Web Accessible Real-Time Geospatial

Operations Via Satellite Communications

by

Alex Lemin Wu

TR03-159, June 03

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

This research investigates and tests two satellite communication links for application
to real-time seismic survey operations. The research includes an investigation of satellite
system physical characteristics, a cost model and the software and system integration
required to integrate satellite communications with real-time geospatial operations.

After intensive investigation of different satellite systems, Iridium and Orbcomm
were chosen as candidates for experimental validation. An XML cost model was
developed to estimate costs for various seismic survey operational scenarios involving
Iridium and Orbcomm satellite systems. Both satellite systems were tested to determine
their operational characteristics. Three different experiments transmitting packets of 108
bytes (simulating helicopter GPS information) were carried out at different frequencies,
time of day and transceiver movement (static and dynamic).

Satellite communication system cost is about 10 times less per unit of data
transmitted for Orbcomm compared to Iridium. Orbcomm has a much higher latency and
lower update rate than Iridium. Our experiments determined an average latency for
Iridium of 1465 ms while Orbcomm’s average latency was 12 minutes 45 seconds given
the same data transmission parameters.

Simple Object Access Protocol (SOAP) was also explored in this research for its
possible role in satellite link geospatial information systems. Our results show that SOAP
has good potential for use in client — server web applications for satellite cost estimation

as part of satellite-based field operations.

i

Acknowledgments

First of all I would like to take this chance to express my many thanks to Dr. Brad
Nickerson, my supervisor for his support, patience in guiding my research work at every
step. Without his support and guidance it would not possible for me to finish my
program.

I am also thankful to Jim McLellan, Peter Srajer and Dave Huff of Eagle Navigation
Systems Inc. for their support in providing Kodiak Office, RGU software and seismic
survey GPS data for experimental testing.

My thanks go to Dr. Peter Dare and the Geodesy and Geomatics Engineering
Department of UNB for their generous permission to use the Hydrography Lab for our
research.

I would like to thank Dr. Bernd J Kurz and all members of the examining board for
taking time to evaluate my research work.

I appreciate all the technical support from the system support team of UNB Computer
Science including Ivan Sears, Troy Cable and Sean Seeley. My appreciation also goes to
Mary Kaye, Bruce Miller and Adam Wilson of Department of Electrical and Computer
Engineering for the consultation on QNX 4.25 system and supply of equipment.

We also thank Dr. Claudia Iturriaga who provided financial support to purchase

hardware necessary to complete our research experiments.

il

Table of Contents

AADSTIACE ...ttt ettt e a e bttt et st a et e h e nh et sae e il
ACKNOWIEAZMENLS......cciiiiiiiieeiiie et et e et e e e eeeaaeeesaeeesaaeeesaeesnsaeenns il
Table Of CONENLS ...c..eiuiiiiieiieieee ettt et sttt v
LISt O FIGUIES ...eieiiieeiie ettt ettt et e e et e e s teeessteeessseeesaeeensaaeennsaeanns vi
LSt OF TADIES ..ottt sttt sttt viii
List of Acronyms and AbDIrevViations...........cccueeeiiieriieeeiieeeieeeieeeeieeesieeesvee e veeesnee e X
Chapter 1. INtroOdUCTIONccuviiiiieiieiie ettt ettt bee e ssaesebeesaeeenbeennnas 1
L1 PIevIOUS WOTK..couiiiiiiiiieie ettt st e 2
1.2 ReSEAICh ODJECHIVESevieiieeiiieiie ettt ettt ettt et esaee e ee 2
1.3 TRESIS OVETVIEW....eiutiiiiieiieeiie ettt ettt ettt ettt et e et e bt e sabeesbeeeabeeeee 3
Chapter 2. Back@roundcccoooiiiiiiiiiieiiecieee ettt ettt s enaes 5
2.2 Simulation of Kodiak Office 2.5.1 and RGUS00...........ccocoeiiiiiiiiniiiiicceeeee 6
2.3 SAtlIte SYSLEIMS ...eevieeiieiiieiiesiie et ete et ettt e ette et e st e e beesaaeebeeesbeeseesnseeseeenseennes 9
2.3.1 Low earth Orbit SYSTEMSeevcvieiriieeiiieeciieesiee e e eiveeeeee e teeesaeeesaeeesaeeenes 9

2.3.2 Geostationary earth orbit SYStEIMSccccveeciierieriiieiieeieeee e 10

2.3.3 Medium earth orbit SYStEIMSccvviiiiiiieiiie ettt 10

2.4 XML and SOAP ...ttt st 12
24,1 XIS DY ettt ettt et et a et ettt eneenaeennean 12

2.4.2 Xerces XML Parser......cccccooiiiiiiiiiiieiiceeeeeeee et 13

2.4.3 SOAP eXPlOTatiON.ccciuiiiiiiieeiiieeiie et eeiee et e ste e ere e s teeesbeeessaeeeseseeenneeas 14
Chapter 3. Cost estimation model for satellite survey operationscccceevveereeennenne. 16
3.1 Satellite commuNication COMPONENLS.cuvrerrrrreerreerireenieeesreeesreeesreeesseeesseeenns 16
3,11 Iridium SYSEEIM...ccuiiiniieeiiieiie ettt ettt et ee ettt e et e s e et e eaaeenbeeennas 16
3.1.1.1 Iridium €qUIPMENLccccuvieeiiieeiieeeee et e e e e e e 17

3.1.1.2 Iridium technologies and SETVICESccevueeriieriuienieiiienie e 19

3.1.2 OrDCOMM SYSEEIM....ccuviiiiiieiieeiieeiieiie et eeire et e eeeeereeseeeebeesteeesbeesneessseenseeenseas 21
3.1.2.1 Orbcomm €qUIPMENLccueeuierieriiriienieeieetenteeie ettt s e e eeeeaees 22

3.1.2.2 Orbcomm technologies and SEIVICeS........cceevvrerreerieeiirenieereerereeneans 24

3.1.3 Summary of equipment and subSCIIPtion COStcceeerereereerieeienieriennne 25

3.2 Cost estimation MOdel deSIN..........cccuieruiieiiieiiieiierie ettt eve e e 26
3.2.1 Cost estimation model eqUuatioNS..........ccccoeerieriireinieienienieeeeeeeeeee e 27

3.2.2 Cost elements and latency comparison of active satellite systems................. 30

3.2.3 High accuracy SEISIMIC SUIVEYceruuierueeruieeiienreenieesteenieeeneeseeesseesseeenseesenes 32

3.2.4 FOrest fire OPETatiONS.......ccueeeriieerieeeriieeiieeeireeeareesieeessseeessseesnsseesnsneesnsseesns 33

3.2.5 Radio modem modelccocueiiiiiiiiiiiiiiee e 35

3.3 XML VETSION ..cniiiiniiieiiieite sttt ettt sttt ettt st e sb e ettt e st esbee e st e nbeesateenbeeeaee 35
3.3.1 Cost estimation MOdElcceeiiiiiiiiiieieee e 36

3.3.2 Software implementationcccccueerierieeniieeieerie et seee b e 38
3.3.2.1 Satellite system basic cost elements source file............ccceveenernennee. 39

3.3.2.2 Project cost XIML fIl€c.cceouieiuiieiieiieeieeeeeieeite e 42

3.3.2.3 Cost XML File GeNnerator............ccceceerieeniieniieiienieeiee e 44

3.3.3 Example satellite SUIVEY COSS......eeriimriiiriiiiieniieeiierieereesiee e seeeereeseee e 47

3.3.4 SOAP compatibilitycccerieririiniiiieienieeeee e 49
Chapter 4. Satellite communication eXPerimentsccceeevveerieeereerieereensreeneesseenneeenne 54

v

4.1 EXPETiMENt AESIZNeeviieiiieiieeiieiieeieeriee et estte et eseeesteesteeebeessaeenbeesseeenseessneensaens 54

4.1.1 System archit@CtUIEccccvieriuiieeiieeciee et ettt ee e ee e re e e saeeesereeeseee s 54

1.2 QNX 425 ettt st 55

4.1.3 Embedded serial communication programming............ccecceeeevvveeeiveeesveeesenens 56

4.1.4 Satellite transceiver (IMOAEM)........cc.eeevuiieeiiieeiiieeieeeee et e e 58

4.2 Software deVeIOPMENL.........c..iiiiuiiieiiecie e ee et e e sebee e s 61

4.2.1 Serial IIDTATY ...ccviiiiieiieciie ettt ettt et ebe b ees 62

4.2.2 Modem InItialiZAtIONcc.eiiiiiiiiiiiieeieeiie et 64

4.2.3 Fletcher CheckSUMcoiiiiiiiiiiiiiieicet e 66

A.2.4 SENART ...ttt ettt et e 68

4.2.5 RECEIVET ..ottt ettt ettt sttt ettt ettt b et b e be et sete b enee s 75

4.2.6 Computing satellite system latency.......cccccvevviieriiiieiiieeie e 80

Chapter 5. Testing and results analysiS.........cccvevieriieriieiiiieriecieee e 82

5.1 TESt @NVITONIMENTeiutieiieiiieeitie ettt te ettt ettt e bt e et e st e sabeesbeeesbeesbeesateenaeeenne 82

5.2 Tridium EXPETIMENLSeevieriierieeteertieeteesieeeteesteeeteesseeeseessreeseesseeesseesssesseessseenne 84

5.2.1 SHALIC tESTINE ..vveeerieeeiiieeeiieeeiee et e et e et eeetaeeetaeeetaeesssaeessseeesssaeessseeensseeanns 85

5.2.2 DYNAMIC tESTINEeetieiiiieiieeiieiie et esiie et eseteeteesiteesbeesseeeseessbeeseesnseenseesnsens 86

5.2.3 Analysis Of teStiNg TeSUILS........eiviuiiiiiieeiiiece e 88

5.2.3.1 StatistiCal teStING......cccuieriieiiieiieeiieiie ettt 88

5.2.3.2 Testing results analysiS.......cccceecvreeiieeriiiieniieeeieeeeieeeeeee e 89

5.3 OrbCOMM EXPETIMENLeeitieriiietieriieertieeieeieesteesteestteeseessreeseesnseesseesssesseessseenne 93

5.3.1 SHALIC tESTINE ..vveeerieeeiiieeeiieeeiee et et e et e e e aae e et eeetaeessbaeessseeesssaeeesseeensseeenns 93

5.3.2 Analysis Of TESUILSeeiuiiiiieiieeiieee ettt 94

Chapter 6. Conclusions and future WOrK...........coccueeeiiieriiieeiiiece e 98

6.1 CONCIUSIONS ...ttt et sttt sa et s 98

6.2 FULUTE WOTK ..ot 99

RETOTEINCES ...eiieeiieeieeee et e et e et e e e ta e e sareeeenbeeesnseeesaseeennes 101

