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Abstract

In this paper, we consider the stochastic generating process—one of the key con-
cepts of the Evolving Transformation System model [1]—from the formal perspective.
First, we give an informal definition of the generating process supported by some intu-
itive assumptions and consider several examples. Then, we formally define the concept
of the generating process as a continuous parameter (c.p.) Markov chain. Some im-
portant random variables associated with this c.p. Markov chain are introduced next,
followed by the definition of the typicality measure. Two methods for the computa-
tion of the typicality measure are proposed. In conclusion, we discuss the problem of
compactification of the state space for the c.p. Markov chain. This problem is not
only interesting from the points of view of topology and of the c.p. Markov chains
theory, but also has important implications for the ETS model, since it is related to
the problem of class comparison and to the proper formulation of the learning problem.

1 Introduction

The concepts of generating process and typicality measure [1, Defs. 33–35] are among the
key concepts that constitute the formal foundation of the Evolving Transformation System
(ETS) model proposed in [1]. The ETS model is a model of “structural”, or “symbolic”,
object representation. The basic assumption of the model is that the object’s formative
(or evolutionary) history is an integral part of the object’s representation. This formative
history is viewed as a sequence of states represented as structs in the ETS model. Each next
struct is obtained from the preceding one by applying a context-dependent struct transfor-
mation. The choice of a particular transformation to be applied to a state is controlled by
a stochastic generating process, which is specified by a transformation system. An object’s
representation in the ETS model consists of a struct—the final state in the above sequence—
and a transformation system which specifies a process that can generate this struct. Thus,
given an object’s represnetation, the set of all possible evolutionary (historical and future)
paths for this object can be deduced.

The concepts of transformation system and generating process give rise to the notion of a
class of objects; elements of the class are structs that can be generated by the class generating
process. Thus, the description of the class to which an object belongs is an integral part of the
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object’s represnetation which determines the possible hisories of the object’s construction,
the possible paths of the object’s future evolution, and the set of objects (class elements)
that are related to the object by their evolutionary histories.

The stochastic generating process induces a measure on the set of class elements, which
we will call the class typicality measure. Essentially, a struct’s typicality is the probability
that an observer that makes an observation of the process at a random moment will see this
struct as the current state of the generating process.

In this paper, we will assume that the reader is familiar with the notions of inductive
structure and transformation system (see [1] for the corresponding formal definitions).

2 Informal definition of the generating process

Let an inductive structure (Π, I) [1, Def. 20] be fixed. Let T = {τ̄ 1, . . . , τ̄ n} be a transfor-
mation set [1, Def. 22], and let TS = (T, l, κ̄) be a transformation system [1, Def. 30], where
l : T → R+ is the weighting mapping, and struct κ̄ ∈ Θ̄ is the progenitor. We denote by PT

and EP T the set of all paths and elementary paths, respectively, generated by the transfor-
mation set T [1, Def. 25]. For a path p ∈ PT , begin(p) and end(p) denote the beginning and
the end of p, respectively [1, Def. 25].

The following informal definition of the generating process is taken from [1].

Definition 1. For a transformation system TS = (T, l, κ̄), the generating process GTS

(or simply G) is a c.p. Markov chain (or, equivalently, a stochastic Markov process with a
countable state space) defined as follows:

1. The states of G are elements of the set TS of structs generated by transformation
system TS.

2. The initial state of G is progenitor struct κ̄.

3. The amount of time which G spends in state γ̄ is a random variable distributed
exponentially with mean

L =
1∑

[;� ]∈EP T

1/l(τ̄ )
.1 (∗)

4. When G leaves state γ̄, it chooses randomly an elementary path [γ; τ ] ∈ EP T with
probability

L

l(τ̄ )
(∗∗)

and enters state [γ C τ ].

5. All random variables in 2 and 3 are mutually independent.

1Here [γ; τ ] denotes an arbitrary elementary path beginning in struct γ̄, whose transformation is τ̄ . See
also [1] for the difference between instance struct γ and struct γ̄, as well as instance transformation τ and
transformation τ̄ .
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The justification of why and under which assumptions conditions 1–5 in the above defi-
nition uniquely specify a c.p. Markov chain is postponed until Section 5. Here we would like
to state explicitly the assumptions on the generating process which have lead to the above
definition.

First, why the generating process is chosen to be a stochastic process. There are two
reasons for this. First, that the process has to be able to generate all elements of the set
TS—the set of structs generated by the transformation system TS [1, Def. 31]. This set is
typically quite large and has a complex structure, therefore one would need an enormous
amount of information (even unlikely to be finite) to specify a deterministic process that
would still generate the whole set TS. The second reason, related to the first one, is that,
in nature, the choice of the next step of the generating process, as well as the time this step
takes, depends not only on the transformation system itself but also on a variety of external
factors the influence of which cannot be taken into account. These factors are considered as
random, thus leading to a probabilistic interpretation.

