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Abstract

We present an algorithm using tries to solve the orthogonal range search problem
on k dimensions. The algorithm reports all k-d hyper-rectangles intersecting a k-d
axis-aligned query hyper-rectangle W, and supports dynamic operations. For the
input data set D and W drawn from a uniform, random distribution, we analyse
the expected time for orthogonal range search. We show that the storage S(n,k) =
O(nk), and the expected preprocessing time P(n,k) = O(nk) for a trie containing
n k-d hyper-rectangles.

1 Introduction

Orthogonal range search [Knut98, Bent79] finds and reports all objects falling in a
specified query hyper-rectangle W. This report considers the case where the objects to be
searched are k-d hyper-rectangles. We investigate the use of k-d tries (e.g. Flajolet and
Puech [1986], Shang [2001]) as a data structure to support orthogonal range search.

Given a collection F of records, each containing several attributes or keys, an orthog-
onal range query asks for all records with key values each inside specified ranges. Range
search is the process of reporting the appropriate records falling inside the query range.
The range search problem can be interpreted geometrically by considering the record at-
tributes as coordinates and the k values for each record as a point in a k-dimensional
coordinate space [Bent79]. Our definition for orthogonal range search is as follows:

Definition 1 For a data space R*, for k = number of dimensions, orthog-
onal range search is defined as finding and reporting the set HR,(|HR| =
A HR C D, D = set of axis-aligned orthogonal data objects represented as
hyper-rectangles, |D| = n) of data intersecting the query hyper-rectangle W =
{[L1, H1}, [Lqg, Hs),- -+, [Lk, Hi]}, where [L;, H;] represents a range for dimen-
sion j of the query hyper-rectangle.

The classical orthogonal range search of Bentley [Bent79] is generalized to allow each of
the n records in the collection F to be defined by a coordinate (or key) range.



1.1 Previous Work

Data structures supporting orthogonal range search on such records have been con-
structed, with one of the most popular being the k-dimensional variant of the B-tree
known as the R-tree introduced by Guttman [1984]. Edelsbrunner [1983] introduced
the d-fold rectangle tree to support orthogonal range search on k-d hyper-rectangles
with S(n.k) = O(nlog"' n), Q(n,k) = O(log”* ' n + A) and P(n,k) = O(nlogFn).
Q(n. k) represents the time for orthogonal range search on a data structure containing n
k-dimensional hyper-rectangles.

Bentley [Bent79, Bent80] reviews several data structures for k-dimensional point range
searching including sequential scan. projection, cells, k-d trees, range trees and k-ranges.
The d-fold BB(a) tree [Luek78, 82] has worst-case total time of O(n log® n) for n opera-
tions (where an operation can be to insert or delete a point, or to perform a range search).
The k-d tree [Bent75] is a binary tree. The k-d tree requires O(kn) space and a total path
length of O(nlog n) for n k-d points inserted in random order. The analysis of range search
for balanced k-d trees shows that Q(n,k) = O(sn'=/* 4 A) for s of the k coordinates
restricted to a subrange [LeeWT77], and (k — s) of the coordinates unspecified. Devroye
et al [2000] analyzed range search on squarish k-d trees [Devr00] and random k-d trees
[Chan01]. Fredman constructed a model for complexity analysis of range search [Fred81-
a][Fred81-b]. Lower bounds for range search were studied by Chazelle [1990-a, 1990-b].
Bentley and Maurer [1980] investigated three k-ranges for range search. They showed
that one level k-ranges had Q(n,k) = O(k logn + A), S(n,k) = P(n,k) = O(n*1),
and multi-level k-ranges require linear space, P(n, k) = O(n logn) and Q(n,k) = O(n*).
Merrett et al [1996] introduced the zoom trie for spatial data display, whose upper levels
are used for lower resolutions, with the leaf level used for full resolution. Chazelle [1988]
gives a comprehensive overview of data structures for k-dimensional searching, includ-
ing the description of a k-dimensional rectangle reporting algorithm (supporting dynamic

operations) with Q(n.k) = O(A(log(%)?) + log® ' n).

There are thirteen possible relationships between two intervals [Alle83]. Shang’s
approach achieves interval containment by superimposing a PR-Trie with a ZoomTrie
[Shan01]. In Shang’s thesis, one-dimensional interval relationships are represented as
queries in two dimensions. In this paper, we consider only one relationship (intersection)
for orthogonal range search.

As pointed out in Flajolet and Peuch [1986], 1-d tries tend to be better balanced
compared to 1-d search trees. For k-dimensional search, this improved balance can lead
to aymptotically smaller search times.

2 k-d Tries for Range Search

Without loss of generality, we assume our search space is defined on the set of positive
integers in k-dimensional space. We assume the space is finite, limited by the number
of bits B used to represent an integer. B is the number of bits used for representing a
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coordinate value in binary, B = logo( MAXITMUM—-MINIMUM+1), where MINIMUM
and MAXIMUM are the whole search space’s upper and lower bounds.

