E, whose labels correspond to g- or ins-
transformations. It’s not hard to see that, in general, it may
not be a tree: we can have two or more different paths from
one vertex into another one, e.g., when performing the
insertion of a sequence in a genome and, then, the reversal
of another subsequence in the same genome or, when
performing the reversal first and, then, the insertion in the
above genome.

Fig. 3 An evolutionary genome graph

Thus, once defined a concept of EG-graph, we are able to
formulate the basic problem of genome rearrangement/
development:

Genome A:
 a1, … ak-1, ak, ak+1, …, ak+m, ak+m+1, …, an

Genome B:
 a1, … ak-1, ak+m, ak+(m-1), …, ak, ak+m+1, …, an

Genome A:
 a1, … ak-1, ak, ak+1, …, ak+m, ak+m+1, …, an

Genome B:
 a1, … al, ak, ak+1, …, ak+m, al+1, …, an-l-m

G0

G1

G2

G3

G4

f1

f2 f3 f4

f5

f6
f7

Problem 1. Given a set of genomes G = {G1, G2, …,
Gn}, construct an EG-graph, DG(V, E), such that
∀Gi ∃ vj∈V: vj corresponds to Gi.

Next, in order to be able to compare genomes to each other,
one needs to specify the similarity measure. In evolutionary
approaches, one of the basic and most natural ways is to
define such a measure trough the evolutionary paths, i.e. the
paths from genomes to their closest common ancestor,
where each of the paths is a series of transformations
leading from ancestral to one of the current genomes.

Having specified a similarity measure on a set of genomes,
one can come with the computationally much more
complex problem:

Problem 2. Given a set of genomes G = {G1, G2, …,
Gn}, and a similarity measure µ defined on G, construct
an EG-graph, DG(V, E), such that ∀Gi ∃ vj∈V:
vj corresponds to Gi , and

 µA(DG)= min(ρA(DG’)),

where

ρA(DG) = (Σ µ(Gi,Gj)) / n.

III. A NOVEL GENOME REARRANGEMENT MODEL

In this section we introduce a novel evolutionary-based
model for genome rearrangement and development. First,
we consider the case of two basic types of transformations,
reversals and ins-transformations, and discuss their
relationship. Then, we introduce a similarity measure based
on the above transformations. Finally, we briefly discuss a
new conceptthe context of transformationand show
how it can be encapsulated into the model.

A. Basic evolutionary-based genome development and
rearrangement model

Consider a set of genes g = {g1, g2 , …, gn | gi ≠ gj , i≠j}, that
is, a set of strings over alphabet Σ = {A,C,G,T}. Then, a set
G of genomes will be defined as

G = {gi1 ° gi2° … ° gik | i1, i2,… ik∈ {1,2..n},
 k≤ n, i1≠i2≠ …≠ ik}.

Next, we need to specify the type of the corresponding EG-
graph. The EG-graph DG(V, E) is specified as follows:

- There is one-to-one correspondence between the
elements of V and the elements of G;

- Each of the edges from E corresponds either to
reversal or to insertion transformations;

- A reversal transformation cannot be applied twice
in the same genome.

Note, that we use an additional restriction (the last item in
the above specification) on the EG-graph: it allows us to
avoid the case, where a reversal transformation can be

applied infinitely many times in a genome. Moreover, the
following Lemma is valid:

Lemma 1. With the condition defined above, DG(V,E) is
a directed acyclic graph.

The above Lemma gives us two related and very important
properties: first, the genome development cannot ever
return to one of the points it has already passed and, what
follows from this, if one allows to copy (that is, insert) each
of the genes only for a finite number of times (in the case of
the above model – only once), then the process of
constructing all possible genomes is finite.