Second, why the random amount of time that the process spends in a state until a
transformation is applied is an exponentially distributed random variable. This is because we
consider the elementary paths and their transformations to be indivisible. I.e., an elementary
path is either completed which means that the transformation is applied and the current state
of the process has changed, or not completed, in which case no changes are made to the struct
being the current state of the process. This implies that if ξ is the amount of time the process
spends in a state, then for all T, t > 0,

P(ξ < T + t | ξ > T ) = P(ξ < t).

The above property means that the system is memoryless, and implies that ξ has an expo-
nential distribution [2, Chapter I].

Third, the transformations that are applicable to the current state γ̄ of the process are
considered to be independent of each other. Thus, the random variables ξ1, . . . , ξk which
denote the waiting times for the elementary paths beginning in γ̄ to be passed are mutually
independent. The process remains in state γ̄ until one of the transformations from these
elementary paths is applied, thus the time the process spends in γ̄ is the random variable ξ =
min(ξ1, . . . , ξk). The minimum of mutually independent exponentially distributed random
variables is an exponentially distributed random variable with mean (∗) [2, Chapter 1].
Also, the probability that a particular random random variable ξi will have the minimal
value among {ξ1, . . . , ξk}, is proportional to the inverse of expectation of ξi, hence formula
(∗∗) holds.

Finally, we assume that all random variables are mutually independent, since we postulate
that the choice of the transformation that is applied to a particular struct and the time of
its application are independent of the particular path that has lead to the struct and of the
time it has taken to generate the struct. The latter assumption is due to the fact that a
struct represents a set of construction paths which are indistinguishable (or equivalent) from
the point of view of applicability of transformations.
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3 Examples

In this section, we present three examples of the generating processes: the processes which
generate the set of natural numbers, the set of binary sequences representing binary fractions
on the segment [0, 1], and the set of strings over a two-letter alphabet. In Section 9, we will
compute the typicality measures induced by these processes on the corresponding sets of
structs. In Conclusion, we will refer to these examples in connection with the questions
about compactification and topology of the set of structs generated by a transformation
system.

3.1 Generating process for natural numbers

We begin with the definition of the inductive structure of natural numbers. The set of
primtypes ΠN consists of one element π1 with one site being simultaneously the input and
output site (Fig. 1). The set of semantic identities IN is the set of commutativity identities

π|
1

Figure 1: The primitive type π1 for the inductive structure of natural numbers.

Comm(ΠN) [1, Def. 13]. In this case, this set consists of one identity

π|〈1〉 C π|〈2〉 ≡ π|〈2〉 C π|〈1〉.

Next, the transformation set TN consists of one transformation τ̄ | whose instance transfor-
mation is

τ | = ([π|〈1〉], [π|〈1〉]).
The weighting mapping lN is defined as lN(τ̄ |) = 1. The progenitor κ̄N is a struct whose
instance struct is

κN = [π|〈1〉].
Thus, the progenitor corresponds to number 1 ∈ N and the transformation corresponds to
the successor function in Peano axiomatics [4].

The diagram for the generating process GN specified by the transformation system TSN =
(TN, lN, κ̄N) is shown in Fig. 2.

3.2 Generating process for binary sequences

Consider the set of finite binary sequences B = {0, 1}∗. We will define an inductive structure
and a generating process that generates B.

The set of primtypes ΠB is shown in Fig. 3. The set of semantic identities IB is the
set of commutativity identities Comm(ΠB). In case when the set of primitives is ΠB, these
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Figure 2: Diagram for generating process GN.
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Figure 3: Primitive types for the inductive structure of binary sequences.

identities imply that every “connected” composite is semantically equivalent only to itself.
The instance transformations for the transformation set TB are shown in Fig. 4, and the
weighting mapping is defined as lB(τ̄ 0) = lB(τ̄ 1) = 1. The progenitor κ̄B is a struct whose
instance struct is

κB = [π〈1, 2〉].
Thus, the progenitor corresponds to the empty binary sequence and transformations τ̄ 0, τ̄ 1

correspond to the attachments of “0” and “1”, respectively, at the end of the sequence.
The diagram for the generating process GB specified by the transformation system TSB =

(TB, lB, κ̄B) is shown in Fig. 5. Notice that for each struct from TSB, there exists a unique
path from the progenitor to this struct. In other words, each binary sequence has a unique
constructive history.

3.3 Generating process for strings

Consider the set S of strings over the alphabet {a, b}. Conventionally, this set is considered
to be the same set as B = {0, 1}∗ and, in fact, the same notation {a, b}∗ for S is being
used. We will show that binary sequences and strings are, indeed, very different objects by
pointing out to the difference in their constructive histories, which is not captured by the
conventional notation.

The set of primtypes ΠS is shown in Fig. 6. The set of semantic identities IS is Comm(ΠS)
plus the identities shown in Fig. 7. The shown identities have the following meaning: in-

5



π1

2

3

π
1

2

π
3

4

π0

2

3

π
1

2

π
3

4

τ0 τ1

Figure 4: Instance transformations generating binary sequences.

...

τ1τ0

... ...