Appendix I. CostParms.dtd..........ccceeeiieiiiiiiiiicciceceee e 105

Appendix II. ProjectCost.dtdocooiiriiiiiiiniiiiceceeeceee e 107

Appendix III. ProjectCost.xml output files..........ccevviievierciiiniiniieieeeeee e 110

A III. 1 High accuracy seismic survey with satellite systems...........cccceceevveeieennnne. 110

A III. 2 High accuracy seismic survey with radio modemscccceevveeevierieeneenen. 112

A TI1. 3 Forest fire operation #1ccoiiiiiiiiiiiiieiie ettt 114

A TI1. 4 Forest fire OPeration #2cccveeeieriierieeiieenieeieeseeeieeseeereeseneeseessneesseenenas 116
VITA

List of Figures

Figure 2.1 Architecture of the Kodiak system with radio frequency modems. 5
Figure 2.2 Architecture of Kodiak Office 2.5.1 and NS500 RGU simulation.................... 7
Figure 2.3 NS500 RGU software running on QNX1.....cccooiriiiniininiiniiieiieneceeeceen 7
Figure 2.4 Kodiak Office2.5.1 with mobile agent position information.c.ccceuuee. 8
Figure 2.5 Virtual GPS software screen Shot..........coccovieviiiiniininiiniieeeeee, 9
Figure 3.1 Iridium equipment used for our research............cccceeevienieeiieenieeiiesie e 19
Figure 3.2 Iridium Mobile Terminated Data Service [Iridium, 2002c].cccveevvveennnenn. 20
Figure 3.3 Orbcomm system data communication routine (from [Orbcomm, 2002])...... 22
Figure 3.4 Orbcomm eqUIPMENL.ccueieiiiieiiieeiie ettt e e e 24
Figure 3.5 High accuracy seismic survey model using satellite communication. 32
Figure 3.6 Connections for forest fire operations model #1 (Iridium plus Orbcomm)..... 34
Figure 3.7 Connections for forest fire operations model #2 (all Orbcomm). 34
Figure 3.8 Radio model with Orbcomm link.ccccuveeviiiieiiiieiieeee e, 35
Figure 3.9 The survey with satellite project cost estimation model in UML. 37
Figure 3.10 Pseudo-code of the main method for project cost estimation........................ 38
Figure 3.11 Architecture of the CostXML Generator program.cceeeeveecveerevennnenns 39
Figure 3.12 Part of the CostParms.dtd file (for the Orbcomm cost elements part). 40
Figure 3.13 Part of an example CostParms.xml file for forest fire operation #1.............. 41

Figure 3.14 CostXML.dtd for high accuracy seismic survey (I nst al | part only). 43
Figure 3.15 Part of a sample ProjectCost.xml file for a high accuracy seismic survey

(Instal | _CoSt ONLY). ..o 44
Figure 3.16 Example of source code from CostXML _Generator to compute cost element

Dy from equation (3.9). c...eeeuiii e enaeeen 46
Figure 3.17 Pseudo-code description of the cr eat e XMLFi | e() method

(COStXNLFI | € ClaSS). cueeiieeiieeieiieeie ettt ettt 47
Figure 3.18 Example SOAP response from SQLData3.0 SOAP Server [SQLData, 2002].

... 51
Figure 3.19 Proposed architecture of a SOAP-enabled project cost estimation application.

... 52
Figure 3.20 Example SOAP response of satellite communication cost at head office..... 53
Figure 4.1 Architecture of satellite communication experiment System.ccc..... 55
Figure 4.2 Software architecture of the satellite serial communication experiments. 58
Figure 4.3 Example AT command and response sequence for the Iridium Motorola 9500

(sending side) [Iridium, 2002C]....c.ccecviirieeiieiieeieeree ettt re e 60
Figure 4.4 Sample code to open and configure a serial port using the Klein’s serial library

[KIE1N, 2001T. .ottt sttt s 64
Figure 4.5 The modem initialization method for the Iridium Motorola 9500 handset

(i ni t _nmodenm() method on Windows 2000)............ccceeieeierieeeenieieeieereeee e 66

Figure 4.6 Fletcher’s checksum method (from [Fletcher, 1982] and [KBMW, 1999]).... 68

Figure 4.7 Sample data message (108 bytes long) for satellite communication channels
BESTITIZ. 1.ttt ettt ettt ettt et ettt et et e et et e e e bt e h e e e bt e hte et e e ehe e e bt e naeenbeenateenbeenes 68

Figure 4.8 Sample Iridium modem testing sessions in OPeration.cceeeeeeveereeernnenns 70

vi

Figure 4.9 Pseudo-code for reading a file of simulated GPS data..........cccccoceviininnnnn. 71
Figure 4.10 Example portion of a data transmission summary file recorded by Sender.. 72
Figure 4.11 Sender pseudo-code for Iridium on Windows 2000.........c..ccccevveervenenneennnen. 74
Figure 4.12 The different part of the Sender pseudo-code for Orbcomm on QNX 4.25.. 75
Figure 4.13 Steps of serial port reading at the Receiver side for Iridium communication.

... 76
Figure 4.14 Pseudo-code for the Receiver program on Windows 2000................ccc....... 78
Figure 4.15 Example portion of a rRecord.txt file recorded by the Receiver................... 80
Figure 5.1 Computer setup in Room GE112 (Hydrography Lab) of Gillin Hall.............. 82
Figure 5.2 Antennae and satellite transceiver setup on the roof of Gillin Hall. 83
Figure 5.3 Satellite antenna layout on the roof (all units in cm).........cccceeevveevcrieenieeennenn. 84
Figure 5.4 Dynamic Iridium transceiver 1ayout.cccoeviieiiiniieiienieeieeceee e 87
Figure 5.5 The Iridium system average data transmission latency for static testing. 91
Figure 5.6 Orbcomm average latenCy........cccueevuierieeiiieniieiiecie ettt 96

Vil

List of Tables

Table 2.1 Technical elements of Iridium and Orbcomm satellite systems. 11
Table 2.2 Technical elements of Globalstar and MSAT satellite systems. 12
Table 3.1 Summary of equipment and subscription costs for this research...................... 26
Table 3.2 Comparison of satellite communication system cost and latency. 31
Table 3.3 Costs comparisons of different satellite survey (number in () after each
subtotal indicating % of total cost excluding cost B)........cceecuvevieriiienieeiieeniieeieenen. 48
Table 4.1 Common Iridium AT commands and responses [MPCS, 2000]. 60
Table 4.2 SC-Originated message of Orbcomm with an example packet data from the
Quake 1500 satellite transceiver [KBMW, 1999].......c..cooviiiiiiiiiiieeee e, 61
Table 4.3 Classes and methods in de Klein’s serial library (from [Klein 2000]). 63
Table 5.1 Iridium static testing results during the morning of November 12, 2002......... 86
Table 5.2 Iridium static testing results during the afternoon of November 12, 2002........ 86
Table 5.3 Iridium static testing results during the evening of November 12, 2002.......... 86

Table 5.4 Iridium dynamic testing results during the afternoon of November 28, 2002.. 87
Table 5.5 Iridium dynamic testing results during the afternoon of December 11, 2002. . 88
Table 5.6 Average system latencies and standard deviation at different frequencies and

different time Of the day.........cccooeviiiiiiiii e 90
Table 5.7 Results of the ¢ values for Iridium static testing (equal variance assumption). 90
Table 5.8 Calculation results of ¢ values for Iridium static and dynamic testing.............. 92
Table 5.9 Orbcomm static testing results during the morning of November 12&14, 2002.

... 93
Table 5.10 Orbcomm static testing results during the afternoon November 12&14, 2002.

... 94
Table 5.11 Orbcomm static testing results during the evening of November 12&14, 2002.

... 94
Table 5.12 Average system latencies and variances at different frequencies................... 94

Table 5.13 Results of the ¢ values for Orbcomm testing (equal variance assumption). ... 95

viil

List of Acronyms and Abbreviations

ACK --- Acknowledgment

API --- Application Programming Interface
CDMA --- Code Division Multiple Access
CDPD --- Cellular Digital Packet Data

COM --- Component Object Model

CPU --- Central Process Unit

CRC --- Cyclic Redundancy Check

DGPS --- Differential Global Positioning System
DTD --- Document Type Definition

FDMA --- Frequency Division Multiple Access
FTP --- File Transfer Protocol

GEO --- Geostationary Earth Orbit

GES --- Gateway Earth Station

GPS --- Global Positioning System

HTTP --- Hypertext Transfer Protocol

IDE --- Integrated Development Environment
IEEE --- Institute of Electrical and Electronics Engineers, Inc.
ISU --- Iridium Subscribing Unit

LAN --- Local Area Network

LEO --- Low Earth Orbit

MEO --- Medium Earth Orbit

MTS --- Multiplex Timing Serial

NCC --- Network Control Center

NTP --- Network Time Protocol

OEM --- Original Equipment Manufacturer
OMG --- Object Management Group

POSIX --- Portable Operating System Interface
PSTN --- Public Switched Telephone Network
RGU --- Remote Guidance Unit

SBM --- Short Burst Messaging

SC --- Subscriber Communicator

SDK --- Software Development Kit

SIM --- Subscriber Identity Module

SNTP --- Simple Network Time Protocol
SOAP --- Simple Object Access Protocol
TCP/IP --- Transmission Control Protocol/Internet Protocol
TDMA --- Time Division Multiple Access
TNC --- Threaded Neill Concelman

UHF --- Ultra High Frequency

UML --- Unified Modeling Language

VHF --- Very High Frequency

W3C --- World Wide Web Consortium

WAP --- Wireless Application

WML --- Wireless Markup Language

X

WMLScript --- Wireless Markup Language Script

XML --- eXtensible Markup Language

XSL/XSLT --- extensible Stylesheet Language/extensible Stylesheet Language
Transformations

WSDL --- Web Service Description Language

Chapter 1. Introduction

Wireless communication has entered its fastest growth period in history since the
development of technologies permitting wide spread deployment [Rappaport, 1996].
Real-time wireless information management in energy and resource operations requires
fast and seamless information flow for data acquisition, management and operational
decisions. Due to the swift advance of internet technology, communication over the web
has become an efficient alternative to many currently applied communication methods,
which is particularly advantageous for applications like real-time mobile information
management [Nickerson and Shan, 2001].