The model discussed above has also the strong relation with
the basic ‘traditional’ genome-level mutations. Namely, it is
not hard to obtain the following results:

Lemma 2. Let A and B be two genomes, A,B∈ G, and let
genome C be their closest ancestor. Then:

1) If B=f(A), where f is a transposition, then there exist
two insertions fA , fB , such that A = fA(C), B = fB(C);

2) If B=f(A), where f is a reversal, then A = C.

In other words, genomes related to each other by either
reversal or transposition, are also related via the closest
ancestor with the help of corresponding g- or
ins-transformations. This is partially explains the need for a
evolutionary similarity measure of genomes to be based on
transformations leading to these genomes.

Next we introduce a similarity measure for the model. In
order to specify the similarity measure formally, we need to
assign a weight to each of the reversal and insertion
transformations used in the corresponding EG-graph. There
are many ways to assign a weight to a genome-level
mutation. On of the basic ways is to consider the size of the
inserted, reversed, or transposed substring. In our model we
will use this weight determination schema:

Definition 9. For any reversal f of a string a, the weight
of this g-transformation is defined as w(f) = |a|, where
|a| is the length of the string a. For any insertion g of a
string b, the weight of this ins-transformation is defined
as w(f) = |b|, where |b| is the length of the string b.

Having assigned the weights of transformations, now we
can define one of the possible similarity measures.

Definition 10. Let A and B be two genomes, A,B∈G, and
let genome C be their closest ancestor. Let
A= fn ° fn-1°…°f1(C), B = gm ° gm-1°…°g1(C) (Fig. 4).
Then the similarity measure is defined as :

µ(A,B) = ∑ =

n

i ifw
1

)(+ ∑ =

m

i igw
1

)(,

where w(fi) and w(gi) are the corresponding weights of
the transformations.

DG’

(i<j)

Fig. 4 The closest common ancestor of two genomes, A and B

Once specified the type of EG-graph, weighting schema,
and the similarity measure, it becomes possible to define
the relationships between genomes. Namely, given a set of
genomes G, we need, first, to compute a particular EG-
graph, thus specifying the particular mutation pathways that
would lead to each of the genomes in G. Then, any genome
in G can be compared with any other genome in G and their
similarity measure, in terms of similar transformations
occurring in the ancestor of the above genomes, can be
calculated.

B. The case of context sensitive gene transformations

In this section we introduce the idea of using the context-
sensitive genome-level mutations. It is natural to assume
that the process of genome rearrangement depends on what
constitutes the current genome being rearranged. In other
words, the mutation of a genome can depend on a particular
region of this genome (the case of a local context) or it can
depend on the regions that are not close to each other and,
even, on the entire structure of genome (the case of a global
context). Since the issue of a global context-sensitive
mutation is very complex, in this introductory paper we will
discuss the local context-sensitive mutations only. We next
consider the basic types of the local context for both,
reversals and ins-transformations.

Definition 11. Given a set of genomes, G, and a
transformation fX , where f is either reversal or ins-
transformation, X is a subsequence, which is to be
inversed/inserted, the local context of fX is a pair of
sequences, (C1,C2), C1,C2 ∈ Σ*, such that:

1) If fX is a reversal, and X’ is the reversed image of
X, then ∀ A,B∈G | B = fX (A):

A = A’° C1° X ° C2 ° A’’ and B = B’° C1° X’ ° C2 ° B’’,

 where A’, A’’, B’, B’’∈ Σ*.

2) If fX is an ins-transformation, then

 ∀ A,B∈G | B = fX (A):

A = A’° C1° C2 ° A’’ and B = B’° C1° X ° C2 ° B’’,

 where A’, A’’, B’, B’’∈ Σ*.

Note, that C1 and/or C2 can be empty. In a case when both,
C1 and C2, are empty the corresponding transformation fX
is said to be context-free.