2.1 Tries for Spatial Data

Binary tries are data structures which use a binary representation of the key to store
keys as a path in the tree. Binary k-d tries use the principle of bit interleaving (also
called a shuffle operation by Flajolet and Peuch [1986]). Child nodes in a k-d trie cover
% the search space volume of their parent. For a point p(x, y) on two dimensions,
each coordinate value has B bits, and the bit interleaved value is b3 bf b7 by -- - b}, b,
where b7 is the i"* bit value for x, and &} is the " bit value for y. For a line seg-
ment with a start point s and end point e, bit interleaving treats the line segment as
a 4-dimensional point p = (z;,ys, z.,y.). For this so-called 4-d trie, the bit interleav-
ing results in a bit string: b§* by by by° - - - b by by b% . For a triangle which has three
points on the plane, we treat it as a 6-d point p = (zo.Yo, T1,Y1,T2,Y2) or as three
segments which construct the triangle. We represent a 2-dimensional rectangle as four

coordinate values(z™™, 2™ y™" ym@) which, after bit interleaving gives the bit string:
b? mn

b b b B b T R T b b b b . Extending the bit in-
terleaving principle to & dimensions, on every dimension j, Vj € {1---k}, we represent
the k-d hyper-rectangle as (z7", 2™*)* so the resultant bit string will be

max

J g
bg?“n bg'inaz bg;ntn bg;naz bg.gntn bg'énaz o bg;nz'n bg;(naz
x'{nzn x;na; l‘g“" x;naz l‘g“" xgnaz x;mn l.znaz

Thus, a k-d hyper-rectangle can be represented as a 2k-dimensional point in a binary
trie of height 2kB. Figure 1 below is an algorithm for performing bit interleaving of a
k-dimensional hyper-rectangle to give a single key.

procedure interbit( R:HyerRectangle ):key
begin
int cursor = 1, number = 2kB — 1;
fori=B-1;1>0;1——)
{ cursor = cursor << i;
for(intj=0;j <k:j++)
{ key[number——] = 27" & cursor >> i;
key[number——] = 27" & cursor >> i; }
cursor = 1; }
return key;
end;

Figure 1: C pseudo code for converting a k-dimensional hyper-rectangle R to a single
bit-interleaved key.



Given a set D of hyper-rectangles on k-dimensional space, the collection of these
hyper-rectangles is denoted by D ={R;, Ry.---, R,}, where n is the number of hyper-
rectangles in the set. For the i"* hyper-rectangle R; € D, let (:r:?]”” z2") denote the
7% side of hyper-rectangle R;, 1 < j <k and 1 < i < n. We denote by T the 2k-d trie
constructed by inserting all the hyper-rectangles in D into an initially empty trie. Given
a node u in T, we denote by T, the subtree of T rooted at u. There are altogether n
leaves in T. Every leaf is associated with one hyper-rectangle. Figure 2 is an algorithm
to insert one k-d hyper-rectangle into trie T. The height of the trie (i.e. the length of the
key) is 2kB. In the insertion loop from 2kB-1 to 0, when a bit value equals 0, we go to the
left branch and when the bit value equals 1, we go to the right branch of the trie. After
preprocessing all n hyper-rectangles in D, we obtain the trie T, which allows us to carry
out an orthogonal range search.

procedure Trie_Insert( R:HyperRectangle, T:TrieNode )
begin
if( T == NULL)
{ T = new TrieNode(k):}
Key™* keyPoint=interbit(R);/*get the key after bit interleaving on hyper-rectangle R*/
TrieNode* P = T;/* begin traversing™/
for( int level = (2kB - 1); level > 0; level —— )
{ if (keyPoint—getKey(level) )/* if the keyPoint bit on this level=1, go right*/
{ if( P-right == NULL)
{ p = new TrieNode( P, K );
P— Right = p;/*create a trie node and insert into right side of Trie T*/ }
P = P— Right /*continuing traversing on the right side*/; }
else [*go left */
{  if( Po>Left = NULL)
{ p = new TrieNode( P,K );
P— Left = p;/*create a trie node and insert into left side of Trie T;*/}
P = P— Left /*continuing traversing on the left side*/; }}
end;

Figure 2: C pseudo code for inserting a k-d hyper-rectangle R into a 2k-d trie T.

Theorem 1 P(n.k) = O(nk) for a k-dimensional trie containing n hyper-rectangles.
The proof is straightforward as each of the n inserted hyper-rectangles visits 2kB

nodes. Figures 3 and 4 give one example of building a binary trie from 15 2-d rectangles
with number of data bits B= 5.

2.2 k-d Tries for spatial range search

The query hyper-rectangle W = [L;, Hy| x [Lq, Hy] X -+ X [Ly, Hg], which we ab-
breviate as [L;, H;]*. For a hyper-rectangle R; € D, the set of k hyper-rectangle sides is
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Figure 3: Example of 15 rectangles B, C. D. E. F, G, H, I, J, K. L. M, N, U. and T with
a query hyper-rectangle W and number of data bits B= 5.

defined by {(27", zm**) V5 € {1,---,k}}. We define [MIN;, MAX;],Vj € {l,---.k}, as

iy vy
the minimum and maximum possible data coordinate values for dimension j. On every

dimension, MIN; < 27 < 27" < MAX; Vje{l---k}.ie{l---n}.

Definition 2 Two hyper-rectangles intersect if and only if their sides on every dimension
in the data space intersect, i.e. Ry N Ry is true, iff Vj € {1,--- .k}, (xﬁmxﬁ”) N
(2577, x5:07) ds true, 274" € [MIN;, 25%) and 27 € (v53", MAX;].

