A W|2|-Hard Variant of
Common Approximate Substring

Andrew D. Smith
Faculty of Computer Science,
University of New Brunswick

Fredericton, NB, Canada,
p7ka@unb.ca

August 14, 2002

Abstract

Given a set F of strings and two integers d < [, the common
approximate substring problem asks whether there is a string C of
length [, such that each member of F contains a substring that differs
from C in at most d positions. For a fixed number of strings, and fixed
alphabet size, Fellows et al. [2] showed this problem to be hard for
the class WJ[1] of the W-hierarchy. We strengthen this result and show
that the problem is W/2[-hard by a parameterized reduction from set
cover.

1 Introduction

This paper examines the COMMON APPROXIMATE SUBSTRING problem, for-
mally defined as follows:

COMMON APPROXIMATE SUBSTRING (CAS)

Instance: A set F = {S1,...,Sn} of strings over an alphabet ¥
such that [S;| = n, 1 < ¢ < m, and positive integers [
and dsuch that 1 < d <[< n.

Parameter: Alphabet ¥ and positive integers m,n,[and d.

Question: Is there a string C € X! such that for each string S € F,
C is Hamming distance < d from some length-/
substring of F?

We call C the center string for 7. When comparing strings, we use the
notation dg(a,b) to denote the Hamming distance between strings a and b.
When |a| < |b], dg(a,b) = miny e, dg(a, '), where O is a substring of b. The
original NP-completeness proof for COMMON APPROXIMATE SUBSTRING was
for the more restricted case with [=n and || = 2 in [3]|. This result of this
paper both strengthens and complements the W/I/-hardness result given in
[2] for cas(m, |X|) when |X| = 2.

Parameterized complexity analysis. Parameterized complexity provides
general methods for obtaining exact solutions to NP-hard problems. A pa-
rameterized problem is a decision problem whose instances include one or
more values that may be fixed, independent of the input size. An example
of such a problem is k-vertex cover, where the size k of the cover is fixed,
and does not depend on the size of the graph. A problem is said to be fixed
parameter tractable if it can be solved by an algorithm with time complex-
ity O(f(k)n¢), where n is the size of the input, k is the parameter, f is an
arbitrary function that does not depend on n, and c is constant.

The theory of parameterized complexity also describes and organizes the
complexity of problems that are not fixed parameter tractable. Parame-
terized complexity draws fine distinctions between NP-hard problems and
classifies them according to an infinite hierarchy of complexity classes within
INP. The hierarchy is called the W-hierarchy = { W[1], W[2],..., W[t]}, and
is based on successively more powerful boolean circuits. One can establish
that a parameterized problem II is hard for a class in the W-hierarchy by
using a parameterized reduction from a problem known to be a member of
that class.

Definition 1 Let II and I’ be two parameterized problems. A parameter-
ized reduction from II to II' is an algorithm A that transforms an instance

(z,k) of Il into an instance of (', k') of II' such that:

1. Arunsin time O(f(k)|x|¢) for arbitrary function f (independent of |z|)
and constant ¢ (independent of both z and k).

2. k" = g(k) for some arbitrary function ¢ independent of |z]|.
3. (x, k) € Il if and only if (a' k') € IT".

For this paper, the version of COMMON APPROXIMATE SUBSTRING pa-
rameterized with the alphabet size (|X|) and number of strings (m) is denoted
cAs(m,|X]). We have only mentioned those concepts of parameterized com-
plexity that are essential to the material in this paper. A detailed description
of the theory can be found in [1].

2 The W]J2]-hardness of cas(m,|Y|)

To show W/2/-hardness for cAs(m, |X|), we give a parameterized reduction
from the W/2/-complete problem SET COVER [1].

SET COVER |4, Problem SP5|

Instance: A set B of elements, a family of sets £ such that £; C
B, (1 <i < |L]) and a positive integer k.

Parameter: A positive integer k.

Question: Is there a size k subset R C £ such that Ug,crR; = B?

Let I = (B, L) be an instance of SET COVER. Without loss of generality,
assume that the elements of B are the integers [1,|B|]. We show how to
construct an instance F of CAs(m,|X]) such that I has a cover of size k
if and only if F has a center with a particular maximum distance to any
instance.

Target Parameters. The number of strings in F is m = fi(k) = 2k. The
length of the center C is [= fo(B, k) = k|B| + 2, and the maximum distance
between instance and center is d = f3(B,k) = (k — 1)[B|. The maximum
length of the strings in F is n = fy(L, B, k) = 2(k|B[+ 2) - |£|, and the
alphabet size is | X| = f5(k) = 3k + 1.