In mobile distributed environments, applications related to current location often need
to send and receive data dynamically. In geophysical surveys in remote areas, equipment
movement by using helicopter to geophone locations as well as dynamic real-time
information exchange between the pilot, base station and main office is necessary to
guide the helicopter to the right location successfully and efficiently [Chatenay, 2000].
These tasks can be accomplished by wireless mobile telephone (cellular phone), radio
modems or satellite communication link. In most cases, using radio modems is less
expensive and more convenient since cell phone coverage may not be available. The
disadvantage of using radio modems is that the maximum range of communication using
commonly available licensed radios (with a 5 to 40 watt transmitter) is limited to around
40 kilometers (with repeaters). A satellite communication link becomes a good
alternative choice in real-time geospatial operations [McLellan, 2001]. Recent
technological advancements allow the deployment of satellite networks that provide

voice and data transfer capabilities to any isolated corner of the globe [Ha, 2001].

1.1 Previous work

A simulated wireless real-time geospatial operations system was achieved
successfully by Ying Shan of UNB during her graduate research [Shan, 2001]. A three-
tier working prototype was designed and implemented using WAP, WML, WMLScript,
XML, JavaServlet, Java Applet, HTML and JDBC techniques. An experiment using
recorded helicopter flight data from Eagle Navigation Systems, Inc. demonstrated that the
system could send from a WAP device simulator to the on-line central office the real-
time geospatial information of a helicopter employed for the purpose of drilling holes and
delivering equipment for seismic exploration operations. The movements and detailed
information of this helicopter can be displayed, in real-time, from a web browser with a
delay of less than one second. The system can also store all the received data in an Oracle
database and therefore any existing historic flight path can be selected and reviewed by
internet users from a web browser [Shan, 2001]. Kodiak flight path data files (KFP) were
reformatted into XML before data was used in the simulator. This research builds on
Ying Shan’s completed research to investigate the middle layer using satellite systems for
communications.
1.2 Research objectives

In the current Kodiak system, there is a limitation including a range limit of
approximately 40 km of the radio frequency communication between the helicopter and
base station and the need for expensive setup of radio modem transmission towers (e.g.
when radio repeaters are required) [Eagle, 1998].

To improve the communications within the existing Kodiak system based on Ying

Shan’s research work, a satellite communication link becomes a potential choice for the

connections between helicopter, base station and head office. The objectives explored in
this research are in three parts — physical system characteristics, cost and feasibility and
software and system integration.

In the physical system characteristics part the focus is on finding if the selected
satellite communication systems are able to handle (maintain a reliable data link) the high
dynamics of aircraft (fixed wing and rotary) navigation, provide error checking
functionality and keep data link “always on” without initiating a call (e.g. like CDPD
(Cellular Digital Packet Data) for cell phone data service).

The second task is to explore if there is an appropriate active satellite system for real-
time global geospatial operations. This task includes building a cost model and
determining the long-term viability and target market for individual satellite
communication systems.

The third part of the objectives is to integrate software and systems with the satellite
system modems including experimental testing of satellite communication data link
systems. The role of Simple Object Access Protocol (SOAP) in defining a software
architecture for real-time geospatial operations is also a main topic in this part.

1.3 Thesis overview

The chapters in the thesis are organized as follows:

Chapter 2 is background introduction including Kodiak system architecture, satellite
systems overview, XML and SOAP tools for the satellite cost model. In Chapter 3 the
satellite cost model is described in detail including comparison of satellite systems, cost
model design and implementation. Satellite data communication experiments for both

Iridium and Orbcomm are introduced in Chapter 4 with system design and software

development. Chapter 5 presents satellite data transmission latency testing and analyzes

the test results. Chapter 6 concludes the research and indicates future work.

Chapter 2. Background

A system called Kodiak, for real-time mobile geospatial operations has been designed
and built by Eagle Navigation System, Inc. of Calgary, Alberta. Section 2.1 gives a brief
introduction to the Kodiak system and section 2.2 describes a simulation experiment
using the Kodiak system.

2.1 Kodiak system architecture overview

The architecture of Kodiak system is shown in Figure 2.1.

GPS GPS Helicopter with
NS500 RGU

N ’é*

radio modem link

(Pacific Crest, Teledesign,
maximum range 40 km
with repeaters)

Base Stion
with Kodiak Office System

Figure 2.1 Architecture of the Kodiak system with radio frequency modems.

Kodiak is primarily used for helicopter guidance and management during seismic
survey operations. The system consists of two major components, namely:

1) Kodiak Office software installed on an industrial computer with Windows 98, flat
panel screen, data radio modem, UPS, UHF/VHF antenna cabling and a 12 volt power
supply. The Kodiak Office base station generates missions for the remote helicopters,
displays the current helicopter positions, and provides reports on activities [Eagle, 1998].

2) The NS500 Kodiak navigation system installed in a helicopter. The NS500 Remote
Guidance Unit (RGU) consists of a vehicle-mounted DGPS navigation and guidance

system connected via radio frequency links back to a single controlling base station

(Kodiak Office) [Eagle, 2001]. The NS500 system has a NovAtel 12-Channel GPS card
working with an Omnistar OEM card providing DGPS corrections. The NS500 runs on an
embedded 586-class computer using a QNX real-time operating system. There is a
custom-built remote display for the pilot and a keypad for menu operation. The NS500
system allows the pilot to fly directly to the target without having to follow a map and
confirm terrain features. The system also reduces time in “Dead Man’s Curve” (i.e. when
the helicopter has little forward motion making positional control more difficult.),
minimizes the radio communication between pilot and base station and allows pilots to
mark waypoints (such as a fuel cache) and return to them later [McLellan, 2001].
2.2 Simulation of Kodiak Office 2.5.1 and RGUS00

Simulated radio frequency communication between Kodiak Office 2.5.1 and NS500
RGU was conducted on a Windows 2000 computer named Sylvius and a QNX 4.25
machine named QNX1 with the architecture shown in Figure 2.2. Kodiak Office 2.5.1
running on Sylvius sends task points with latitude, longitude and height information to a
simulated helicopter running NS500 RGU on QNX1. Meanwhile, the simulated
helicopter sends its own position information back to Kodiak Office 2.5.1. A virtual GPS
simulator running on a computer named Ltempor with Windows 98 operating system is
connected to QNX1 to generate GPS positions for the simulated helicopter. Figure 2.3
shows the NS500 RGU screen while a simulated mobile agent is approaching the target
task point from Kodiak Office 2.5.1. Figure 2.4 shows the helicopter position information
displayed on a Kodiak Office 2.5.1 screen. A Virtual GPS screen shot is given in Figure

2.5. Connections between Sylvius and QNX1, Ltempor and QNX1 are serial null modem

cables (Laplink Serial cable), which allow two ends to communicate with each other

without a real modem.

NS500 RGU [« Kodiak Office 2.5.1
null modem DB9 cable
QNX1]
QNX4.25 Sylvius
Helicopter Windows 2000
null modem DB9 cable Base Station

VirtualGPS

Ltempor
Windows 98

GPS Simulator

Figure 2.2 Architecture of Kodiak Office 2.5.1 and NS500 RGU simulation.

Figure 2.3 NS500 RGU software running on QNX1.

Kodiak Office - [BASE STATION Yer 2.51 Project: calgary] - ﬁ'lll
=l File Edit Setup Wiew Missions Tools Hazard &MNoFly Vehicle Ukls RGU Utls Mapping Editor Help - ﬁ'|5|

B ®BSIMNOGTES M AT He 2 T2 A AQRIARAAQACAN & 7|
®

0 FB63 13725 @®
e
Metres !
@)

))
Summary I 3333H I
Wehicle | Mizgion | Line | Targst | Laver | Attribute | S0G | COG (deq) | Distance | Az [deg) | GPS Statug | Yeh Status | Pol-Responze
3333H Initial AFreePt 32_20 CheckPt GeoPhore 0.0kph 2298 Unknown Hot Pt.3 4 MNaone
NS1 06 29,355 W11353 31.470 ‘ ‘RTCM 138 RTK:38 ‘NMEA : OFF RTCM: off

iﬁstartl“ L'ﬁ a8 q &) J @[1] 00:00 - <0 Player | @Wabmawl - Alex W's Mew,,, ”ﬂl(ndiak Office - [BASE S...

W oasam

Figure 2.4 Kodiak Office2.5.1 with mobile agent position information.

- WirtualaP5 NMEA Simulator - Eagle Mavigation Systems Inc.

— Initial Filer Settings

E it
— Pogition————————————————— [~ Accuracy — GPS Constellation 4'
Lat | M51 04 43 560 Lat 50 [m] | 03 HDOF | 1 r Trajectory Contral —
ero Rate |
lon | wi140033380 LensDm [03 | | vDoOP [2 &
Hat [rn) | 1088.24 Hat 5D [m) | 15 # Sis | 5
Qualit Mo Poz Jun -1°
b GPS ~UTC Time r— Communications Rate
Serial Port
RTK Fised 7) P
Tl |2EI:1 0:47.00 L
|—25 COM2
—DGEPS Day ot i . — Heading I 325 j Zero Hdg |
Correction Age [g] I 3 banth I li utput iz I =l Spd (kph) I g :Il Zemn Speedl
. 2002 : z -
DGPS Staton | 10 | vear | Cinbnus) [7= ZeroCind |
— MME& Dutput
— GFZDA ~GPYTG ~GRPGST -GPGGA————
uTC 20:14:13.352 Course [tue) 3251 uTC 20:14:13.360 Lat ME1 04 48,810
Ciay 25 Speed [Kn) 32 RkS [m) 1.500 Lon w114 00 36.366
Month 7 Speed [Kph] g.0 Semitdajor [m] 0.300 H [m] 1293.688
Y'ear 2002 Semitdinar [m] 0.300 GFS Quality DGPS
Lat 5D [m] 0,300 HDOP 1.0
Lon S0 [m) 0,300 Age (] 1
Hat 5O [rin) 1.500 Str 1D 10

2.3 Satellite systems

Figure 2.5 Virtual GPS software screen shot.