This defines intersection strictly as an overlap in the sense of Allen [1983] and Egen-
hofer [1994]. Based on Definition 2, the hyper-rectangle R; intersects W iff ;L’Zm €
[M[N] H]) and 7" € (L]', MAX]] Vj e {1 SR k}

i

k-dimensional orthogonal range search is performed using our 2k-d trie for a query
W. We use j as the index of the data space, j € {1 .-k}, and we use p as the index for our
problem space, p € {1---2k}. They are related as j = p/2. Each node in the trie T is a 2k
range state; that is, every node has a cover space defined as NC* = [L,, U,]**, 1 < p < 2k.
For a given query hyper-rectangle W = [L;, H;]*, we obtain the query hyper-rectangle’s
cover space WC? and define it to be WC?* = {([MIN;, H; —1],[L; + 1, MAX;])}*.
There are three types of relations of W(C?* with NC?*, which we call BLACK, GREY,
and WHITE. Figure 5 below illustrates the three cases. Dashed lines are used for W(C'
and solid lines for NC'. After projecting the edge points to the problem space, we can
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Figure 4: Example of a binary 4-d trie for the 2-d data of Figure 3. The list of 8-tuples
near the right hand side is the cover space NC of each node on the trie path representing
rectangle E.

distinguish the relation of a node’s cover space NC' with the query hyper-rectangle W's
cover space WC on the p" side.

For example, for the data of Figure 3 and Figure 4, WC* = {([0, 17],[9, 31]), ([0, 12], [7, 31])}
for query hyper-rectangle W, nodes marked with a cross sign in Figure 4 are white, and
nodes marked with a circle sign are black.

Definition 3 If on all 2k dimensions, the NC to W C relationship satisfies WCPNANC? =
BLACK,Vp € {1,2,---,2k}, the node in the lrie is a black node. If the NC to WC
relationship satisfies Ip € {1,2,---.2k}, such that WC? N NC? = WHITE, the node
in the trie is a white node. All the other nodes are grey nodes, defined as follows: if
S C{1.2,---.2k}, pe S, WCPN NC? = GREY , Vp ¢ S,p e {1,2,---,2k}, WC?"nN
NC? = BLACK, the node will be grey.

We use GN to denote the set of grey nodes in the trie, BN to denote the set of black
nodes in the trie, and W N to denote the set of white nodes in the trie. Based on this
definition, we can now define our k-d orgthogonal range search algorithm (see Figure 6).

The range search algorithm traverses from the root of trie T down to its leaves. We
do a depth first traversal. At the root , level £ = 0. For the root, the cover space NC?%*
has L, = MIN; and U, = MAX;, Vp € {1,2,---,2k}. The cover space is split on the
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Figure 5: GREY ((a), (b), and (c¢)), BLACK ((d) and (e)), WHITE ((f) and (g)) rela-
tionships of a trie node cover space NC to a query hyper-rectangle cover space W' in
dimension p of the 2k-d problem space.

p'" coordinate as we move down, p = fmod2k, V{ € {0,1,---,(2kB—1)}. If on the p'
dimension, a parent node T has cover space [L, U], then T’s left child’s cover space is
[L,(L+U)/2] and T’s right child’s cover space is [(L+U)/2 41, U]. Comparing a node’s
cover space NC (stored in L and U) with [MIN;, H;) and (L;, M AX}], if one of the 2k
ranges falls outside (as determined by the InRange function), we encounter a white node
and the search need not check any subtrees of T. If all the 2k ranges fall within NC, we
encounter a black node. The nodes in the subtree of a black node are all black nodes. The
nodes in the subtree of a white node are all white nodes. When we meet a white node or
a black node, we stop traversing down; otherwise we continue splitting and traversing the
subtrees. When we reach a black node u. all the leaves associated with a hyper-rectangle
inside subtree T, intersect the query hyper-rectangle W. and we get the range search’s
results and append them into the reporting List. All the leaves contained in the subtree
of a white node do not intersect W. Integer arrays L. and U store the lower and upper
bounds of node T’s cover space on 2k dimensions.

Figure 4 is the trie for the data shown in Figure 3. In Figure 4, nodes with a cross
mark (x) on them are white nodes. We know no children of the white node can intersect
the query hyper-rectangle W, so the subtree attached to the white node is pruned from
the search space. The node with a circle sign () on it stands for a black node, which
means all hyper-rectangles represented by leaves inside the subtree attached to the black
node intersect W. For query hyper-rectangle W = [8, 18] x [6, 13], £ = 2, the query hyper-
rectangle’s cover space WC* = [0,17] x [9,31] x [0,12] x [7,31]. The hyper-rectangle
denoted as F = [17,21] x [12,14] has its cover space NC*, the four ranges, listed along
the right side of Figure 4. We do half splitting continuously in 2k space as we move down
the trie. The trie is divided into B bands, each band of height 2k (see Figure 4). When
the first band 2k half-splits are finished, we begin the second band, till the (B—1)* band.