How would the concept of context be reflected on a
similarity measure? There are many ways to redefine the
similarity measure, such that the presence of a context
would be taken into account. It goes without saying that the
context-sensitive transformation when applying to genome
would be more specific to the above genome, than the same
transformation but without any context. Therefore, after
applying a context-free operation fX , the new genome B =
fX(A) can be considered as a farther genome than the one
obtained by applying the same transformation fX but with
non-empty context. In other words, in a view of the
additive nature of the similarity measure, the weight of a
context-free transformation should be larger than that one
of the same transformation but with non-empty context.
Below we give one of the possible ways to define such the
weighting schema for context-sensitive transformations.

Definition 12. Let be a transformation and (A,B) be its
context. Then, the context-sensitive weight of
transformation fX is defined as

,
||||||

||
 w)(fw CFXCS BAX

X

++
=

where wCS(fX) is a “standard” weighting schema of a
(context-free) transformation defined in Def. 9.

The weighting schema in Def. 12 has two important
features. First of all, for any context-free transformation fX,
its context-sensitive weight wCS(fX) is equal to the
“standard” weight of fX , and the bigger the context of fX ,
the smaller its context-sensitive weight. The latter, as was
already mentioned above, can be explained by the fact that
the bigger is the context of a transformation, the more
specific is this transformation for a genome, in which it is
applied, and thus, the resulting new genome should be
closer to its ancestor than the one obtained by applying a
context-free “version” of the same transformation fX .
Second, the smaller weight of context-sensitive
transformation necessitates the search for the latter when
solving the Problem 2 defined above, since the similarity
measure between two genomes obtained by using context-
sensitive transformations will be also smaller in comparison
with using of the same transformation but without context.

IV. IMPLEMENTATION

In this section we discuss how to reconstruct an EG-graph,
given a set of genomes. We consider a basic type of
rearrangement that uses only transpositions. The EG-graph
reconstruction algorithm described in this section use the
idea of multiple longest common subsequence (MLCS) as
well as its partial case – longest common subsequence
(LCS). One of the most recent and promising improvements
for the methods solving the MLCS problemthe idea of

C

A B

g1

f1

gm

fn

g2

f2

dominant pointsthat makes our model very
implementable, is briefly discussed at the end of the
section.

A. Genome rearrangement using translocations only

1) Some basic ideas and assumptions

The basic and easiest in terms of computational complexity
is the case when any genome from G can be obtained from
any other by applying a finite set of transpositions of one or
several genes from a set of genes g. In terms of
evolutionary models this means that we assume the same
set of the genes (but in different order) to be inserted by
applying the corresponding ins-transformations in the
ancestral genome. This assumption results the following
lemmas:

Lemma 3. Each of genomes consists of the same number
of genes from g.

Lemma 4.Let DG(V,E) be any EG-graph whose set of
leaves corresponds to the set G (see section II B). Then,
for any set V0⊆V, the MLCS of V0 will contain at least
one gene from g.

The last lemma follows from the previous one and allows
us to use successfully the idea of MLCS in the algorithm
whose pseudocode is shown next.

2) Algorithm

The algorithm outputs one of the possible EG-graphs,
DG(E, V), given a set of genomes G consist of genes from
a set g. The pseudocode of the algorithm consists of two
parts. In the first part the common ancestor of all genomes
in G is built. In the second (main) part the transformations
leading to each of genome are consecutively extracted. The
pseudocode of the algorithm is presented below (note that
we use notation //---// for comments).

Algorithm EG-graph

Input: G, | G | = N

Output: DG(V,E), where V = {v1, v2, … , vK} is the

set of labeled vertices, E = {e1, e2, … , eM} – the set

of labeled edges.