Satellite systems are primarily categorized by their earth orbit characteristics. This

section gives a brief introduction to each different satellite system and its typical

technical elements.

2.3.1 Low earth orbit

systems

LEO stands for Low Earth Orbit satellite constellation. LEO systems have a large

number of satellites, flying in an orbit of a few hundred kilometers above the earth. Any

location on the earth is able to see one of the satellites and the system works as a cellular

phone system with a moving receiver/transmitter. With a relatively short distance to

earth, round trip latency of transmission is theoretically low (but not in practice due to

different satellite operational characteristics) [Compass, 1999].

Current operating LEO systems include Iridium, Orbcomm and Globalstar. Teledesic
was scheduled to come into the market in 2005, but the Teledesic’s project of high speed
Internet service vial a constellation of satellites has been postponed due to financial and
marketing reasons [Jung, 2002].

2.3.2 Geostationary earth orbit systems

A GEO (geostationary earth orbit) satellite has a 36,000 km high orbit and it
circulates the earth directly over the equator. The satellite remains over the same earth
location since it takes 24 hours for a round trip and it can see nearly 40% of the Earth’s
surface (due to its altitude). Weather satellites are usually geostationary. MSAT and
Inmarsat are GEO satellite communication systems.

2.3.3 Medium earth orbit systems

MEO satellite systems have earth orbits with altitudes between a few hundred km to a
few thousand km. Ellipso and ICO are two MEO systems. Individual MEO satellites can
cover more of the Earth’s surface since their orbit is higher than LEO satellites and
therefore MEO can cause latency longer than LEO, but less than GEO [Compass, 1999].
Some MEO satellites have an elliptical orbit with their perigee (lowest altitude)
significantly less than their apogee (greatest altitude).

2.3.4 Satellite systems technical elements

Major satellite systems currently in operation are Iridium (LEO), Orbcomm (LEO),

Globalstar (LEO) and MSAT (GEO). Technical elements of these satellite systems are

listed in tables 2.1 and 2.2. Further details can be found in Nickerson and Wu [2002].

10

Table 2.1 Technical elements of Iridium and Orbcomm satellite systems.

satellite orbit Transmission data rate one-way
system service band propagation delay
in ms (min, max)
Iridium 780 km 1616.0 - 1626.5 MHz 2,400 bps (2.6, 8.2)
(LEO) transmit, 1616.0 - 1626.5 sustained, up to
MHz receive 10,000 bps burst
TDMA, FDMA with Direct
Internet Data
Service
Orbcomm 825 km Uplink: 148.0 — 150.05 Transmit: 4800 2.7
(LEO) MHz downlink: 137.0-138.0 | bps
MHz, Packet Data
satellite first launched Range current market comments
system
Iridium First: 1997, Global aviation, construction, Iridium
(LEO) commercial service disaster relief/emergency, contracted with
starts in 1998. 8 years government, leisure travel, | Boeing for its
designed satellite life maritime and media. network
operations
Orbcomm First: 1991, 4™ Global, near | ocean vessel track and Orbcomm LLC
(LEO) launch in 2000, 4 continuous control, avionics weather is the
year designed between the managing
satellite life polar circles company since
Aug 2001.

11

Table 2.2 Technical elements of Globalstar and MSAT satellite systems.

satellite orbit Transmission data rate one-way
system service band propagation delay in
ms (min, max)
GlobalStar 1,410 km | 2483.5 - 2500.0 MHz 7,200 bps sustained | (4.6, 11.5)
(LEO) transmit, 1610.0 - 1626.5
MHz receive, CDMA
MSAT (GEO) | 36,000 1530-1559 MHz transmit | 4,800 bps (270, 400)
km 1631.5-1660.6 MHz
receive
satellite first launched Range current market comments
system
GlobalStar 1999, designed | Within +/- 68° High-quality voice, SMS, Finalized
(LEO) satellite life: 7.5 | latitude of the packet-switched and agreement on
years equator asynchronous data. debt
restructuring
and new
business
model, made
Chapter 11
filing on Feb
15,2002
MSAT Apr.20, 1996, N/C America, Transportation, utility, oil secure and
(GEO) designed northern S America, | & gas, government, reliable voice.

satellite life: 12
years

Caribbean, Hawaii,
up to 250 km
offshore

maritime, and resource
industries

2.4 XML and SOAP

XML is a markup language designed to describe and carry data with user-defined tags

defined in a Document Type Definition (DTD) or Schema. Several XML tools have been

used during the development of XML satellite cost estimation model software, and these

are described briefly. Simple Object Access Protocol (SOAP) is also explored in this

research for its possible role in software designed for estimating and exchanging costs

associated with satellite communication use in field operations.

2.4.1 XMLSpy

XMLSpy is a well-developed and widely used XML development environment.

XMLSpy is an industry-standard tool for designing, editing and debugging in various

12

XML related technologies and protocols including XML, XML Schema, eXtensible
Stylesheet Language/eXtensible Stylesheet Language Transformations (XSL/XSLT),
SOAP, Web Service Description Language (WSDL) and Web Service technologies.
Version 5 has functions for HTML-XML conversion with C, C++ and Java code
generation [Altova, 2002].

In this research XMLSpy IDE was used to test XML and SOAP file generation and
editing. The XMLSpy IDE reads from a DTD file provided by the user and generates an
XML file structure with tag names. With the editor, the user fills in all the tag values
accordingly. XMLSpy IDE can create SOAP requests by reading a WSDL file from a
SOAP server instead of a DTD. XMLSpy IDE provides a straightforward, flexible and
functional user interface and it was very useful in creating satellite cost model XML and
SOAP files.

2.4.2 Xerces XML Parser

Xerces XML Parser from Apache provides several XML functions such as counting
the number of tags or levels and parsing XML files according to a DTD to validate XML
files. Xerces Parser is written in portable C++ and follows the W3C XML 1.0
specification. Error messages generated by the Xerces Parser are very clear, which helps
a user to locate and correct errors easily and efficiently [Apache, 2001]. Xerces Parser
was used in this research to validate both the basic satellite cost elements XML file and
the satellite project cost XML files generated by CostXML Generator, the software we

developed for satellite system cost (see section 3.3.2).

13

2.4.3 SOAP exploration

SOAP is a lightweight information exchange protocol. SOAP has been used in a
decentralized, distributed environment [BEKL, 2001]. SOAP uses an XML structure to
generalize the file format for information exchange between applications using HTTP on
the Internet. There are three parts in a SOAP message — envelope, header and body. The
envelope is mandatory and it defines what is in a message and who should deal with it.
An optional SOAP header has information describing the SOAP message. The SOAP
body is mandatory and it contains SOAP requests and responses. SOAP is used in
communications over HTTP but it can potentially be used in combination with a variety
of other protocols [BEKL, 2001] [W3C, 2002]. SOAP must use a SOAP Envelope

Namespace and SOAP Encoding Namespace [W3C, 2002].

SOAP is simple and extensible, as well as platform, technology and programming
language independent. Due to its character-based structure, SOAP is compatible with
most existing firewalls and is a W3C standard. SOAP seems promising for widespread
use in business information exchange on the Internet [W3C, 2002]. DreamFactory Web
Services of DreamFactory Software, Inc. at Lost Gatos, CA and Enterprise Web Services
of WebMethods at Fairfax, VA are two commercial products currently using SOAP 1.1
[Winer, 2002].

The SQLData SOAP Server from SQLData Systems, Inc. was downloaded and tested
in this research for SOAP information exchange. By connecting to a SQLData SOAP
Server and fetching its WSDL file, a client enters parameter values to create a SOAP
request according to the WSDL file structure. The client then sends the request to the

SOAP server through an Internet browser. A SOAP response is fed back to the client with

14

the information requested [SQLData, 2002]. Further details of the SOAP architecture and

operations are given in section 3.3.4.

15

Chapter 3. Cost estimation model for satellite survey operations

3.1 Satellite communication components

After extensive research on currently active satellite systems, Iridium and Orbcomm,
both LEO systems, were chosen as candidates for satellite communication experiments in
this research [Nickerson and Wu, 2002]. Iridium represents a low latency data
transmission service over a continuous dedicated circuit switched voice link using
TDMA and FDMA technologies. Iridium has several kinds of antennae for data
transmission, including the Motorola external magnetic antenna and Sensor Systems
S67-1575-90 Iridium/GPS antenna. Both of these antennae are small and easily mounted
on a mobile agent such as a helicopter.

Orbcomm is the sole existing satellite system that provides only packet data
transmission service. Orbcomm also has one of the lowest operational costs of any
satellite communication system, which makes Orbcomm worthy of consideration for
functionality testing in this research.

3.1.1 Iridium system

With 66 active satellites in a constellation, Iridium Satellite provides global mobile
satellite voice and data services with complete coverage of the Earth. Iridium Satellite
LLC, the new owner since November 2000 (after the previous owner Iridium LLC filed
for bankruptcy in August 1999), is owned by private investors including Baralonco NV
of Netherlands Antilles (24.3%, controlled by Saudi Prince Khalid bin Abdullah bin
Abdulrahman), Bareena Holdings Party Ltd of Australia (26.9%, owned by Michael
Boyd), Milport Associates SA of Panama (8.9%, owned by Inepar, Brazil) and

Syndicated Communications Inc of USA (26.9%, controlled by Herbert Wilkins). These

16

four main shareholders hold 87% of Iridium Satellite LLC [Hopkins, 2001]. Iridium
Satellite LLC has a contract with the Boeing Company to operate and maintain the
Iridium satellite constellation and network. Motorola continues to be the major equipment
supplier to Iridium under commercially acceptable terms. Iridium Satellite LLC has
signed a US$72 million contract with the US Department of Defense, under which
20,000 government employees will have unlimited usage of airtime over the Iridium
network for three years [Goldstein, 2000] [Analysis, 2002].

3.1.1.1 Iridium equipment

Manufactured by Motorola exclusively for the Iridium satellite system, Motorola
9500 and 9505 satellite phones are the most commonly used Iridium equipment in both
Iridium voice and data services. The Motorola 9500 was used in this research.

The Iridium Data Kit provides the hardware and software required to establish an
Iridium data call with a Motorola 9500 or Motorola 9505 portable satellite phone. The
Iridium data kit includes a data adapter and DB serial cable to provide a connection to a
Motorola 9500 or 9505 portable satellite phones. The Iridium World Data Services CD
contains all software and documentation required to install and configure Iridium World
Data Services on a computer.