The Alphabet. The string alphabet is ¥ = ¥; U ¥y U {A}. We refer to
these as solution characters (¥1), unique characters (¥2) and the alignment
character (A), with

21 = {81,...,8k},

Yo = {Uu; U2, U21, U22, - - -, Uk, Uk2}.

For 1 <14 < k, we will assume without loss of generality that character s;
is the integer i. The characters of Y5, denoted by w with subscripts, are
identical within a string, but different between strings.

Substring Gadgets. We next describe the three “high level” component
substrings used in the construction. For Membership Indicators, the product
symbol refers to concatenation and is ordered.

Fillers:

(Cover(i)) = sgk_l)‘gl
Separators:
(k|B|+2)

(Separator(i,p)) = u;,

Member Indicators:

(Set(i, j,p)) = [[(i, 4., b)

beB

The Cover Indicators are strings of length (k —1)|B| and each corresponds to
some L; € L. The Separators are strings of length k|B|+2. Each is composed
entirely of characters from Y5, and the variable p takes values from {1,2}.
The Set Indicators are used to indicate the sets that make up a cover. The
function g is defined as

o S if be ﬁj,
F(z, Jspyb) = .
u;p otherwise.

The Reduction. Each of the k sets in the cover R for I is represented by
a pair of strings in F. In particular, the instances in strings S;;, ;s € F
correspond to the i set in R. Define

Si1 = H A(Set(i, 3,1))(Cover(i)) A{Separator(i, 1)),
I<i<IZl

B: {1,2,3,4,5,6,7}
Lli {1,4,6}

Lo {1,2,4}

£32 {3,5}

Ly {1,2,3,7}

k: 3

Figure 1: Example instance of SET COVER.

S11 : Aluululul??Au?®A11utuuult®Au®®Auuiuiuul #Au?A111uuul 114Au3A
Sio : Aluululul?Au?®A11uluuul®Au®® Auuiuluul #Au?A111uuul 1144u3A
So1 1 A2uu2u2u2*Au?3A22u2uuu2ttAu?® Auu2u2uu2ttAu?3 A222uuu2214Au3 A
Soo : A2uu2u2u2t4Au? A22u2uuu2i4Au?® Auu2u2uu2ttAu?B A222uuu22t4Au A
S31 : A3uu3u3u3*Au?®A33u3uuudi*Au® Auulduduudt*Au?3A333uuuld3itau3a
S39 : A3uudu3du3d4Au?®A33u3uuuditAu®® Auududuu3t4Au?A333uuu33di4au®aA

Figure 2: cAs(m, |X|) representation for the example instance of SET COVER
given in Figure 5. The character u denotes a character that differs across
strings. The underlined substrings are expanded and explained in Figure 3.

Sip = H A(Set(i, j, 2))(Cover(i)) A(Separator(i,2)).

1<ji<|£

The family of strings is then F = {Si1, S12, S21, S22, - - - , Sk1, Sk2}. Note that
no matter what set of substrings is taken as instances of a center, aside from
the positions containing alignment characters, any position has at most two
strings with the same character. An example of this reduction is provided in
Figures 1, 2, and 3. For Figure 2, the subscripts are left out of the unique
characters; these are given unique symbols in Figure 3.

The proof of correctness for this reduction rests on a function d that
provides a lower bound on d, the minimum possible value of d for a set of
instances. Given a collection of potential instances of a center string for F,
define z;; as the indicator function that has the value 1 if S;[i] is not the
column majority character in column 7 of the aligned instances and the value

Su[1] Alaalalalllll111111111A
Sia[1] Albblblb11111111111111A
S91[93]: Acc2c2cc222222222222224
S45[93]: Add2d2dd222222222222224
S51[139): A333ece333333333333333A
Ss5[139): A333ff£333333333333333A
Center String: A3331213111112222223334A

Figure 3: Expanded diagrams of the substrings underlined in Figure 2, along
with an optimal center string for the instances. The characters in bold are
those that match the center string.

0 otherwise. The function d is defined as follows:

d— 2?:1%‘”:1%‘
— |

Intuitively, d counts the number of mismatches occuring between the in-
stances and their center in the best case, then distributes them evenly among
the instances. Those rows for which the distance to the center is not less than
d are referred to as bad rows, and their number is denoted by r.

Lemma 1 d < d.