1. Construct ancestor

Ancestor = v0 = MLCS(G)

2. Construct transformations:

cur_level = V = {v0};

level = 0;

cur_Gv(v0)={1, 2, … ,N};

// contains indices of all genomes//

While cur_level is not empty do

{

For all vertices v in cur_level

 {

 New_level = ∅;

 // cur_Gv: indices of all current genomes

 corresponding to a current vertix from

 Cur_level //

 cur_S = MLCS(cur_Gv);

 cur_Tr = Transform(S);

 // Transforms the MLCS cur_S to the sequence

 of ins-transformations, cur_Tr //

 For each transformation f in cur_Tr

 {

 (V1,E1, cur_Gv) = Children_v (v, f, cur_ Gv, V, E);

 // Returns new vertices (V1) together with edges

 (E1), connecting vertex v and new vertices,

 based on the transformation f and the set of

 genomes corresponding to vertex v, cur_Gv

 plus the set of indices Cur_Gv(w)

 corresponding to genomes that are children of

 the genome corresponding to a vertex w∈V1//

 V = V ∪ V1;

 E = E ∪ E1;

 } // End For each transformation //

 New_level = New_level ∪ V1;

 // Adds vertices, corresponding to the last

 transformation in the sequence cur_Tr to the

 new level //

 } //End For all vertices v in cur_level //

 cur_level = new_level;

 level = level+1;

 } //End While//

END //Algorithm//

The algorithm’s pseudocode presented above depends on
two basic subroutines. While the first subroutine, MLCS()
will be discussed in the section 5) below, the second one,
Children_v(), can be described as follows. Given a vertex
vA corresponding to a genome A, the set of indices cur_Gv
(v) of those genomes in G, who have A as a common

ancestor, and an ins-transformation f, the subroutine
Children_v() builds:

1) the set of vertices V1 = {vA1, vA2, …, vAd}

corresponding to the set {A1,A2, …, Ad} of immediate
descendants of A obtained by applying f in A;

2) the set of edges E1 , each of which is labeled by f,
connecting each vertex in V1 with vA ;

3) for each of Ai  the set of indices cur_Gv(Ai)
corresponding to those genomes in G, who have Ai as
a common ancestor.

3) Example

This example is rather illustrative than taken from the “real
life”. However, it reflects all the necessary aspects of the
algorithm as well as allows comparing the results of
“traditional” genome rearrangement with the evolutionary
genome rearrangement represented by the corresponding
EG-graph. Table 1 and Fig. 3 present the initial data and the
resulting EG-graph, correspondingly.

TABLE 1
THE INITIAL DATA G CONSISTS OF 6 GENOMES OVER THE SET OF GENES

G ={A, B, C, D, E, F, G, H}

G1 = D A B E C F G H;
G2 = A D G B C F H E;
G3 = A G B D C F E H;
G4 = G A B D C F E H;
G5 = E G C A F D B H;
G6 = C E A F B G H D.

4) Complexity

In order to estimate the computational time complexity of
the algorithm we use the following result.

Fig. 5 An EG-graph for the set of genomes G = {G1,G2, …,G6} defined
in the Table 1.

Lemma 5. Suppose |G| = d, |g| = s. Then:

1. In the algorithm one walks through the EG-graph
 only once;
2. For each level the MLCS algorithm can be
 performed no more than d/2 times;
3. There are no more than s levels in EG-graph;
4. Transform() takes no more than O(d*L), where
 L = max{|G1|, |G2|, … , |Gd|};
5. During the running of the main algorithm,
 Children() takes no more than O(ds)

Based on the above Lemma, it is not hard to find the time
complexity of the algorithm given in 2). Namely, let O(T)
be a time complexity for MLCS() subroutine. Then the
following result can be obtained.

Theorem 1. The time complexity of the algorithm EG-
graph is O(s*((d/2)*T + d*L) + (d*s)).

5) The extraction of genes from genome

So far we considered a problem where all genomes were
represented as the sets of given genes. What if each of the
genomes is given simply as a sequence over alphabet
Σ = {A,C,G,T}? Suppose all genomes in G satisfy the
following two conditions:
1. ∀ Gi∈ G: | Gi |>LMIN, where LMIN is a minimal length

of a gene;
2. ∀ Gi, Gj ∈ G: LCS(Gi, Gj)<LMIN, where LCS is a

longest common subsequence of two sequences.