Iridium has other more expensive transceivers for mobile aircraft communication.
Airsat I, developed by Honeywell for Iridium, provides reliable and high quality two-way
satellite communications (voice only) for light aircraft over a single digital channel in
Iridium's global satellite system (without support for data transmission). Airsat I includes
one transceiver unit, a handset and a specially designed Satcom blade antenna. With its

powerful RF output (6 watts, much higher than the 0.57 watts of a Motorola 9500 or

17

9505) Airsat I is so far the best choice for communication under heavy blade rotation in
aircraft. Airsat I’s equipment and installation cost is very high (e.g. US$29,900 for
equipment and US$20,000 for installation per aircraft). SatTalk II is another Iridium
product for aircraft satellite communication using both voice and data. SatTalk II was
developed by Icarus and is used with a Motorola 9505 satellite portable phone. SatTalk II
provides clear telephone communications and Internet access in an aircraft cockpit and
cabin. SatTalk II costs approximately US$7,000 to purchase and install for one aircraft
[Nickerson and Wu, 2002].

Different types of Iridium modems are available for satellite data transmission using a
modified Motorola L-band transceiver (LBT). The 9500 Iridium Modem has an Internal
Subscriber Identify Module (SIM) Card Reader (CDM9500135-I). Ruggedized modem
A00002LA-E has an external SIM Card Reader and modem AO0002LA-I comes with an
internal SIM Card Reader. The Iridium modems use Time Division Duplex as a
duplexing method, TDMA/FDMA as a multiplexing method and have a standard RS-232
(AT command) interface. Average output power is from 0.60 W to 0.62 W.

Two kinds of antennae were used in our Iridium data transmission testing. The
Motorola external magnetic auxiliary antenna works as an accessory for one Motorola
9500 phone. A Sensor Systems S67-1575-109 Iridium/GPS antenna manufactured by
Sensor Systems Inc., Chatsworth, CA is connected with a second Motorola 9500 phone.
Both antennae can be installed on a mobile agent such as a helicopter. The Sensor
Systems antenna is designed to work in aircraft and operate under rotating helicopter
blades. The Sensor Systems antenna is connected to a Motorola 9500 phone through a 10

foot (3 m) antenna with a standard TNC connector at each end to satisfy the requirement

18

of total maximum 3dB signal loss between satellite antenna and transceiver. Figure 3.2

shows the equipment used in Iridium system testing.

o ,4
Iridium data kit

Sensor Systems S67-1575-109
Iridium/GPS Antenna.

Iridium Motorola 9500 Motorola 9500 with data adapter

Figure 3.1 Iridium equipment used for our research.

3.1.1.2 Iridium technologies and services

The Iridium satellite system provides both voice and data services. Dial-Up Data
Service from Iridium allows a user to send data from a computer to an end user with a
computer, a corporate network/LAN or Internet Service Provider (ISP) by dial-up
connection. The data transmission is routed through the Iridium satellite network and the
maximum data rate is 2,400 bps [Iridium, 2002b]. Roundtrip system latency for circuit
switched Dial-Up data is approximately 800 ms. Most of this latency is due to Global
System Mobile (GSM) processing and only a few tens of milliseconds is due to
propagation delay [Nickerson and Wu, 2002].

Iridium provides Direct Internet Data Service in which data is sent from a computer

directly to the Internet via an Iridium satellite phone and dedicated servers at the Iridium

19

gateway. The data transmission rate for Direct Internet Data Services can burst up to
10,000 bps by using transparent compression technology [Iridium, 2002a].

The Iridium Mobile Terminated Data Service shown in Figure 3.2 is the architecture
we explored in this research for Iridium system data communication latency. Mobile
Terminated Data Services provides a data connection between two computers. Data calls
originate from a computer connected to an Iridium phone with a data adapter. On the
receiving side data calls terminate on a computer connected to either an Iridium phone or
a land phone on the Public Switched Telephone Network (PSTN). This research explores
the first scenario of Iridium Mobile Terminated Data Service. The data rate for Iridium
Mobile Terminated Data Service is 2,400 bps [Iridium, 2002c].

Yt =~ v

+“—>

A Iridium Gateway

Figure 3.2 Iridium Mobile Terminated Data Service [Iridium, 2002c].

Iridium is currently developing new Short Burst Messaging (SBM) services that will
provide low latency two-way messaging from small data messaging terminals (message
size of 50-75 bytes). SBM service is targeted for unattended sensor, alarm and control
applications [Iridium, 2002d], and is planned to start service early 2003. The SBM

service requires the use of a new software data kit and a Motorola 9522 L-Band

20

transceiver (called a short burst data terminal). SBM will not work with Motorola 9500
and 9505 Iridium telephones.

Short Burst Messaging data requires different AT commands to dial up (circuit
switched data). Latency for Short Burst Messaging data messages from a mobile device
to the Gateway in Arizona is expected to be in the order of ten seconds or less. Delivery
of a short burst data message from one mobile device to another will incur at least double
the single hop latency. Additional latency from Internet traffic routing of the message
will apply. Mobile terminated messages will not be immediately delivered, but held in a
Gateway mailbox until the mobile device either polls the Gateway or sends a message
[Nickerson and Wu, 2002].

Iridium data service charges include a monthly fee, an activation fee and per-minute
charge. The per-minute charge only applies to the calling side. Iridium service in this
research was subscribed from Preferred Communications in Creedmoore, NC. With a
package of 1000 minutes airtime prepaid at US$0.68 per minute for data communication
from ISU to ISU, the activation fee is US$15 and the monthly fee is US$19.95 per
handset. The package is valid for 12 months and remaining airtime minutes can be rolled
over to the next 12-month period [Nickerson and Wu, 2002].

3.1.2 Orbcomm system

Orbcomm provides global 2-way data services via low earth orbit (LEO) Satellites
and ground infrastucture. Data is first sent from a satellite subscriber communicator (SC)
to the Orbcomm satellite. An Orbcomm satellite then sends data to a Gateway Earth
Station (GES). The GES relays the data message to the Network Control Center (NCC)

either through satellite or ground line. NCC routes the message to the recipient by email,

21

phone line or fax. Figure 3.3 shows how a data message is transmitted through the

Orbcomm system [Orbcomm, 2002].

GES NCC

Figure 3.3 Orbcomm system data communication routine (from [Orbcomm, 2002]).

Orbcomm currently has 35 satellites in orbit, and is licensed by the FCC to launch
and operate up to 48 satellites. Orbcomm is designed for short packet (0.5 second)
transmission.

Orbcomm filed for Chapter 11 bankruptcy protection in September 2000. In August
2001 International Licensees LLC, a consortium of Orbcomm licensees and affiliates,
purchased the business and assets of Orbcomm Global, L.P. and its other entities. The
consortium includes OHB Systems GMBH, Orbcomm Asia Ltd. and other private
investors. The new company was incorporated as Orbcomm LLC [Orbcomm, 2002].
3.1.2.1 Orbcomm equipment

There are several kinds of Subscriber Communicators (SCs) in the current market

manufactured for Orbcomm system data communication. The Panasonic KX-G7101

22

satellite communicator with GPS is currently available in the market. A newer version,
the Panasonic KX-G7201, is also available with a Software Development Kit (SDK). An
OEM board for the Panasonic satellite communicator was scheduled to be on the market
in January 2003.

The Magellan GSC-100 is another Orbcomm SC with a choice of antennae including
roof mount, truck mount and magnetic mount. The GSC-100 development kit is also
available with one Magellan Satellite Modem OEM Board, power supply interface board,
choice of fixed or mobile antennae, data-power cable extension, AC power adapter,
satellite PC software, evaluate® software, interface cables and user manual and reference
guide.

The Q1500 development kit from Quake Global, Inc. was used in this research for
Orbcomm system data communication testing. The Q1500 is designed for remote
monitoring and control applications using the Orbcomm system with a very rugged
military grade packaging. The Q1500 module combines high performance with a
reasonable price and is a good solution for developers who need to integrate a satellite-
based communications transceiver into customized applications. The Q1500 satellite
transceiver (one OEM board and one adapter) unit included in the development kit
provides two serial ports for communication with the host application. One serial port
works as a Multiplex Timing Serial (MTS) port and fully supports the Orbcomm Serial
Interface Specification. The second port is called a Logger port and can be custom
programmed to support application specific communications or used as a monitoring and
debugging port. Power at 12 V +/- 10% is required by the Quake 1500 modem with strict

adherence to this voltage requirement over the full 3 A range. Both serial ports on the

23

Quake 1500 data adapter were connected to the serial ports of the testing computer
(Broca or QNX1) through a DB9 cable. A magnetic whip antenna provided in the Quake
1500 development kit can be mounted on a helicopter or other mobile device. Figure 3.4

shows the equipment used for Orbcomm testing.

DC Power Supply

Gluake1500 Modem

Logger port
data Adapter MTS port

whip antenna

Figure 3.4 Orbcomm equipment.

3.1.2.2 Orbcomm technologies and services

Orbcomm only provides small packet data transmission. The practical maximum
Orbcomm message size is 2000 bytes. If a message needs to be stored in the satellite and
then forwarded (Orbcomm Globalgram Service) when the satellite is not in view of a

ground station, each message can contain up to 229 characters for sending and 182

characters for receiving.

24

Orbcomm service charges include a monthly fee, an activation fee and a charge per
byte. Charge per byte applies to both incoming and outgoing messages. Magellan GSC-
100 or Steller ST2500 subscription services for the Orbcomm satellite system do not have
per-byte charges, but the sending frequency is as low as one message every 5 to 10
minutes.

The Orbcomm data communication service used in this research is from SkyTrac,
Vancouver, BC. In our case charges included a monthly fee ($70 + tax) and an activation
fee ($95 + tax) for unlimited bytes of data transmission.

3.1.3 Summary of equipment and subscription cost

A significant amount of Iridium and Orbcomm satellite equipment and accessories
were used in our research with computers and cables. Table 3.1 shows a summary of all
capital equipment and satellite system subscription costs that we used during the course

of this research.