procedure Rangesearch( T:TrieNode, level:int, L:int*, U:int*, int* RI, W:HyperRectangle,
S:SearchSpace, List:HyperRectangleList )
[*S=[MIN;, MAX;],Vj € {1,---.k}, L and U are arrays defining node T’s cover space
on k dimensions, Rl is an array containing the color of the 2k relationships of NC and
WC at node T*/
begin
int LT[2*K], UT[2*K], RIT[2*K]; /* internal varibles for recursive call */
for(inti=0;1<2*K;i 4+ )
{ LT[i] = L[i]; UT[i] = U[i]; RIT[i] = RI[i]}
if( (T#NULL) AND (level < 2kB) )
{ if(level == 0 ){ p = 0}
else{ p = (level - 1) % (2k); }
/*p is used for cover space’s index in L[p|, U[p], RIT[p], p=0..2k-1*/
/*depth first traversal™/
RIT[p]=InRange(L[p], U[p], level, W, S);/*get the color of T on p™ dimension */
if( RIT[p] ! =-1) /* if not white */
{ int color = NodeColor(RIT); /* determine the color for node T*/
if( color == 0 ) /*the node is grey node*/
{ /*continue traversing™/
level ++4;
p = (level - 1) % (2k);
if( T—>Left # NULL )/*left half splitting®/
{ LT[p] = Llp]: UT[p] = (L[p] + U[p])/2:
Rangesearch( T—Left, level, LT, UT, RIT, W, S, List );}
if( T—>Right # NULL )/*right half splitting™/
{ LT[p] = ( L[p] + Ulp] )/2 +1; UT[p] = U[p};
Rangesearch( T—Right, level, LT, UT, RIT, W, S, List ):}
}Yelse if( color == 1 )/* the node is black node */
{ Collect(T,List);/*collect all the leaves inside the black node intersecting W*/}
}
/* or else if the node is white, unfold the recursion */ }
end;

Figure 6: C pseudo code for the k-d orthogonal range search algorithm.
InRange(L[p],U[p].level, W.S) and NodeColor(RIT) are functions to decide the color of
NC and WC relationships for node T.

For hyper-rectangle E’s case, traversal of T during the 2-d range search for rectangles
intersecting W stopped at the last (B—1)" band, which is a black node. If we continue
one extra step to the leaf level, we will get NC* = [17,17] x [21,21] x [12,12] x [14, 14],
and the lower bound and upper bound of every 2k range is equal to the coordinate value
of hyper-rectangle E in the data space.



3 Space Analysis

The full trie T’s depth is a constant value if the number of dimensions £ and coor-
dinate range on every dimension are considered constant. If we assume the coordinate
ranges on every dimension are the same, that is [MIN, M AX], B is the number of bits
for representing the coordinate value inside the coordinate range. We have T’s height
= 2kB = 2klog,(MAX — MIN + 1), and level £ € {0.---.2kB — 1}. At the root level
£ =0, and at the leaf level £ = 2kB — 1. n is the size of input data set D. We divide the
trie into B bands, each of height 2k.

Given any coordinate value u € [MIN, MAX], the bit distance between u and
another value v € [MIN, M AX] is denoted as bdis(u,v). bdis(u,v) is defined as the path
length from P (the common ancestor of u and v) down to the leaf level of u or v in the
bit distance tree V. For example, bdis(12,12) = 0, bdis(12,13) = 1, bdis(12,11) = 3,
bdis(31,32) =6, bdis(31,19) =4, bdis(7,19) =5 (see Figure 7).

0~63

0~31 \ 32~63
~15 16~

N

ﬁ K K 12-15 16-19 Co 28-31
~1 2A~3 4~5 6~7 89 10/‘11 12~13 14~15 16~17 18~19 28~29 30-31
0123456789 10 11 1213 1415 16 17 1819 - - 2&9 30 31 32

Figure 7: Example of bit distance tree V for B = 6.

We use maz{}* to denote the maximum value of the set inside braces on k dimensions,
and we have the following lemma:

Lemma 1 For any two hyper-rectangles Ry = (:cﬁm;z;ﬁ“)k and Ry = (:1;72”]"”3;’27;‘”3)]“ theur
nearest common ancestor lies in the band B —ma;z;{bdis(xﬁm, :cg”]m) bdis(xT4*, 1:72”]”)}’“] €

{1,2,---.k}.

Proof. Bit distance tree V with maximum bit distance B is only for coordinate values
one one dimension in 2k dimensions. The height of bit distance tree V is B. Each node’s
cover space is one-half of it’s parents’ cover space in V. From the root whose domain is
[0,2B-1] down to u and v’s nearest common ancester node, u and v share the same path.
The path length from leaf level to the nearest common ancestor node P is bdis(u, v).
The level of P is B - bdis(u, v). From root level 0 to level B - bdis(u, v), u and v’s first
B - bdis(u, v) bits are identical. From level B - bdis(u, v) down to leaf level B, the bit



sequence for u and v is different. Our trie is a 2k-d trie, and each of the 2k ranges will
half split alternatively. From the root, whose cover is [0,28 — 1]?*, u; will separate with
vy on the band of B - bdis(uy, vy), us will separate with v, on the band of B - bdis(ua,
V), - -+, ug, will separate with vor on the band of B - bdis(ugk, vag). That is, u and v’s
nearest common ancestor node lies in the band of B - max{bdis(u,,v,)}?**. |

For example, as shown in Figure 3 and Figure 4 where k& = 2, rectangle N (11, 14,0, 3)
and rectangle H(11,14,5,7), we compare 2k pairs of bit distance: bdis(11,11) = 0,
bdis(14,14) = 0, bdis(0,5) = 3, bdis(3,7) = 3. The maximum bit distance among N
and H is 3, so N and H’s nearest common ancestor lies in the band of B - 3 = 2. This
common ancestor node is indicated in Figure 4 by a black filled in square in Band 2.