τ0 τ0 τ1τ1

Figure 5: Diagram for generating process GB.

sertion of letter “a”, and then of letter “b” after “a” into a string has the same result as
insertion of letter “b” first, and then of letter “a” before “b”.

The instance transformations for the transformation set TS are shown in Fig. 8. The
weighting mapping is defined as lS(τ̄ a) = lS(τ̄ b) = 1, and the progenitor is equal to the one
for binary sequences

κS = [π〈1, 2〉].
Thus, the progenitor corresponds to the empty string, and transformations τ̄ a, τ̄ b correspond
to the insertions of “a” and “b” at any position in the string (since the semantic identites from
IS ensure that a transformation can be applied at any output site of the struct representing

πa

1

2

πb

1

2

π
1

2
3 3

Figure 6: Primitive types for the inductive structure of strings.
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Figure 7: Semantic identities for the inductive structure of strings.
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Figure 8: Instance transformations generating strings.

a string).
The diagram of the generating process GS specified by the transformation system TSS =

(TS, lS, κ̄S) is shown in Fig. 9. Notice that, as a consequence of the introduced semantic iden-
tities, for each struct from TSS representing a string of length n, there exist n! construction
paths from the progenitor to this struct. Since these paths lead to the same string, they are
indistinguishable from the point of view of applicability of further transformations.

Comparing the diagrams in Fig. 5 and Fig. 9, one can see that the constructive histories
of binary sequences and strings differ significantly. In case of strings, one may think of other
possibilities for the generating process, for example, instead of insertions at any place in the
string, only additions of letters at the beginning and at the end of the string may be chosen
as transformations. This indicates that the conventional understanding of a string as an
object is quite imprecise, leading to arbitrariness in defining classes of strings.

4 Continuous parameter Markov chains

In this section, we present some basic facts from the theory of c.p. Markov chains, which
are necessary to define rigorously the generating process and some random variables related
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Figure 9: Diagram for the generating process GS.

to it.
Note that the states of the generating process are structs, and not real numbers as usually

assumed in the theory to stochastic processes. Many of the results, including those needed
to define the typicality measure, will still hold, since the set of structs is countable. In fact,
one can always embed the set of structs into the set of real numbers, and many of the results
will be independent of the embedding. However, some of them, particularly those related to
the questions about compactification of the state space and limit points of the process, do
depend on the embedding. These issues will be briefly discussed in Conclusion. Here we will
give a general definition of the c.p. Markov chain with an arbitrary countable state space
and present all necessary concepts which are independent of the particular embedding.

Let X be a countable set. Let (Ω,F ,P) be a probability triple, i.e., Ω is a set called the
probability space, F is a Borel field of subsets in Ω, and P is a probability measure on Ω.

An X-valued random variable is a measurable mapping ξ : Ω → X defined for almost all
ω ∈ Ω, i.e., for all i ∈ X, set {ω | ξ(ω) = i} belongs to field F .

A continuous parameter (c.p.) Markov chain with state space X [3, §II.4] is defined as
a family of X-valued random variables {xt(ω)}, t ∈ [0,∞), satisfying the Markov property:
∀ t1 < t2 < . . . < tn ∈ [0,∞), i1, . . . , in ∈ X,

P {
xtn(ω) = in |xt1(ω) = i1, . . . , xtn−1(ω) = in−1

}
= P {

xtn(ω) = in |xtn−1(ω) = in−1

}
. (1)

We will consider c.p. Markov chains with stationary transition probabilities [3, Section
II.4], i.e., conditional probabilities

P{xs+t(ω) = j | xs(ω) = i}

are independent of s.
For a c.p. Markov chain {xt(ω)}, the matrix P (t) = (pij(t)), i, j ∈ X is defined by

pij(t)
def
= P{xs+t(ω) = j |xs(ω) = i}, t > 0.
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The initial distribution is defined to be the set {pi, i ∈ X}, where

pi
def
= P{x0(ω) = i},

∑
i

pi = 1.

For any Markov chain with stationary transitional probabilities, the matrix P (t) satisfies
the following three properties [3, §§II.1,II.4]: for all i, j ∈ X and s, t > 0,

(A) pij(t) ≥ 0

(B)
∑

j pij(t) = 1

(C)
∑

k pik(s)pkj(t) = pij(s + t).

Matrices satisfying (A–C) are called transition matrices. The converse is true: for any
transition matrix P (t) and any initial distribution {pi, i ∈ X}, there exists a corresponding
Markov chain {xt(ω), t ≥ 0} with state space X [3, p. 137].

If P (t) is standard, i.e.,
lim
t→0

pij(t) = δij,

then, according to [3, Theorem II.2.5], there exist derivatives p′ij(0) (which may be infinite).
The matrix Q = (qij) = P ′(0) will be called the transition rate matrix corresponding to the
standard transition matrix P (t).