25

Table 3.1 Summary of equipment and subscription costs for this research
(includes taxes, licensing and shipping).

category equipment quantity | unit price cost
Motorola 9500 kit (new) 1 $1,167.83 $1,167.83
Motorola 9500 kit (used) 1 $951.43 $951.43
Sensor Systems Iridium Aircraft 1 $1,069.58 $1,069.58
Antenna
Data kit for Motorola 9500 2 $329.83 $659.66
Motorola Data Adapter SYN 7023A | 1 $87.01 $87.01
Iridium 10 foot low-loss coax cable assembly | 1 $172.08 $172.08
60 foot serial cable 2 $40.38 $80.76
Subtotal (capital) $4,188.35
activation fee 2 $22.89 $45.78
monthly access fee 5 months $70.38 $351.90
prepaid airtime package 1000 minutes | $1.04 $1,040.00
Motorola phone repair 1 | $448.65 | | $448.65
Subtotal (service) $1,886.33
Total Iridium $6,074.68
Quake 1500 Development kit 1 $1,967.49 $1,967.49
12V stable DC power supply 1 0 0
Subtotal (capital) $1,967.49
activation fee 1 $104.79 $104.79
Orbcomm p. ivation fee 1 $49.99 $49.99
monthly fee 4 months $78.60 $314.39
Subtotal (service) $469.17
Total Orbcomm $2,436.66
Laptop (IBM A20m, PIII, 667 MHz) | 1 0 0
Broca (IBM 300GL PIL, 400 MHz) | 1 0 0
Computers Sylvius (IBM 3OOGL PII, 450 MHz) | 1 0 0
Ltempor (Dell OptiPlex PIII, 500 MHz) | 1 0 0
QNX1 (IBM 300GL PII, 166 MHz) | 1 0 0
10 foot serial cable 1 $10.00 $10.00
10 foot laplink serial cable 2 $18.00 $36.00
power inverter to run laptop in a car 1 $44.11 $44.11
Total Computers $90.11
Grand Total $8,601.45

3.2 Cost estimation model design

A satellite system cost estimation model was designed and implemented in C++. This

cost model is designed to present the suitability of satellite system used in seismic survey

operations from a business perspective. Given the basic cost elements of satellite systems

such as monthly charges, per-minute cost, helicopter hourly cost, the satellite system cost

26

estimation application calculates the total system cost for different seismic survey
operations and creates a project cost file in XML.
3.2.1 Cost estimation model equations

The satellite system cost estimation calculations are based on a series of equations
designed according to various seismic project scenarios. The total cost S for one seismic
project involving one or more helicopters is a function of d, the number of operational
days per project. The cost S (in Canadian dollars) is as follows:

S(d)=A+B+C+D (3.1)
where 4 = satellite communication system cost, B = helicopter cost, C = company
support cost and D = initial project setup cost.

There are three parts in cost 4:

Ald)= A, + 4, + 4, (3.2)
where A, = the satellite communication system cost in helicopter(s), 4, = the satellite
communication system cost at base station and A; = the satellite communication system
cost at head office (only standard Internet connection is required at head office for
Orbcomm satellite communication with helicopter(s) or base station). They are computed

(in Canadian dollars) as follows:

A(d)=(1+ T)j (RS,. (M[%—‘ +d,(60C(h, — y)+r(60h,(2f)p - b))j +R.d. (f ’ij] (3.3)

i=1

: 1+T

:[([dl—‘+d(6oc(h)+ r(60R(2f)p - b))jmeid(%Jr%D@A)

i

A (d)=(1+ T)(X[i—D (3.5)

31

27

where M = monthly cost, C = air-time calling cost per minute, # = number of operational
hours per day, y = free airtime in hours per day included in monthly fee, » = cost per byte
additional to bytes included in monthly cost, /= number of message transmissions per
minute in one direction (multiply by 2 for bi-directional charge), p = number of bytes of
each message, b = daily free bytes included in monthly fee, d = number of total
operational days per project, d; =number of operational days for satellite transceiver i,
E = equipment weekly rental cost, G = equipment purchase cost, X = monthly fee for
standard Internet access, n = number of days in capital period, 7 = tax rate, s = number of
satellite transceivers, Ry; = currency exchange rate for service charge and R,; = currency
exchange rate for equipment purchase.

The second cost B of flying the helicopter (s) is computed as follows (in Canadian

dollars):

B(z)=(1+T)Y d,(Lh, + Fh, + Hh, +1+Y) (3.6)

i=1
where L = hourly cost for hiring pilot(s), ' = hourly fuel cost, H = hourly helicopter
rental cost, / = daily insurance cost, d; = number of days of flying helicopter i,
h; = number of daily hours of flying helicopter i, Y = daily maintenance cost and z =
number of helicopters.
Assuming that a commercial company carries out a seismic survey project operation,
the equation for calculating the third cost C of the commercial company support (in

Canadian dollars) is
C(d)=(1+T)d Q+ihi(13)j (3.7)

where P; = the individual commercial company’s hourly personnel cost for person i,

28

QO = the commercial company’s daily equipment cost, d = number of working days,

h; = number of daily working hours for person / and m = the number of employees.

The cost D of initial setup for one project has four parts as follows:
D=D, +D,+D,+wU (3.8)

where D; = the initial setup cost in helicopter(s), D, = the initial setup cost at the base
station, D; = the initial setup cost at head office, U = cost to set up one repeater station
for radio modems and w = number of repeater stations. They are computed (in Canadian

dollars) as follows:

= 1+T)(Zk: I, +V.R,) (3.9)

1+T)£22:J +V,R,] (3.10)

D,

(1+T)K (3.11)

where /; = the installation cost for helicopter i, V; = the activation cost of satellite
transceiver/radio modem i in helicopter, J; = the installation cost for satellite
transceiver/radio modem j at the base station, V; = the activation cost of satellite
transceiver/radio modem j at the base station, K = the installation cost at head office,

k = number of satellite transceivers/radio modems in helicopter(s), base station or head
office, R = currency exchange rate for activation fee, i = 1,2,...kand j =1 or 2 as only

two satellite transceivers are likely for the base station.

29

3.2.2 Cost elements and latency comparison of active satellite systems

Key cost elements in equations (3.3), (3.4), (3.9) and (3.10) for different satellite
transceivers of Iridium, Orbcomm, Globalstar, MSAT and radio modem were compared
(see Table 3.2) to guide satellite system selection for research testing. M is monthly cost,
C is air-time calling cost per minute, 7 is cost per byte additional to bytes included in
monthly cost, y is free airtime in hours per day included in monthly fee, G is equipment
purchase cost and V is the activation fee (all prices in Table 3.2 are in Canadian dollars

unless they are indicated by “USS$”).

30

Table 3.2 Comparison of satellite communication system cost and latency.

Satellite system M C r y G \4 latency
Iridium Motorola $1,440 Data
9500 over dial-
Motorola US$19.95 | US$0.68 | $0 0 $2,395 up: 800
9505 US$ ms round
SatTalk II US$4,495 | 20 trip; data
Airsat I US$ OD\@r
29,995 trect
Internet
Data: 5-
10sto5
-10 min
GlobalStar | Qualcomm | $365 $1.39 per | $0 0.2 | $1,495 $50 voice:
GSP 1600 extra 900 ms
minute
MSAT ST211 Land | US$39.99 | US$0.99 | $0 0 US$2,300 | US$ 500 ms
Mobile 50 [MSAT,
Satphone 2002]
Orbcomm | Technisonic | $70 for $0 $0.015 | 0 US$8,495 | $95 less 60 s
OSAT-100 5,000 + US$800 to 90
SkyTrac bytes for minutes
antenna
Panasonic $0 $0 $0.015 | 0 US$725 $95 less than
KX-7101 60 s to
90
minutes
Magellan US$29.95 | $0 $0 0 US$850 US$ 51090
GSC-100 antenna 49.95 | minutes
included
Stellar ST- US$29.95 | $0 $0 0 US$335+ | US$ 510 90
2500 US$45 for | 49.95 | minutes
antenna
Quakel500 | $70 $0 $0 0 USS$1,150 | $95 less than
60 s to
90
minutes
Radio Pacific Crest | $0 $0 $0 0 US$1,900 10 ms
modem 35 watt

Iridium and Orbcomm were selected for our research experiment since they represent

two different typical types of data service and are most cost effective among all listed

systems. The Motorola 9500 for Iridium and Quake1500 for Orbcomm were chosen as

test equipment.

31

3.2.3 High accuracy seismic survey

The first satellite system cost estimation is for a high accuracy seismic survey. The
Iridium satellite communication system is used between a helicopter and base station
since the Iridium system has low system latency. The communication between base
station and head office is carrying project information for which low latency is not a
critical requirement. Thus, an Orbcomm system with higher system latency and lower
update rate, which is more cost-effective, is adopted in communication between base
station and head office.

Assuming the seismic survey field site is in Alberta at 57 degrees north, one
helicopter with one satellite transceiver installed is deployed, and two satellite
transceivers are installed at the base station, one for helicopter transmission (Iridium) and
one for head office communication (Orbcomm). A standard Internet connection is used at
head office to communicate with the base station. Figure 3.5 shows the architecture of a

high accuracy seismic survey.

Iridium Satellite | Orbcomm Satellite
A A} \\ A A
N |
== |
|
: JV | v
| Iridium Gateway | Orbcomm Gateway

Base Station

Iridium Phone | | Orbcomm SC_| Head Office

Jouidlu|

Figure 3.5 High accuracy seismic survey model using satellite communication.

32

3.2.4 Forest fire operations

In forest fire operations, low latency data transmission is not as necessary. The
Orbcomm system is used in the helicopters. Since the necessary Internet access is not
available at the base station, helicopters communicate with the base station via head
office. In forest fire cost model 1, helicopters send data to head office. Head office then
transfers the data to an Iridium ground gateway via an Internet connection. From the
Iridium ground gateway there are two choices for data transmission to an Iridium satellite
phone at the base station: (a) Mobile Terminated Data (2,400 bps) or (b) Direct Internet
Data (10,000 bps). Data rates for both Iridium data services are high enough for
transmission of KFP files (assuming each KFP file is 76 bytes and 15 transmissions per
minute for each helicopter, a resultant 190 bytes per second assuming 10 helicopters are
transmitting simultaneously). Mobile Terminated Data has a lower latency (on the order
of 200 ms as it uses a voice circuit) while Direct Internet Data has a higher data rate and
higher latency (which could be up to 10 minutes as shown in Table 3.2). The extra
bandwidth of the Direct Internet Data connection could be used to carry transmissions
besides KFP files (e.g. text E-mail messages).