Proof 1 We proceed by induction on the number of columns considered.
This induction will use the functions Eh and th which denote the values of d
and d relative to the first A characters of the given instance strings. The base
case is the trivial situation of a single column which can easily be verified. For
the inductive step, suppose d, < dj,. If d;, < dj, or if d), < 3h+1, the addition
of a column cannot increase dj,; beyond EhH. It remains to establish the
case where d, = dj, = dj.1. Since this case does not see an increase in d,
it must be true that all bad rows have the same character in column A + 1.
This implies the following;:

[s h+1 B
d | ZiE Xz
e

[s h m m
| Ei:lzjzlzi]'_*_zj:lzh-l-l,j“

m m

Z?:l (Zz‘l +.. .+ sz) n ETzlzhH,j
m m

(zi1+ .-+ 2im)+ oo+ (Zhr + -+ 2hm) N Y Zht 1,
m m

(zi1 4+ 2p) + oo+ i+ oo+ 2m) N Y Zht1,
m m

Given this expansion and reordering of z;; terms by row, note that there will
be r bad rows taking value 1, so we simply remove r of these z;;, one for each
of the bad rows, and we are left with dj, — 1 of the z;; that take a value of 1
in each of the m rows, i.e.,

h m
i=1 Zj:l Zij

—dp -1+ .
m m

This in turn implies:

7 - T Em_z ; — r Ern_z .
dpi1 = dh_1+_+ﬂ} :dh—1+{—+ j=1 h+1,3]
m m m m

Observe that if Eh+]_ = dp, then all bad rows have the same character in

column h + 1. Therefore the value of the term —=+bs

and so

is at most (1 — %),

dpi1 = 8h_1+{%+(1_%” = d.

Lemma 2 If the column magjority character occurs at most twice in any
column, then d > | — %

Proof 2 Suppose no column contains any character more than twice. By

Lemma 1,
_ (m — 2)1}

12z |

Lemma 3 Let F be a set of strings constructed as described in the reduction
and let C be a center for F. Then C must begin and end with the alignment
character, and so must all instances.

Proof 3 Suppose the center C does not begin with the alignment character;
then by the separation between alignment characters in members of F, no
instance can match two alignment characters in C. As all but one column has
at most two occurrences of the column majority character, we can rewrite the
bound on d given in Lemma 2 with the substitutions m = 2k and [= k|B|+2
to obtain d > (k — 1)|B] + £2. A symmetric argument establishes that C
must end with the alignment character.

Suppose some instance begins or ends with a character other than the
alignment character. Then that instance cannot match C at those positions.
Again using Lemma 2, d > (k — 1)|B] + &L |

Lemma 4 SET COVER parametrically reduces to CAS(m,|X|).

Proof 4 The construction described above runs in time that is fixed-parameter
tractable relative to m and |X|. Hence, we need only show that the reduction
is correct.

Suppose there is a cover R for B, such that |R| = k. From R, construct a
center C for F as follows. (1) The first and last positions of C are assigned the
alignment character A. (2) The next |B| positions, used to represent elements
of the base set, are each assigned a character indicating one of the sets in R
that covers the corresponding element. For each b € B, choose some L; € R,
such that b € L£;, as covering b. Since R is a cover for B, there is at least one
such choice for every b € B. If L; is chosen to cover b, then s; is assigned to
position b+ 1 in C (recall that the elements of B have been equated with the
integers 1 to |B|). (3) The remaining (k — 1)|B| positions of C correspond
to the Filler gadgets. For each £; € R, if x; positions (0 < x; < |B]|) of C
have been assigned characters corresponding to elements in £;, then |[B| — z;
positions in the Filler part of C are assigned the character s;. Given this

8

construction, note that if £; € £ is the i"* set in R, then the substring
of S;1 (and of S;2) that begins and ends with the alignment character, and
contains the j* Membership Indicator, matches C in exactly 2+|B| positions.
Therefore C is a center for F with distance exactly (k—1)|B| to any instance.
Conversely, suppose there is no cover of size k for B. Then for any set
of instances from members of F, there exists at least one position in which
every instance has a unique character. Lemma 2 provides a lower bound on
the d value of any center for the instances. Any position j will contribute
" zij = (m—2) to d, except for those columns having a unique character
in each instance, which contribute m — 1. This implies the following:

Fi . (1 3)(m _n? + (m — 1)}
5 2(k|B|+2)

= k'B”ﬁ‘Tw

> (k—1)|B|+ 1.

Therefore F has no center with maximum distance (k — 1)|B|. |

Theorem 1 cAs(m,|Y|) is W|2|-hard.

Proof 5 Follows from Lemma 4 and the W/2[Fhardness of SET COVER [1].
1

References

[1]

2]

131

4]

R. Downey and M. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized
intractability of closest substring and related problems. In H. Alt and
A. Ferreira, editors, The 19th International Symposium on Theoretical
Aspects of Computer Science STACS 2002, volume 2285 of Lecture Notes
in Computer Science, pages 262-273, Antibes/Juan-Les-Pins, France,
2002. Springer.

M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30(2):113-119, 1997.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman and Company; San Fran-
cisco, 1979.