We will study the converse question, i.e. under what conditions a given finite or infinite
matrix Q is a transition rate matrix corresponding to some transition matrix P (t). We
restrict ourselves to the case when matrix Q satisfies the following conditions:

qij = 0, i 6≤ j
qij ≥ 0, i < j∑

j qij = 0, ∀j
qii > −∞, ∀i

(2)

Matrices satisfying (2) will be called transformation matrices. It follows from [3, Theorem
II.18.1] that for any transformation matrix Q, the following system of Kolmogorov equations:

P ′(t) = QP (t), P ′(t) = P (t)Q (3)

has a solution P̄ (t) = (p̄ij(t)) called the minimal solution corresponding to the transformation
matrix Q, which is constructed as follows:

p
〈0〉
ij (t) = δije

qiit = δije
qjjt

p
〈n+1〉
ij (t) =

∑
k<j

t∫
0

p
〈n〉
ik (s)qkje

qjj(t−s)ds

p̄ij(t) =
∞∑

n=0

p
〈n〉
ij (t).

(4)

Matrix P̄ (t) is standard and satisfies (A) and (C) but, instead of (B), only the following
condition is guaranteed to hold: ∑

j

p̄ij(t) ≤ 1. (B′)
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If (B) holds, matrix P̄ (t) is the unique solution of system (3) [3, Theorem II.17.2], otherwise
there are infinitely many of them [3, Corollary to Theorem II.19.4] and thus infinitely many
essentially different c.p. Markov chains corresponding to matrix Q.

Matrices satisfying (A,B’,C) are called substochastic transition matrices. Given an initial
distribution {pi, i ∈ X}, a substochastic transition matrix specifies a c.p. Markov chain
stopped at random time τ(ω), {xt(ω), t < τ(ω)}. Random variable τ(ω) is called the stopping
random variable, and its distribution is given by

P{τ(ω) ≤ t |x0(ω) = i} = 1−
∑
j∈X

p̄ij(t).

If the stopping random variable is infinite with probability one, i.e.

P{τ(ω) = ∞} = 1,

then (B) holds [3, §II.19]. Otherwise, τ(ω) is finite with a non-zero probability. To describe
this situation, we will study the behaviour of the process further. First, the c.p. Markov
chain corresponding to p̄ij can be chosen so that for all t < τ(ω),

lim
s↓t

xs(ω) = xt(ω)

(in [3, §II.7] such xt(τ) is called the x+-version of the process). Under the assumptions on
matrix Q made above, for almost all ω, we have that function y(t) = xt(ω) is a piecewise
constant function on [0, τ(ω)) with finitely or infinitely many points of discontinuity. If the
number of these points is finite, then τ(ω) = ∞ and the last point i is called an absorbing state
of the process, necessarily having qii = 0. Otherwise, let {τn(ω), n ≥ 1} be the increasing
sequence of these points. Then,

xt(ω) = xτn(ω), τn(ω) ≤ t < τn+1(ω), and
lim

n→∞
τn(ω) = τ(ω).

Define the jump chain associated with xt(ω) as a discrete parameter Markov chain χn(ω) =
x(τn(ω), ω) [3, p. 236]. Then, according to [3, Theorem II.19.1],

τ(ω) = ∞ ⇐⇒ −
∑

n

q−1
χn(ω)χn(ω) = ∞. (5)

Thus, the process reaches infinity in a finite time with non-zero probability if and only if

P{−
∑

n

q−1
χn(ω)χn(ω) < ∞} > 0. (6)

5 Formal definition of the generating process

Let TS = (T, l, κ̄) be a transformation system, and let TS be the set of structs generated
by it. There exists a partial ordering relation ≤ on TS: we have ᾱ ≤ β̄ if and only if
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there exists a path p ∈ PT from ᾱ to β̄. Let the set of states be X = TS. Define matrix
Q = (q�̄�̄), ᾱ, β̄ ∈ X as follows:

q�̄�̄ = − ∑
[�;� ]∈EP T

1
l(τ̄ )

q�̄�̄ =
∑

[�;� ]∈EP T ,[�C� ]=�̄

1
l(τ̄ )

, β̄ 6= ᾱ.
(7)

Conditions (2) hold, hence Q is a transformation matrix.2 Therefore, there exists the minimal
solution P̄ (t) to the system of Kolmogorov backward equations (3), which is a standard
substochastic transition matrix. Matrix P̄ (t) and initial distribution such that p�̄ = 1
specify a stopped c.p. Markov chain {xt(ω), t < τ(ω)}, which is called the generating
process for transformation system TS.

In what follows, we assume that the elements of matrices Q and P (t) that are not specified
are equal to zero.

For the transformation system TSN of natural numbers from Section 3.1, the correspond-
ing transformation matrix QN is defined by

q�̄�̄ = −1
q�̄,[�C� |] = 1.

Denote α C nτ
def
= α C τ C . . . C τ , where τ is attached to α n times, n ≥ 0. The

minimal solution P̄ (t) can be computed using formulas (4):

p̄�̄�̄(t) = e−t

p̄�̄,[�C� ](t) =
t∫

0

e−se−(t−s)ds = te−t

p̄�̄,[�C2� ](t) =
t∫

0

se−se−(t−s)ds = t2

2!
e−t

. . .
p̄�̄,[�Cn� ](t) = tn

n!
e−t.