Then, using the slightly modified version of the algorithm
described above, one can reconstruct genes from the given
genomes sequences. The simplified pseudocode is
represented below.

Algorithm EG-graph

Input: G, | G | = N

Output: g = {g1, g2, …gs}

cur_G = G; g =∅;

While cur_G is not empty do

 { cur_S = MLCS(cur_G);

 cur_ g = Transform(S);

 // Transforms the MLCS cur_S to the sequence

 of genes, cur_g //

 Update(cur_G, cur_g)

 //Removes the genes of cur_g from eachelement

 of cur_G //

 g = g ∪ cur_g

 } // End While //

CFH

ACFH
CAFH

CABFH ABCFH

DABCF
H

ADBCFH
ABDCFH

ECABFH CEABFH

DABECFH

ADBCFHE

ABDCFEH
EGCABF
H

CEABFG
H

G1 G2 G3 G4 G5 G6

A A

B B

E E

G G

D D

D
D

D

E E E

G G G G

As one can see, both of the algorithms described above use,
as one of the key ideas, the idea of extracting the common
patterns of genomes using multiple longest common
subsequence method. Thus, the effectiveness of those
algorithms will depend on how good is the method for
finding MLCS, given a set of strings. The next section
describes the most recent and promising method  the
method of dominant points.

B. Dominant point-based method for multiple longest
common subsequence

The method is based on several ideas. In order to describe
these ideas, let us introduce some definitions and notations.
Given a set of sequences, A1, A2, … , Ad , over alphabet
Σ = {σ1,σ2, … , σs}, the position p in the corresponding
score matrix L is denoted as p[p1, p2, … , pd], where each
pi is a coordinate of p for the corresponding string, Ai. For a
sequence A we denote a symbol corresponding to the k-th
position in A as A[k].

Definition 13. Position p in L is called a match iff
 A1[p1] = A2[p2] =… = Ad[pd].
A match p, corresponding to a symbol σ is denoted as
p(σ).

Definition 14. We say that point p dominates point q if
pi ≤ qi for all i =1,2, … ,d. We denote this fact as
p ≤ q. The relation p < q can be defined similarly.

Definition 15. A match p is called a k-dominant iff

 L[p] = L[p1, p2, … , pd] =k.

The set of all k-dominants for a point p is denoted as
Dk(p). The set of all k-dominants is denoted as D(p).

Definition 16. A match p(σ) is called a σ-parent of a
point q iff q < p and there is no match r(σ) such that
q < r < p. The set of all σ-parents of q is denoted as
Par(q, σ).

Definition 17. A point p in a set of points S is a
minimal element of S, if ∀q ∈ S: q ≤ p.

There are several main ideas leading to the above method.
First, it is not hard to see that one should search among only
matches since each position in a MLCS should at least be a
match. Second, it can be shown that the ‘special’ points in
the lowest-cost path corresponding to positions in the
MLCS, which were discussed in the previous section, are
k-dominants, k = 1, …, |MLCS|. Finally, for each k,
k = 1, …, |LCS|, only minimal points of Dk can be the
candidates for positions in the MLCS (see Table 4). Based
on these ideas and some more advanced properties of
dominant points properties Hakata and Imai developed an
algorithm for computing a MLCS of a set of d sequences.

TABLE 2
THE SET OF DOMINANTS AND MATCHES IN THE SCORE MATRIX FOR TWO

SEQUENCES, A = ‘AABCAABCAB ‘ AND B = ‘BACBAB’. THE DOMINANT

POSITIONS ARE CIRCLED WHILE THE REMAINING MATCHES THAT ARE NOT

DOMINANT ARE SQUARED

 a a b c a a b c a b

 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 1 1 1 1 1 1 1 1

a 0 1 1 1 1 2 2 2 2 2 2

c 0 1 1 1 2 2 2 2 3 3 3

b 0 1 1 2 2 2 2 3 3 3 4

a 0 1 2 2 2 3 3 3 3 4 4

b 0 1 2 3 3 3 3 4 4 4 5

The theoretical time complexity for the above MLCS
algorithm is given by the following theorem.