We assume the operation field site is in Montana at 50 degrees N with 60 second (or
less) Orbcomm system latency. We also assume 10 helicopters are deployed in one
operation, 5 for the full 10 operational days, 3 for 6 operational days and 2 for 2
operational days. Each helicopter has one Orbcomm satellite transceiver installed. One
Motorola 9500 Iridium satellite phone is used at base station. Figure 3.6 shows the

communication connections of cost model 1 for forest fire operations.

33

| Iridium Satellite | ;v|0rbcomm Satellite I‘\\wu

i H ~ 3 f M\\ W, =

i B r Y
&
Iridium Gateway Orbcomm Gateway

JoulaU|

v Internet

Base Station

Iridium Phone Head Office

Figure 3.6 Connections for forest fire operations model #1 (Iridium plus Orbcomm).

In the 2™ forest fire operational model, every component is kept the same as model 1
except the connection between head office and base station. An Orbcomm satellite
transceiver is used at base station instead of an Iridium satellite phone. After receiving
data from helicopters, the head office transfers data to the base station through the

Orbcomm system and vice versa. Figure 3.7 shows the communication connection of this

forest fire operational model.

}'I Orbcomm Satellite |<\v¢,
<~] H TS
"!_-é‘g:\(/ \ \\,\
Vo

Orbcomm Gateway

jouaslu|

/
/
/
/
/
/
/
/
/
/
/
/
/

Base Station /

A
| Orbcomm Transceiver | Head Office

Figure 3.7 Connections for forest fire operations model #2 (all Orbcomm).

34

3.2.5 Radio modem model

In this satellite system cost model, the currently deployed radio modem [Eagle, 2001]
is kept as a link between helicopter and base station, and the Orbcomm satellite system is
used between the base station and head office with an assumption that two radio repeaters
have been built to relay the radio transmission between the helicopter and the base
station. Figure 3.8 is the architecture for the radio model. The purpose of designing a
radio modem model is to explore seismic survey system service and cost changes

compared with all-satellite communication models.

| Orbcomm Satellite

Orbcomm Gateway
A

Radio modem

JouIo|

Base Station

| A 4

Head Office

Figure 3.8 Radio model with Orbcomm link.

Radio | | Orbcomm SC

3.3 XML version
XML is used to define a file format for the satellite system cost estimation

application. The application is designed and implemented in C++ with an object-oriented

model created using Rational Rose [StPo, 2000].

35

3.3.1 Cost estimation model

The Unified Modeling Language (UML) is an OMG standard object-oriented design
language useful for design of object-oriented software systems. Software engineers use
UML to give a clear picture of the system and ensure the system design is useful, usable,
reliable, flexible, affordable and available before any implementation and essential costs
occur [StPo, 2000]. Figure 3.9 is a UML model for the survey with satellite system cost
estimation application.

Our design for satellite system cost estimation is a typical object-oriented design.
Class objects of orbcommCost, internetCost and iridiumCost are part of a satCommCost
class that represents cost 4 in the satellite system cost calculation equation. Objects
heliCost, comSupportCost and installCost are constructed as cost elements B, C and D.
These cost element objects can be used in any other classes during calculation of total
seismic survey project cost and XML file generation. A fileRead class works as a tool to
read basic satellite cost element files and retrieve element values for satellite system cost

calculations.

36

+ al cost and create XML file
] costXMLFile

(from costXMLFileClass)
armsFileName : char []
miFileName : char []
ixmlFile : ofstream

Cost Estimator

(fom Use Case View)

projectCost [®addValues()
(from totalSatCostClass) 1| [8linseretValues()
atComm : CSatCommCost [®createXMLFile()
licopter : CHeliCost 1.n [BcloseXMLFile()
,company : CComSupportCost
ginstall : ClnstallCost 1
[PgetProjectCost() -\ ! installCost
[®setAllElements() (ffom installCostClass)
helilnstallCost : double
baselnstallCost : double
headinstallCost : double
A orbActivCost : double
satCommCost 1Th heliCost irdActivCost : double
(fom satCommCostClass) (from heliCostClass) :ﬁg:a'z:g:f‘ m((iouble
Sorb : COrbcommCost hOU:VE"fJ:g%: : gou::e nonﬁSals int
idi ourlyFuelCost : double
net :%T,i':;‘;gi‘ ouﬁiRentCost : double *eost 1.n :slésa:‘e.rsyzg %’:)aurble
| : ClnstallCost dailylnsurance Cost : double comSupportCost baseSatType : char
[E5hel : CHeliCost lailyMaintanceCost : double [B¥taxRate : double

nH Lint (from comSupportCostClass)

I8getHeliSatCommCost EiflyingDays : double(]

.ge(BaseSatcommCos(Z() EityingHours : doublef] =§Z$Zﬁﬁ.asiﬁ%§;2)
=g::$fg§:§g:;ﬁwcwo SR [®getBaselnstallCost()
[SsetAllElements() [BgetHeliCost() : : Hiitiﬁéfe'":;ii'fgs”
¥getEachSatCost() setAllElements() &5taxRate : double oy

‘getheliNumber ()
®getFlyingDays () I®¥getComSupportCost()
®getFlyingHours() [®setAllElements()

[®getProjectModel()

[SgetRepeaterCost()

[®getinstallCost()
[®getHeliSatsNumber()
[®getHeliSatType()

[SgetBaseSatType()
[®makeString()

orbcommCost
(from orbcommCostClass)

iridiumCost
(from iridiumCostClass)
E¥senviceRate : double
[ESmonthlyCost : double
&ZminuteCost : double
EfreeMinutes : int
B extraByteCost : double
[ESmessagesPerMinute : double
:bytesPerMessage : double

Internet access cost

[EminuteCost : double
&freeMinutes : double
extraByteCost : double
essagesPerMinute : double
[E¥bytesPerMessage : double
[EfreeBytes : double

intemetCost
(from intemetCostClass)
& monthlyCost : double
[BtaxRate : double

2 i : double
&lequipRate : double By
[E5weeklyRentalCost : double [¥getintemnetCost() BJequipRate : double

urchaseCost : double etAl) ly ost : double

[ESpurchaseCost : double
BcapitalDays : double
B5taxRate : double

[&taxRate : double 1 fileRead

[®getOrbcommCost() 1

ISsetAllElements() [®igetiridiumCost()

[®setAllElements()

1 |BBtag : string

[®readParmsFile()
> ¥ getFileName()

1 [®insertValues()
[®addValues()
[®searchValue()
[®getNames()
[®getvalues()
[®getindex()

Figure 3.9 The survey with satellite project cost estimation model in UML.
A user only needs a simple main method to call CostXMLFile class methods to obtain
a project cost XML file. A CostXMLFile class object is created with two parameters —

source satellite cost elements file name and project cost XML file name. The

37

CostXMLFile object then calls the createXMLFile method to generate a project cost

XML file. Figure 3.10 shows pseudocode of a typical main method.

Read the parns file nane and cost XM. file nanme from
standard i nput.

Construct Cost XMLFile object with two file nanes.

Call createXM.File nmethod to create project XM file.

Cl ose project XM file.

Figure 3.10 Pseudo-code of the main method for project cost estimation.

3.3.2 Software implementation

According to the object-oriented model shown above, C++ was used to implement the
satellite system cost estimation application.

A project cost XML file ProjectCost.xml provides user satellite system costs for
different seismic survey operations in detailed layers. ProjectCost.xml is generated using
the satellite cost estimation application CostXML Generator by reading from both a
CostParms.xml file and a ProjectCost.dtd file. Figure 3.11 shows the architecture of the

CostXML Generator program.

38

Xerces XML Parser error messages

validation generating

CostParms.dtd CostParms.xml

ProjectCost.dtd

CostXML_Generator —»| error messages
generating

ProjectCost.xml

Figure 3.11 Architecture of the CostXML Generator program.

3.3.2.1 Satellite system basic cost elements source file

An XML format satellite system source file contains basic cost elements of satellite
systems required for the system cost calculation equations. The satellite system source
file CostParms.xml is generated in XML format according to the grammar defined in its
XML DTD file CostParms.dtd. Figure 3.12 shows part of a CostParms.dtd file. The

complete CostParms.dtd file is given in Appendix .

39

I ELEMENT O bcomm
(service_rate_o,nmonthly _cost_o, mnute_cost_o,free_mnutes_o

, cost _per _

byt e_o, nessages_per_m nute_o, bytes_per_nessage_o,

free_bytes_o, equi pnent _rate_o,weekly rental _cost_o, equi pnen
t _purchase_cost_o, capital _days_o) >

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

service_rate_o (#PCDATA) >

mont hly_cost _o (#PCDATA) >

m nut e_cost _o (#PCDATA) >
free_minutes_o (#PCDATA) >

cost _per_byte_o (#PCDATA) >
nmessages_per_mi nute_o (#PCDATA) >
byt es_per _nessage_o (#PCDATA) >
free _bytes o (#PCDATA) >

equi pnent _rate_o (#PCDATA) >
weekly rental cost_o (#PCDATA) >
equi pnment _pur chase_cost _o (#PCDATA) >
capital _days_o (#PCDATA) >

Figure 3.12 Part of the CostParms.dtd file (for the Orbcomm cost elements part).

Based on CostParms.dtd, there are seven major parts in the basic satellite cost
elements file - CostParms.xml. The seven parts are defined under tag names of
“Scenario”, “Taxrate”, “Orbcomm”, “Iridium”, “Internet”, “Helicopters”,
“Companysupport” and “Install”. Each part includes basic cost elements for the particular
part of the satellite system cost model defined in the calculation equations (3.1) to (3.11).
Various survey operation’s CostParms.xml have different basic cost elements except cost
elements in “Orbcomm” and “Iridium”. Figure 3.13 shown the “Install” part of a
CostParms.xml file for fire operation model #1. According to CostParms.dtd, there are
eleven tag values within the “Install” section as follows:

(1) heli _i nstal | _cost =installation cost of each satellite transceiver in
helicopter.
(i) base_i nst al | _cost =installation cost of each satellite transceiver at base
station.

(iii) head_i nst al | _cost = head office installation cost.

40

(iv)orb_acti vati on_cost = activation cost of one Orbcomm satellite
transceiver.

(v)ird_activation_cost = activation cost of one Iridium satellite transceiver.

(vi)repeat er _i nstal |l _cost = each repeater installation cost.

(vii) r epeat er _nunber = number of repeaters.

(viii) hel i _sat _type = type of satellite transceiver in a helicopter.

(ix) hel i _sat _nunber =number of total satellite transceivers in helicopter(s).