Thus, xNt (ω) is the Poisson process. Since for every ᾱ we have

∑

�

p̄�̄�̄(t) =
∞∑

n=0

tn

n!
e−t = 1,

matrix P̄ (t) is a standard transition matrix, thus the stopping time of the process is infinite
with probability 1.

For the transformation system TSB of binary sequences from Section 3.2, the correspond-
ing transformation matrix QB is defined by

q�̄�̄ = −2
q�̄,[�C�0] = 1
q�̄,[�C�1] = 1.

2Matrix Q is not a matrix in a conventional sense, since its rows and columns are not indexed by natural
numbers. Still, for a matrix A = (aᾱβ̄) with non-negative components, the products AQ and QA are
correctly defined in a usual way. The corresponding infinite summations are independent of the ordering of
summands, since each row and column of Q has at most one negative element.
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The minimal solution P̄ (t) is

p̄�̄�̄(t) = e−2t

p̄�̄,[�C� i1
](t) = te−2t

p̄�̄,[�C� i1
C� i2

](t) = t2

2!
· e−2t

. . .
p̄�̄,[�C� i1

C...C� in ](t) = tn

n!
· e−2t, n > 0,

where i1, i2, . . . , in ∈ {0, 1}. Similarly to the case of natural numbers, one can show that this
is a standard transition matrix and hence the stopping time of the process is infinite with
probability 1.

For the transformation system TSS of strings from Section 3.3, the corresponding trans-
formation matrix QS is defined by

q�̄�̄ = −
∣∣{[α; τ ] ∈ EP TS}

∣∣ = −(len(ᾱ) + 1)
q�̄,[�C� i 〈f〉] =

∣∣{[α; τ ] ∈ EP TS | [α C τ ] = [α C τ i〈f〉]}
∣∣,

where i ∈ {a, b}, f is any site replacement such that α C τ i〈f〉 exists, and len(ᾱ) denotes
the length of the string corresponding to ᾱ. For almost all ω, the jump chain χn(ω), n ≥ 0
corresponds to the sequence of strings whose lengths are 0, 1, . . .. Thus,

−
∑

n

q−1
χn(ω)χn(ω) =

∞∑
n=0

(n + 1)−1 = ∞,

and the stopping time of the process is infinite with probability one, according to criterion
(6).

In the next section, we will consider a transformation system whose generating process
has an finite running time with probability 1.

6 Graph generating process

Consider the set of unlabeled directed multigraphs G. We define a corresponding inductive
structure and a generating process that generates a subset of G.

The set of primtypes ΠG is shown in Fig. 10. The set of semantic identities IG is the

vπ

1
vertex

eπ1 2

edge

π
1

2

Figure 10: Primitive types for the inductive structure of graphs.

set of commutativity identities Comm(ΠB). Out of many possibilities for the choice of
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Figure 11: Progenitor and transformation of the graph transformation system.

transformation system to generate a subset of graphs, we select a particular one, TG = {τ̄G},
shown in Fig. 11. The weighting mapping is defined as lG(τ̄G) = 1. The progenitor κ̄G is a
struct whose instance struct is

κG = [πv〈1〉 C π〈1, 2〉 C πv〈3〉 C π〈3, 4〉].
Thus, the progenitor corresponds to the graph with two vertices and no edges, and transfor-
mation τ̄G corresponds to creation of an edge and a vertex simultaneously. Note that this
transformation system generates only graphs whose number of edges is equal to the number
of vertices minus 2. Of course, the set of all graphs could have been generated as well by
another transformation system; this one is chosen as an example of transformation system
whose generating process has finite running time with probability one.

If γ̄ is a struct corresponding to a graph with n vertices, then

q̄̄ = −|{[γ; τ ] ∈ EPG}| = −n(n− 1).

For almost all ω, the jump chain χn(ω), n ≥ 0 corresponds to the sequence of graphs with
2, 3, . . . vertices. Thus,

−
∑

n

q−1
χn(ω)χn(ω) =

∞∑
n=0

1

(n + 2)(n + 1)
< ∞,

and the stopping time of the process is finite with probability 1, according to criterion
(6). In other words, the process constructs an “infinite graph” (the notion clarified later in
Conclusion) in a finite time.

7 The time that the process spends in a state and the

running time

Let TS be a transformation system, Q be the corresponding transformation matrix, P̄ (t) be
its minimal solution, and xt(ω) be the corresponding generating process. Assume also that
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for each γ̄ ∈ TS, the number of ancestors of γ̄ is finite:3

anc(γ̄)
def
= |{ᾱ | ᾱ ≤ γ̄}| < ∞. (8)

Define

c�̄(ω, t)
def
=

{
1, xt(ω) = ᾱ
0, otherwise.