We use lemma 1 to compute the storage space for our trie.

Theorem 2 The expected space S(n, k) for a binary trie containing n k-dimensional
hyper-rectangles is O(kn).

Proof. After the first two hyper-rectangles R and R; are inserted, the number of nodes
they share will be 2k(B—E{maxz{bdis(z7", x7"), bdis(z7*", 25:°")}*}). The separate
branches for both will occupy 2k E{maz{bdis(z7", x5"), bdis(x7:*". 27:°")}*} nodes. The
expected total number of nodes occupied by two hyper-rectangles will be:

2k(B—E{maz{bdis(z7", x5"). bdis(a 7, x7:°7)}*})
+2k E{maz{bdis(z75", a5"), bdis(x7", 27°7)}F }2
= 2kB+2kE{max{bdis(z75", x5"), bdis(xT:"", 27:*") }*}.

Adding a third hyper-rectangle Rs3, the nearest common ancestor of the three of them
would be in the band:

B—E{maz{bdis(x", x35"), bdis(x75", 255", bdis(x35™, x55m),
bdis(x75, 2757, bdis(x 70", 7)), bdis(x T, 257 }F}
The expected number of nodes in the trie is now
2kB42k E{max{bdis(x7". 275", bdis(x7", x5:47) }F}
+2k E{maz{bdis(x75", x5"), bdis(x 7", 25"), bdis(a g™, x7m).
bdis(x 7", 257). bdis(x 7, x307), bdis (23", x5:47) }F Y.

No extra storage is needed for common nodes. We use maz;{}* to denote the maximum
bit distance of hyper-rectangles, where 7 is the number of hyper-rectangles. There are

i

2k
(5
the total number of nodes in the trie for n input hyper-rectangles as

S(n, k) = 2kB+2k E{maz,{}*}+2k E{maz3{}*}+2k E{maz{}*}+ - -+2k E{maz,{}*}
(1)

bit distances from which to determine maxz;{}*. Using induction on i, we obtain
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For any given value 71, € {0,1,2,---,28 —1}, the value x4, € {0,1,2,---,28 — 1} has
a bit distance relation with x;, as follows: if bdis(xy,, x2,) = 0, the number of possible

xy, values = 1; if bdis(x1,,29,) = 1, the number of possible z,, values = 2° = 1; if
bdis(x1p, T9p) = 2, the number of possible zq, values = 2! = 2: if bdis(z1,, x2,) = 3, the
number of possible z,, values = 22 = 4, .-, if bdis(z1,, ¥9,) =B, the number of possible
T, values = 2B-1. The bit distance between any two z;; values is one of {0, 1,---,B}.

2
Pr{bdis(x1,, x2p) = 1} = QLB, Pr{bdis(x1,, x2,) = 2} = QLB, oo, Pr{bdis(z1p, x2,) = a}

ga—1 2]3—1

s Pr{bdis(xlp,él?Qp) :B} = 9B -

The probability for two hyper-rectangles” maximum bit distance value in the 2k
problem space would be Pr{maxzs{bdis(z1,,x,)}** = 0} = (55)?*, because the hyper-
rectangles are independently distributed in 2k dimensions. If we want the maximum bit
distance to be 0, then the bit distances on all 2k dimensions should be zero. On one
dimension p, the probability that bdis(z1,,z2,) < a is QLB + Z;;% 2;;. We obtain the
following probabilities:

The probability for a certain bit distance would be Pr{bdis(zi,,zs,) = 0} = %,

2 ) () (),

Pr{maz,{bdis(z1,, 9,)}** =1} = Z?il ( ;

Pr{mazy{bdis(zr,. 2,)}2* = a} = $2, ( i ) (e + X2,

Prmaze{bis(any )} =By = S, ( %F ) (S + Sz

When the maximum bit distance equals to a, we want one bit distance among 2k values
to be a, and all the others should be equal or less than a. This problem can be calculated
as follows: there exist j pairs in 2k pairs with bit distance equals to a, (2k — j) pairs
would have bit distance values < a or < (a —1). This leads to

Pr{maz,{bdis(z1,, 2,) }** = a}

Qk a—1 . a— gq—1 _
— st () (i + st

Qk a—1
= X%, ( : ) (55 )*

J
because Z?il ( Qf ) =22 1

Pr{maz,{bdis(z1,, 9,)}** = a} = (2;—;1)2’9(2% —1).
For three hyper-rectangles” maximum bit distance value in 2k problem space, we

compare 3 ) 2k pairs of coordinate values. The function for the probability of three

2

hyper-rectangles with maximum bit distance value equal to a is:

11



32k
J

Pr{mazs{}** = a} = L3 (

. 3 * Qk a—1 .
:Z?if( ; )(22_3)3%
_ (2;_;)3~2k(23~2k —1)

The general function for the probability of 1 random hyper-rectangles in 2k space is as
follows:

Pr{maz;{}* = a} = Zj<:12 ) ( ( 2 ) 2k ) (2;—;)][(%3) + 23;5(23;)]< 2 ) R

J
W(i—1)k Z Z — 1 k a—1 i(i—
:Zj(:11)<( ) )(QQ_B)(l)k
J
_ (2‘21_;1)i(i—1)k(2i(i—1)k_1) (2)