Theorem 2 [10]. The MLCS problem for d ≥ 3 strings
of length n can be solved in time
 O(nsd + |D|sd (logd-3n + logd-2 s)),

where |D| is the size of the set of all dominant positions.

It is not hard to see that the size |D| of the set of all
dominants is much less than the set of all positions.
Although a nontrivial (rather than by nd) estimation of |D| is
still an open question the results obtained by the
implementation of dominant point-based approach show the
great advantage of this method in contrast to classical
dynamic programming approaches.

V. DISCUSSIONS AND FUTURE RESEARCH

In this paper we introduced an alternative, evolutionary-
based, way to study genome rearrangement. The
development of genomes can be represented via special
directed graph, called EG-graph, with labeled edges and
vertices. One of the main advantages of the evolutionary
method is that it allows reconstructing not only binary
relations between genomes: e.g., EG-graph can represent
three genomes having one common ancestor. In order to
represent such relationships, the idea of a multiple longest
common subsequence was used. Although “classical”
dynamic programming methods for computing MLCS,
practically, can be used only for the case of two, maximum
three strings, the dominant points-based method allows one
to get a MLCS for a much larger set of genome sequences.

There are many directions for the future research regarding
this model. First of all, the next step can be the
reconstruction of EG-graph when the models of genome
rearrangement are more complex, e.g. models based on the
following genome-level mutations:

/

1) transpositions and reversals of genes;
2) transpositions and insertions of genes.

Each of the above two cases is not trivial and needs careful
studying.

Next, there is a computationally more complex problem of
reconstructing an optimal EG-graph (see Problem 2 in
section II.B.).

Another problem is the reconstruction of context-sensitive
transformations. One of the possible solutions, if the
optimal EG-graph is not necessary, is to search for the
context of transformations after EG-graph with context-free
transformations is built.

Finally, one can consider a model of genome rearrangement
with the presence of a noise, that is, point mutations
occurring when performing genome-level mutations. The
weighting schema should take this fact into consideration,
in such a way that the presence of some point mutations
would affect the change of similarity measure between two
genome sequences.

VI. REFERENCE

[1] S. Hannenhalli and C. Chappey and E. Koonin and P. Pevzner:

Genome Sequence Comparison and Scenarios for Gene
Rearrangements: A Test Case. Genomics, 30: 299-311, 1995.

[2] Sankoff, D., G. Sundaram and J. Kececioglu. ‘‘Steiner points in
the space of genome rearrangements.’’ International Journal of
Foundations of Computer Science 7:1, 1-9, 1996.

[3] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Land, and R.
Cedergren. Gene order comparisons for phylogenetic inference:
Evolution of the mitochondrial genome. Proceedings of the
National Academy of Sciences, USA, 89:6575-6579, July 1992.

[4] David Sankoff, Mathieu Blanchette: Multiple Genome
Rearrangement and Breakpoint Phylogeny. Journal of
Computational Biology 5(3): 555-570, 1998.

[5] David Sankoff, Mathieu Blanchette: Probability models for
genome rearrangement and linear invariants for phylogenetic
inference. RECOMB : 302-309, 1999.

[6] Koji Hakata and Hiroshi Imai: Algorithms for the Longest
Common Subsequence Problem for Multiple Strings Based on
Geometric Maxima. Optimization Methods and Software, Vol.10,
pp.233-260, 1998.

[7] K. Hakata and H. Imai, “The Longest Common Subsequence
Problem for Small Alphabet Size between Many Strings,”
Proceedings of the 3rd International Symposium on Algorithms
and Computation, Nagoya, Lecture Notes in Computer Science
Vol.650, pp.469-478, December 1992.