Then,

m�̄(ω)
def
=

∫ ∞

0

c�̄(ω, t)dt

is the random variable corresponding to the total time the process spends in ᾱ. Its expecta-
tion is

M�̄
def
=

∫ ∞

0

E{c�̄(t, ω)}dt =

∫ ∞

0

p̄�̄�̄(t)dt.

Let

M�̄�̄
def
=

∫ ∞

0

p̄�̄�̄(t)dt.

For the matrix N = MQ = (n�̄�̄), we have

n�̄�̄ =
∑
̄

∫ ∞

0

p̄�̄̄(t)dt · q̄�̄. (9)

Since Q is a transformation matrix, it is upper triangular (see (2)), and it follows from the
assumption (8) that the summation in (9) is finite. Thus, summation and integration can
be exchanged. Since P̄ (t) satisfies the second system in (3), we have:

n�̄�̄ =

∫ ∞

0

∑
̄

p̄�̄̄(t)q̄�̄dt =

∫ ∞

0

p̄′�̄�̄(t)dt = lim
t→∞

p̄�̄�̄(t)− p̄�̄�̄(0).

By definition, we have that p̄�̄�̄(0) = δ�̄�̄. Next, since (8) holds, only a finite number of

p̄
〈n〉
�̄�̄(t) are non-zero functions. Therefore, since for each n,

lim
t→∞

p̄
〈n〉
�̄�̄(t) = 0

(see [3, p. 232]), we have that
lim
t→∞

p̄�̄�̄(t) = 0

and that n�̄�̄ = −δ�̄�̄. Thus we have MQ = −I, where I is the identity matrix. Since Q is
upper triangular and (8) holds, this system has a unique solution. The elements of the first
row of M , M�̄�̄ = M�̄, can be computed using the following algorithm:

M�̄ = −1/q�̄�̄
M�̄ = −(

∑
̄<�̄M̄q̄�̄)/q�̄�̄,

(10)

3There exist transformation systems violating this assumption.
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whose time complexity is O(anc(ᾱ)2). Formulas (10) still hold if q�̄�̄ = 0, in which case
M�̄ = ∞.

Since
∑
�̄ c�̄(t, ω) = 1 if and only if t < τ(ω), we have for the expected running time of

the generating process that

E{τ(ω)} =

∫ ∞

0

E{
∑
�̄

c�̄(t, ω)}dt =
∑
�̄

M�̄.

In particular, E{τ(ω)} is finite if and only if
∑
�̄M�̄ is finite.

8 Typicality measure

In this section, we define the notion of typicality measure. For a struct γ̄, its typicality is
informally defined as the probability that this struct is randomly encountered by an observer.
We assume that the expected waiting time for the observer to come is the same at each
moment, from what it follows that the observation moment is an exponentially distributed
random variable, call it ξu:

P{ξu(ω) < t} = 1− e−ut, t ≥ 0,

where u is the parameter of the exponential distribution. We also assume that this random
variable is independent of the process {xt(ω)}, i.e., independent of each random variable
xt(ω) for all t ≥ 0.

The probability that process xt(ω) will be in struct γ̄ at random moment t = ξu(ω) is

P{xξu(ω)(ω) = ᾱ} =

∫ ∞

0

p̄�̄�̄(t) · ue−utdt.

If the running time of the process is infinite with probability 1, then (B) holds, and we
have ∑

�̄

P{xξu(ω)(ω) = ᾱ} =

∫ ∞

0

∑
�̄

p̄�̄�̄(t) · ue−utdt =

∫ ∞

0

ue−utdt = 1,

therefore
gu(ᾱ)

def
= P{xξu(ω)(ω) = ᾱ}

is a probability measure on the set of states of the process, called the typicality measure.
If the running time τ(ω) is finite with positive probability, the typicality measure is not a
probablity measure, since the typicality of the set of all states is less than one.

To compute the typicality measure for a given generating process induced by a trans-
formation system TS, we introduce the notion of an observed transformation system T̃S
corresponding to TS. Then, the typicality measure for a state of the original process is
expressed via the expected time the terminated process spends in the corresponding state,
which has been computed in the previous section.
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Figure 12: Additional primitives for the observed inductive structure.

Let (Π, I) be an inductive structure. The observed inductive structure (Π̃, Ĩ) cor-
responding to (Π, I) is defined as follows (assume that πr, πx 6∈ Π, see Fig. 12): add a new
site 0 to the set of sites and let

Π̃
def
= Π ∪ {πr, πx}

Ĩ def
= I ∪ (∪π∈Π Comm({π, πr, πx})) .

In other words, we add two new primitives πr and πx to Π and make them commutative
with all other primitives. For every instance struct α ∈ Θ, let

αr
def
= α C [πr] ∈ Θ̃.

For a transformation system TS = (T, l, κ̄) in (Π, I) and u ∈ R+, define the correspond-
ing observed transformation system T̃S(u) = (T̃ , l̃, κ̄r) as follows:

T̃
def
= T ∪ {τ̄ x}

τ x
def
= ([πr], [πx])

l̃(τ̄ )
def
= l(τ̄ )

l̃(τ̄ x)
def
= u−1.