Using equation (2) in equation (1) gives the expected number of nodes in the trie as
S k) = B4, (KB o Lt Y -DE(20-DE 1))

Letting v = 2/=D* we have

S(n.k) = 2kB+42kX7, X8 qu* 2=
I=%B aut
I =1u+2u?+3u3+---+Bu®

T=1+42u+3u?+ +BuP!
%—[zl—l—u—l—uz—l—---—l—uB_l—BuB

I(L—1) = =27 _By?P
I = (%—BUB)If—U, and

S(n, k) = 2kB42kYr vl L _u(1ou” gy B)
= 2kB42kY, o (BuP — 127

14

= 2kB+2kY",(B—22 )

1—u

= 2kB+2kY7L, B2kYI, 5 + 2kYL, rr
= 2kB+2kX7 ,B—o(1) 4 2ko(1)

The second item dominates, and as we consider B a constant, then

S(n.k)=0(kn) |}

12



Theorem 3 The space for a k-d trie containing n k-d hyper-rectangles is S(n. k) =
O(kn).

Proof. The worst case space requirement occurs if every input hyper-rectangle, after bit
interleaving, will occupy as many different paths as possible; that is, their maximum bit
distance value would be as large as possible. In this case, the trie will occupy the largest
number of nodes. As n < 2%8-1 then from the root to level r = [log,n] — 1, the binary
trie will be complete. At level [log, n]. the full binary tree stops and the remaining paths
will be single branches dangling from the last full binary tree’s level, as shown in Figure
8. From root level to level [log, n| — 1, the worst case trie storage will be the same as a
full binary tree. From level [log, n] to the leaf level, the trie is slimmer than the triangle
of a full binary tree (drawn in dashed lines in Figure 8). The number of nodes in the trie
is thus

S(n k) =142 4224 ... 4 2Menl=1 4 (9kB—[log, n])n
= 2Mlog2»1 _ 1 4 n(2kB—[log, n])
= (2kB+1)n —nlogn = O(kn), as log,n < 2kB. |

Figure 8: Worst case for storage in a 2k-d trie.

4 Range Search Cost

Without loss of generality, we consider our analysis in real [0, 1]* space.

4.1 Partial Match Retrieval Using Tries

The analysis of partial match retrieval using k-d tries was eloquently addressed by
Flajolet and Peuch [12]. Adapting this analysis to k-d hyper-rectangle in 2k-d tries,

13



we ask for all hyper-rectangles in data set D satisfying query hyper-rectangle q, where
a= (q1.92. -, q2), S C {1.2,---.2k}, s = | S|, s of the 2k query key values are specified,
and 2k — s query values are left unspecified: we denote the unspecified queries as g, = *,
p ¢ S as wild cards. Hyper-rectangle R; satisfies a partial match query q if and only if
g = Rip.Vp€ S.

Our analysis is based on the uniform probabilistic model where we assume the input
data D and the query hyper-rectangle W are drawn from a uniform random distribution,
and that the keys of D are independent. Here, we assume that the keys of D are 2k-
dimensional points representing a k-dimensional hyper-rectangle. A k-d random variable
x exists for the left side a:f;m of each hyper-rectangle R;. and a second k-d random variable
y exists for the right side z{3*" of each R;. The 2k-d keys of D are thus formed from two
independent random variables, and the joint density function t of each key is the product
of the density functions of x and y. The product of two uniform random density functions

gives a uniform random density function t, which allows us to use the following theorem:

Theorem 4 (Flajolet and Peuch [1986]) Given a binary 2k-d trie T containing a set
of k-dimensional inputl hyper-rectangles D = {Ry,---, R,}, assuming data set D and
query hyper-rectangle q satisfy the uniform probabilistic model, ¢= (q1,q2, -+ . q2k), S C
{1,2,---.2k}, the average cost of patial match retrieval Qs(n, k) measured by the number
of nodes traversed in trie T is

Qs(n, k) = c(g5 logyn)n' =2 + O(1),

where ¢ is a constant determined by the the indices of S, s = |S]|.

Proposition 1 Given a binary trie T conlaining a sel of k-dimensional input hyper-
rectangles D = {Ry, -+, R,}, assuming inpul dala set D and query hyper-rectangle q
satisfying the uniform probabilistic model, g= (qu.qa. -+, qax), S C {1,2,---,2k}, the cost
of patial match retrieval Qs(n, k) measured by the number of nodes traversed in trie T is

Qs(nk) _ E{E;:?lnberofnodesintrie Hpes NOf|}

Proof. If a node is visited, q, € NC?.Vp € S. The probability that a node in trie T will
be visited is determined by the volume of every node’s cover space in the space [0,1]. |}

4.2 Analysis of Orthogonal Range Search Using Tries

For a given query hyper-rectangle W = [L;, H;]*, and for any hyper-rectangle R; =
B2 a:?;“]k, if R; satisfies Lemma 2, the range search for a single result traverses until
the leaf level is reached. We use min{}* to denote the minimum value of a set inside

braces on k£ dimensions.

Lemma 2 [f the minimum bit distance of R; with the query cover space ([MIN;, H;—1] X
[L; 4+ 1, MAX;])* is equal to zero or one, we will search R; till reaching the last band B-1
of R; . That is, min{bdis(z7"™ H; — 1),bdis(z7*, L; + 1)}* =00r 1,Vj € {1,2,---,k}.