The new set of states is

T̃ S = {ᾱr | ᾱ ∈ TS} ∪ {[αr C τ x] | ᾱ ∈ TS},
and the new observed transformation matrix (dependent on u) Q̃(u) = (q̃�̄x�̄x

)�̄x,�̄x∈T̃ S is
defined by

q̃�̄r�̄r = q�̄�̄ − u, ᾱ ∈ TS
q̃�̄r�̄r

= q�̄�̄, ᾱ, β̄ ∈ TS, ᾱ 6= β̄
q̃�̄r[�rC�x] = u, ᾱ ∈ TS

q̃[�rC�x]�̄x
= q�̄�̄, ᾱ ∈ TS, β̄x ∈ T̃ S.

We prove by induction that for all n ≥ 0, ᾱ, β̄ ∈ TS and t ≥ 0,

˜̄p
〈n〉
�̄r�̄r

(t) = p̄
〈n〉
�̄�̄(t)e

−ut :

˜̄p
〈0〉
�̄r�̄r

(t) = δ�̄r�̄r
eq�̄r�̄r t = δ�̄�̄e

(q�̄�̄−u)t = p̄
〈0〉
�̄�̄(t)e

−ut

˜̄p
〈n+1〉
�̄r�̄r

(t) =
∑
̄r<�̄r

∫ t

0
˜̄p
〈n〉
�̄r̄r

(s)q̃̄r�̄r
eq̃�̄r�̄r

(t−s)ds =∑
̄<�̄

∫ t

0
p̄
〈n〉
�̄̄(s)e

−usq̄�̄e
q�̄�̄(t−s)e−u(t−s)ds = p̄

〈n+1〉
�̄�̄ (t)e−ut.
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Hence,

˜̄p�̄r�̄r
(t) =

∞∑
n=0

p̄
〈n〉
�̄�̄(t)e

−ut = p̄�̄�̄(t)e
−ut.

Thus, if M̃�̄r denotes the expected time the observed process spends in ᾱr (which depends
on u), we have the following formula for the typicality:

gu(ᾱ) =

∫ ∞

0

p̄�̄�̄(t) · ue−utdt = u

∫ ∞

0

˜̄p�̄r�̄r(t)dt = uM̃�̄r .

9 Computation of typicality using probabilities of paths

In this section, we give another method to compute the typicality measure gu(ᾱ). For each
path connecting the progenitor and ᾱ, we will first compute the probability that the process
passes this path. Then, the expected time the process spends in ᾱ is the sum of these
probabilities times the expected time the process spends in ᾱ given that it has entered ᾱ.

As previously, let TS = (T, l, κ̄) be a transformation system. For each ᾱ ∈ TS, β̄ =
[α C τ ], where τ̄ ∈ T , let y�̄�̄(ω) be a random variable whose values are elementary paths
beginning in ᾱ and ending in β̄ with the following distribution:

P{y�̄�̄(ω) = [α; τ ′]} def
=


l(τ̄ ′)

∑

[�;� ′′]:[�C� ′′]=�̄

1

l(τ̄ ′′)



−1

= (l(τ̄ ′)q�̄�̄)
−1.

In other words, the probability that elementary path [α; τ ′] is the value of y�̄�̄(ω) is propor-
tional to the inverse of l(τ̄ ′). Assume that all y�̄�̄(ω), ᾱ, β̄ as above, are independent of the
process and of each other.

Let p̄ = [γ; τ 1, . . . , τ n] be a path from PT , and let γi = γ C τ 1 C . . . C τ i (0 ≤ i ≤ n).
Define a random variable

ηp̄(ω)
def
=

{
1, ∃ k χk+i(ω) = γ̄i, 0 ≤ i ≤ n and ȳīi+1

(ω) = [γi; τ i+1], 0 ≤ i < n
0, otherwise.

We will say that the process {xt(ω)} passes path p̄ if and only if ηp̄(ω) = 1. The probability
that the process passes p̄ is:

P{ηp̄(ω) = 1} =
∞∑

k=0

P{χk+i(ω) = γ̄i, 0 ≤ i ≤ n} · P{ȳīi+1
(ω) = [γi; τ i+1], 0 ≤ i < n}.

By Markov property (1) and [3, p. 236],

P{χk+i(ω) = γ̄i, 0 ≤ i ≤ n} =
P{χk(ω) = γ̄} · P{χk+1(ω) = γ̄1 |χk(ω) = γ̄} · · · P{χk+n(ω) = γ̄n |χk+n−1(ω)} =

P{χk(ω) = γ̄} ·∏n−1
i=0

q̄īi+1

−q̄īi
.
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Next, from mutual independence of {y�̄�̄(ω)}, we have

P{ȳīi+1
(ω) = [γi; τ i+1], 0 ≤ i < n} =

n−1∏
i=0

P{ȳīi+1
(ω) = [γi; τ i+1]} =

n−1∏
i=0

(−l(τ̄ i+1)q̄īi+1
)−1.

In the particular case of γ̄ = κ̄,

P{χk(ω) = κ̄} = δk0.

Combining the last three formulas, we obtain for a path starting at κ̄:

P{ηp̄ = 1} =
n−1∏
i=0

(−l(τ̄ i+1)q̄īi
)−1. (11)

Now, the expected time the process spends in ᾱ can be computed using the following
lemma:

Lemma 1.
M�̄ = (−q�̄�̄)−1

∑

p̄∈PT :begin(p̄)=�̄,end(p̄)=�̄

P{ηp̄(ω) = 1}.

Proof. The proof is by induction on ᾱ.
If ᾱ = κ̄, then there exists only one path p̄ such that begin(p̄) = end(p̄) = κ̄, namely,

[κ]. For this path, P{η[�](ω) = 1} = 1. Hence, according to the first formula in (10), the
statement of the lemma holds.

Assume, the statement holds for all γ̄ < ᾱ. If ᾱ 6= κ̄, then, by the second formula in
(10),

M�̄ = (−q�̄�̄)−1
∑
̄<�̄M̄q̄�̄ =

(−q�̄�̄)−1
∑
̄<�̄

∑
p̄′:begin(p̄′)=�̄,end(p̄′)=̄ P{ηp̄′(ω) = 1}q̄�̄ =

(−q�̄�̄)−1
∑
̄<�̄

∑
p̄′:begin(p̄′)=�̄,end(p̄′)=̄, [;� ]:[C� ]=�̄ P{ηp̄′J[;� ](ω) = 1} =

(−q�̄�̄)−1
∑

p̄∈PT :begin(p̄)=�̄,end(p̄)=�̄ P{ηp̄(ω) = 1}.
(In the above formulas operation J means composition of paths). ¥

Method presented in this section can be applied to compute the typicality of and element,
if the latter has many ancestors but the paths leading to it are “symmetric” so that they
make equal contributions to the typicality. We will compute the typicality measure for the
above examples, using formula (11) and Lemma 1.

1. Transformation system of natural numbers (TSN):

gu([κ C nτ |]) = u · (1 + u)−1 ·
n−1∏
i=0

(1 + u)−1 =
u

(1 + u)n+1
.

2. Transformation system of binary sequences (TSB):

gu([κ C τ i1 C . . . C τ in ]) = u · (2 + u)−1

n−1∏
i=0

(2 + u)−1 =
u

(2 + u)n+1
.
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3. Transformation system of strings (TSS): for a struct γ̄ corresponding to a string of
length n,

gu(γ̄) = u · (2(n + 1) + u)−1 · n!
n−1∏
i=0

(2(i + 1) + u)−1 =
un!

2n+1
∏n

i=0(i + 1 + u/2)
.

In particular, if u = 2, we have

gu(γ̄) =
1

2n(n + 1)(n + 2)
=

1

2n

(
1

n + 1
− 1

n + 2

)
.

It is easy to verify that in each of the above three cases the typicality measure is a probability
measure on the set of structs generating by the corresponding transformation system, i.e.,

∑
̄∈TS

gu(γ̄) = 1.

In general, this is true if and only if the original non-observed process has infinite running
time with probability one.

10 Conclusion

We have formally defined the concept of generating process induced by a transformation
system. We also introduced the notions of the time the process spends in a struct generated
by the transformation system and of the (total) running time of the process. We have
modelled the observation of the process by a random observer using the concept of observed
process and, based on it, have defined the typicality measure.

This measure is intended to serve as a measure of the quality of training sets in the
learning problem, which now can be understood informally as the problem of inference of
the transformation system, given a finite training set generated by it. The next question is, of
course, how to compare and relate to each other different transformation systems. Eventually
this comparison will result in an optimization criterion, which will allow to choose the optimal
transformation system corresponding to the given training set.

We compare two transformation systems by comparing their generative processes. In or-
der to do that, it is not sufficient to consider only the finite part of the process—i.e., the set of
structs generated before the stopping time τ(ω), for the following intuitive reason: a process
that “converges” to a single limiting state is significantly different from that converging to
infinitely many states, even if the transformation matrices of these processes are identical.
This means that the transformation matrix extracted from a transformation system contains
only partial information about the corresponding process; the other part of information, per-
haps even more significant one, is contained in the topology on the set of states, which is
naturally induced by the transformation system, since the states are structs generated by it.
Moreover, since the topology on the set of states can be defined through transformations,
so are the limit states of the process, and therefore the process can be extended to the limit
states. For example, transformation that inserts a letter into a string can be extended to
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“infinite strings”, i.e. the limit states of the process induced by TSS. Preliminary consider-
ations suggest that there are only countably many such limit states for strings, while binary
sequences have a continuum of limit states corresponding to the points on the segment [0, 1].
This fact makes us believe that strings and binary sequences are generated by very different
transformation systems, and neither of them induces a process which could be considered as
a sub-process of the other.

The formal specification of the above topology, limit states, extension of transformations
onto them, and comparison of transformation systems via morphisms will be given in a
forthcoming paper.
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