J J
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Proof. If anyone of the k& dimensions has bdis = 0 or 1, then the worst case for a single
hyper-rectangle happens. For any two hyper-rectangles, their nearest common ancester
will lie in the band of B —max{bdis(fﬂgm, H; —1),bdis(z2", L; +1)}, V5 € {1,2,---, k}.
If all n input hyper-rectangles R; are aligned such that the minimum bit distance of R;

with W is 0 or 1, then the worst case for orthogonal range search occurs. |

Figure 9 shows an example of the worst case for 2-d orthogonal range search. Search-
ing will go down to all hyper-rectangles’ leaf level in the trie T. The hyper-rectangle with
dashed lines is the query hyper-rectangle W. For the example shown in Figure 3 and Fig-
ure 4, rectangles C, D, E, G, H. I, U correspond to the worst case which needs traversal
to the last band.

]

Figure 9: Example of worst case for 2-d orthogonal range search in a 4-d trie.

To get the color types for a node in the trie, we compare all the 2k ranges of W (%
with NC?. In our algorithm. on each level. we do one comparison of the 2k ranges and
store the color as the node’s state. If all 2k ranges are black. the node is black; if one range
is white, the node is white, and all the other conditions indicate the node is a grey node.
Traversing from the root down through the first 2k levels, we finish the comparison of 2k
ranges of WC?* and NC% on 2k dimensions and get the first batch of white and black
nodes. On a certain level £ in the trie T. after half splitting the cover space from the root
(which is the full search space), there are altogether 925+ possiblities of the ranges for
NC?. They are [MIN, MIN+2B-5=1],[MIN +2B-2r=1 MIN+22B-5x1],... [MIN+
(2241 — 1)2B_§_1, M AX]. Each range’s length equals to 2B=2 =1, [NC?| = 2B-2~1 and
the exact NC? we want to compare with WC? on this node is determined by previous
paths. On level £, the query cover space W(C? we want to compare with is on the j*
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dimension in data space, 7 = (£ mod (2k)). If jmod2 = 0, we select WC? = [MIN, H;);
if jmod2 =1, WC? = (L;, MAX].

Traversing stops on paths when we meet with black or white nodes and continues
when grey nodes are encountered and continues collecting black nodes in the subtree of
the black nodes we first met. The time complexity can be determined by computing the
number of grey and black nodes in the trie built from input data D. We have the following
equation:

N\ _ vthenumber of nodesin the trie
Qn, k) = X5 I node:eGNUBN]

where we use 1p4] as the characteristic function of the event A. The formula counts the
number of grey nodes. which, apart from the black nodes traversed to report the in-range
hyper-rectangles, represents the time complexity of the orthogonal range search algorithm

(see Figure 10).

e T EEE
2k
Band 0
2k
VB NN pandt
2 Band (B-1)
ar] -
L L N NN
Figure 10: GREY nodes for computing the time complexity.
Lemma 3 E{Znumber of nodes in tme 22?];1 |NO§D|} — 0(10g2 Tl)
Proof. Every band has height 2k. In the ' band of height 2k (h = 1..2k), we have
h =1, INCh| = e, INCH| = NG} = -+ = INCH| = &
h =2, |NCp|=|NCj| = QbT: INCip| = INCyy| = |N0bk| = Ql_b
h =2k, |NCE>12k = |N0622k = |NCE:>32k == |Ncbzk| = 2b1+1

where we have used the notation |NC},| to represent the range for one dimension p at a
node of height A within band b. This leads to the volume of one node’s data cover |NC}|
on 2k dimensions as
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NG| = TI%, INCT| = (gr)" (35) " = 272407 "

2b

for node t lying at height & in band b.

The volume |NC| is the same for all nodes on the same level in the trie; as the level
¢ increases, the value of | NC| decreases.

We calculate the number of nodes on a certain height & in one band using the worst
case for storage (shown in Figure 8). The level r = |log, n| (the last level in the trie that
concides with a complete binary tree, see Figure 8) lies in the band d = LU()g—iMJ, which
is at height & = |log,n| + 1 — 2kd in the d* band. We divide B bands into three parts:
(a) from band 0 to band d — 1, (b) band d. and (c) from band d + 1 to band B-1. Within
part(a), the number of nodes on height A of band b is 2°, £ = 2kb+h — 1. We divide band
d into two: one is from height 1 to height [log,n] + 1 — 2kd, the other is from height
[log, n] + 2 — 2kd to 2k. Within part(b)’s first part, the number of nodes on height h of
band d is 22¥4+"=1_within band d’s second part, the number of nodes on height A of band

d is n. The number of nodes on the height h within part(c) is n. Thus, we have
E{z?;i‘;nbe?” of nodes in trie H;il |NCf|}

_ B—-1vy2k number of nodes on height hin bandb 2k P
— E{Zb:O Zh:lthI Hp:l |NCbh|}

[logo n]

= ZJEZOM J_IZ?LLZL?:{;M H;L |NC§h part(a)
| begznd [logy n]+1—2kb ~92kb+h 1ok P
—I_Zb_[LlOg? "JJEhzl Zt:l Hp:l |NCbh| part(b)l
- 2k
Logg ») 2k no T2k P
—I_Eb:[ Uogi"J ] Zh:l_logQ nJ—I—Q—kaZt:l Hp:l |Ncbh part(b)Q
2

B- n k
—I_Eb:[ltlogi HJJ_HE%zkzlztzl H§:1 |chh part(c)

22kb+h ok P y22kbthg oph—h _ 1
Because 72" [[J%, [NCy, | = X727 2 =3,

E{Z?;L'{nber of nodes in trie H;il |NCf|}

[logo m|

|_2 J_l
=Y XL

1
2
[logo n ]
BT [log, n]+1-2kb 1
—I_Zb_[LlOg? "JJZ}IZI 2
- 2k

Llogo n]

L —2kb—h
+Eb_[r‘|‘_ﬁg2 | Yh=logy n|+2—2kp T2
- 2k

B-1 2k —2kb—h
—I_szl_ LlogQi n| J+1Zh:1n2

:Lloan JQk_—l

2k 2
_I_( log;n _é_kLloginJ>
—I—(QUOZ? n] T o )

1
QQkQQkLI'()g—iMJ
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gkl gy 2PRE

As n < 2268, szrsrar < 1, and we obtain the following result:

E{Znumber of nodesin trie ]2)];1 |NC7,?|} = O(log2 71) I

Theorem 5 Given a binary trie T containing a set of k-dimensional input rectangles
D ={R\, Ry, --.R,}, R; with i.i.d. random variable center ¢; on [0.1]*, and with i.i.d.
random variable side length d; distributed on [0,1]%, consider a random orthogonal range
search with query hyper-rectangle W with center at Z which is uniformly distributed on
[0,1]%, and independent of the centers of D, and with size Ay X Ay X -+ X Ay, which are
also i.i.d. random variables on [0,1]*. The expected orthogonal range search time

E{Q(n.k)} = e ABk + o log, n)n'= 5 Ssc 1.y (11 )+ Olog, n),

where ¢ and ¢; are constant values, and ¢ is determined by s, s = |S]|.

P?"OOf. E{Q(n k)} E{ Zthe number of nodes in the trie 1[nodeteGNuBN]}

This calculation includes the reporting time for collection of the subtree of black nodes
which arises during the traversal. The probability that a node is black or grey is given
as: Pr(node; € GN U BN) = 2L, (|NC?| + [WCP|). The probability for query hyper-
rectangle W’s cover space W (' to intersect a node’s cover space NC' is the probability that
Z;, the center of W, is within distance % of NC7. This probability is bounded by the
volume of NC expanded by A; in the " dimension, V5 € {1,---,k}. There are two cases.
On the left side of the j dimension, |[WC™"| = |[WC?| = |[0, H;) | = H; = Z; —|— =%, and
p mod 2 = 1. On the right side of the ]th dimension, |[WCT®| = |WCp| = |(L 1]| =

1_LJ-:1—(Zj—%):1—Zl—|—ﬁ,andpmod2:0. We have
E{Q(n k)} < E{Enumberofnodeszntme 2];1(|W0p|‘|‘ |NC§)|)

)E{Znumber of nodes in trie Hpes ; |}
)E{Znumber of nodes in trie H p|}
)E{Znumber of nodes in tme 72)];1 |NCf|}

f1}

= Ysc,26)([pgs
= Ysc,2n3(T1
—I—Zs:{1,~~~,2k}(n
= Ysct, 20y (I1
_I_E{Enumber of nodes in tric ;1;1 INC?[}

P )E{Z?;L'{nber of nodes in trie H

From Theorem 4 and Proposition 1, we obtain
E{Q(n.k)} < Escqr,omIpes P )(C(Ql_klogQ n)n' =7 +0(1))
_I_E{Enumber ofnodeszntme 22?];1 |NCf|}

and by Lemma 3. we obtain

E{Q(n.k)} < Zscqromy(Tlpes

P)(e(55 logy n)n' =2 4 O(1) ) + O(log, n).
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E{Q(n.k)} < c; ABk + c(5- log, n)nl—izsql,...,%}(npes

A is the number of data objects found in the orthogonal range search. The number
of nodes traversed to collect the in-range hyper-rectangles is thus ¢; ABk, where ¢; is

W) + Oflogyn).

a constant value < 2. This traversal for reporting the hyper-rectangles in range is un-
avoidable. The third item arises from finding the white nodes. When S = {1,---,2k},
(ie. s = 2k), E{Q(n.k)} < c1ABk + (5 logyn) + O(logyn). If S = 0. E{Q(n.k)} <
c1 ABk+nlog,n H;il |[WC?|+0(log, n). When 0 < s < 2k, the second term dominates.

5 Conclusion and Open Questions

Using tries, we have shown that the space and preprocessing time for storing n k-d
hyper-rectangles is linear in nk. The expected orthogonal range search time E{Q(n.k)} =
et ABk+ (3 logy n)n' =2 X1 2y (TT,es [W CP|) + O(log, n), where ¢ and ¢; are constant
values. The algorithm presented supports dynamic operations, and is straightforward to
implement.

Improvements in expected storage cost S(n, k) and expected time for orthogonal range
search (n, k) can be obtained if we compress our binary trie to avoid storing nodes with
only one child as is done for Patricia tries. Further investigation of the expected cost for
orthogonal range search is warranted to determine the relationship with partial match
query expected cost. Under different assumptions about the nature of query window W
distribution (e.g. random Gaussian in size), does the expected range search cost improve?
Can the 2k-d trie be adapted for other geometric problems such as half-space range search?
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