(x) base_sat _t ype = type of satellite transceiver at the base station.

(xi) base_sat _nunber = total number of satellite transceivers at the base station.

<Install >
<heli _install _cost>2500</heli _install_cost>
<base_i nstal | _cost >5000</ base_i nstal | _cost >
<head_install cost>2000</head install_cost>
<orb_activation_cost>50</orb_activation_cost>
<ird_activation_cost>24</ird_activation_cost>
<repeater_install_cost>1600</repeater_install_cost>
<r epeat er _nunber >0</r epeat er _nunber >
<hel i _sat nunber >10</heli _sat nunber>
<hel i _sat _type>0</heli _sat_type>
<base_sat nunber >1</ base_sat nunber >
<base_sat type>1l</base_sat type>

</lInstall>

Figure 3.13 Part of an example CostParms.xml file for forest fire operation #1.

In the forest fire operation CostParms.xml file, “0” represents an Orbcomm satellite
transceiver, “1” indicates an Iridium satellite transceiver and “2” means a combination of
“Orbcomm” and “Iridium” is installed at the base station or in a helicopter. In forest fire
operation model #1, ten helicopters are deployed in the project, each with one Orbcomm
transceiver (“0”). One Iridium phone (“1”’) is working at the base station. These satellite
system basic cost elements provide information to the system cost model software in

installation cost (cost D) calculations. Some basic cost elements in the “Install” part such

41

as type of satellite transceiver and number of satellite transceivers are also necessary to
calculate other parts of the project cost.
3.3.2.2 Project cost XML file

ProjectCost.dtd defines the structure of a project cost XML file. Information from the
CostParms.xml file (validated by the Xerces XML Parser with CostParms.dtd) gives the
values of all elements needed by the calculation equations. The CostXML Generator
determines the seismic survey scenario and conducts different calculations based on basic
cost information. Figure 3.14 shows the “Install” part of a ProjectCost.dtd file and Figure
3.15 shows the “Install” part of a ProjectCost.xml file generated according to
CostXML.dtd for a high accuracy seismic survey. The complete ProjectCost.dtd file is
given in Appendix II.

During the ProjectCost.xml file generation, each tag defined in ProjectCost.dtd is
printed in the ProjectCost.xml according to the basic cost element value and type of
seismic survey operation. After calculation of each installation cost, D,, D,, D; are
displayed in the project cost file with detailed tag values. Total installation cost and its

percentage of total project cost is shown under the tag name of “Install cost”.

42

<! ELEMENT I nstal |l _Cost

(Heli _Install _Cost, Base_lnstall _Cost, Head_lI nstal | _Cost, Repeater_Ins
tall _Cost?) >

<I ATTLI ST Install _Cost cost_D CDATA #REQUI RED per cent age_D CDATA
#REQUI RED >

< ELEMENT Heli Install_Cost (Heli _Install_Details) >

<! ATTLI ST Heli _Install_Cost cost_D1 CDATA #REQUI RED >

<I ELEMENT Heli Install _Details

(heli _install cost,heli_sat_activation_cost?) >

<IATTLI ST Heli Install _Details heli_sat_type (0]1]2|3]9999) "0"
hel i _sat _nunber (0| 1]10) "0" >

<! ELEMENT heli _install _cost (#PCDATA) >

<! ELEMENT hel i _sat_activati on_cost (#PCDATA) >

<! ELEMENT Base I nstall_Cost (Base_ Install _Details) >

<! ATTLI ST Base_Instal |l _Cost cost_ D2 CDATA #REQUI RED >

<! ELEMENT Base_lInstall _Details

(base_instal | _cost+, base_sat_activation_cost+) >

<I ATTLI ST Base_Instal| Details base_sat type (0] 1] 2| 3]9999) "0"
base_sat _nunber (0|1]2) "0" >

<! ELEMENT base_instal |l _cost (#PCDATA) >

<! ELEMENT base_sat activation_cost (#PCDATA) >

<! ELEMENT Head Install_ Cost (Head_ Install _Details) >

<! ATTLI ST Head_I nstal | _Cost cost_ D3 CDATA #REQUI RED >

<! ELEMENT Head Install _Details (head_install _cost) >

<! ATTLI ST Head_Install_Details head_sat_type CDATA #REQUI RED >
<! ELEMENT head_i nstal | _cost (#PCDATA) >

<! ELEMENT Repeater Install Cost (Repeater Install Details) >

<! ATTLI ST Repeater_|Instal|_Cost cost_D4 CDATA #REQU RED >

<! ELEMENT Repeater Install Details (repeater_install_cost) >

<! ATTLI ST Repeater Install _Details repeater_nunber (0|1]2/3) "0" >
<! ELEMENT repeater_install_cost (#PCDATA) >

Figure 3.14 CostXML.dtd for high accuracy seismic survey (I nst al | part only).

43

<Install Cost cost D="15619.9" percentage D="6.76251">
<Heli _I'nstall_Cost cost_D1="2700. 68" >
<Heli Install _Details heli_sat_type="1" heli _sat_nunber="1">
<heli _install _cost>2500</heli _install_cost>
<hel i _sat_activation_cost>24</heli _sat_activation_cost>
</Heli _Install _Detail s>
</Heli Install_Cost>

<Base Install Cost cost_ D2="10779.2">
<Base Install Details base_sat_type="2" base_sat_ nunber="2">
<base_instal |l _cost>5000</base_install_cost>
<base_sat _activati on_cost>50</base_sat _activati on_cost>
<base_sat activation_cost>24</base_sat activati on_cost>
</Base _Install _ Detail s>
</ Base_Install _Cost>
<Head_I nstal | _Cost cost_D3="2140">
<Head Install Details head sat_ type="0">
<head_install _ cost>2000</head install_cost>
</ Head_lnstall _Detail s>
</ Head I nstall _Cost>
<Repeater_lInstall_ Cost cost_ D4="0">
<Repeater_lInstall_Details repeater_nunber="0">
<repeater_install_cost>1600</repeater_install_cost>
</ Repeater Install _Detail s>

</ Repeat er I nstall _Cost>
</Install_Cost>

Figure 3.15 Part of a sample ProjectCost.xml file for a high accuracy seismic survey
(Instal | _Cost only).

3.3.2.3 Cost XML File Generator

CostXML_Generator completes the project costs (using equations (3.1) to (3.11)) and
shows the results in an XML format ProjectCost.xml file. CostXML Generator is coded
in C++ based on the object-oriented design model given in section 3.3.1. The fileRead
class is used in each level of satellite system cost calculation class including
orbcommCost, iridiumCost, helicopterCost, comSupportCost and projectCost in reading
CostParms.xml for basic cost element values. The fileRead program reads the satellite
basic cost elements source file name (e.g. CostParms.xml) and a keyword that indicates
which particular section of the satellite basic cost elements source file will be read in the
file access. For instance, if the keyword input is “Orbcomm”, the r eadPar nsFi | e
method in the fileRead class skips other parts of the CostParms.xml file, only reads and

returns the tag values within “Or bcomm{ section. Information provided to

44

CostXML_Generator to decide the type and number of satellite transceivers, total number
of helicopters and total number of repeaters is stored in the “l nst al | ” section of the
CostParms.xml file. At top of the CostParms.xml file, there is a “Scenar i 0” tag which
CostXML_Generator reads to determine the type of survey operation (0 for high accuracy
seismic survey, 1 for forest fire #1, 2 for forest fire #2 or 3 for seismic survey with radio
modem).

As shown in Figure 3.13, CostXML_Generator reads from the “l nst al | ” section
and determines that there are 10 helicopters in the operation, each with one Orbcomm
satellite transceiver. There is one Iridium satellite transceiver installed at the base station.
The tag value from “l nst al | ™ also tells CostXML_Generator that no repeater is
involved in the operation. After reading the tag value of “Scenari 0”,
CostXML_Generator concludes the operation is fire operation #1 and chooses the
calculation equations accordingly. Figure 3.16 is part of the code from
CostXML_Generator to calculate installation cost D; of satellite transceivers in one

helicopter.

45

double Cinstall Cost::getHelilnstall Cost(){
doubl e acti vCost =0;
doubl e hel i Cost =0;
i f(heli Sat Type ==
activCost = orbActivCost;
el se if(heli Sat Type ==1)

activCost = irdActivCost;
el se if(heli Sat Type==3)
acti vCost =0;

hel i Cost =(1. O+t axRate) * noHeli Sats *
(helilnstall Cost + activCost);

i f (nRepeat er s! =0)
hel i Cost =hel i1 Cost +hel i I nstal | Cost *(1. 0+t axRat e) ;
return heli Cost;

}

Figure 3.16 Example of source code from CostXML Generator to compute cost element
D from equation (3.9).

A key part of the CostXML_Generator is the CostXMLFile class. The function of this
class is to generate a ProjectCost.xml file according to data type definitions in the
ProjectCost.dtd file. By reading each line of the ProjectCost.dtd file,

CostXML Generator determines the tag names and data type defined for each tag in the
XML tree structure of the ProjectCost.xml file. CostXML Generator must determine if
the tag just read is a parent element name, an attribute name or a child element name.
CostXML_Generator also needs to know how many children each parent tag has from
reading each line of the ProjectCost.dtd file. CostXML Generator then searches satellite
system cost results (calculated and stored in an array in an early part of the program) to
find the value of the tag and write it into the XML file at its appropriate position. Figure
3.17 is a pseudo-code description of the cr eat eXMLFi | e() method of the

Cost XMLFi | e class.

46

Open CostParns.xnl file and read tag val ues.

Cal cul ate each part of survey with satellite system cost
and store themin an array for |ater use.

Open project ProjectCost.dtd and ProjectCost.xnl files.

VWhile not at the end of ProjectCost.dtd file, keep reading
each line of the dtd file.

Check each token read froma single line to see if it
is parent or children. If it is parent, store its
nane and nunber of its children in arrays for |ater
XML file generation.

For each token of a single line, find its value in the
calculation results array.

Use information stored in the parent arrays to
determ ne the position of the token (tag) in
the XM. structure, adjust the tab val ue and
print token nane and value to the
Proj ect Cost.xm file.

Figure 3.17 Pseudo-code description of the cr eat e XMLFi | e() method
(Cost XMLFi | e class).

CostXML_Generator issues an error message when tag names in a CostParms.xml
file do not match tag names in the ProjectCost.dtd file. An error message tells the user the
location of the error in the CostParms.xml file and the correct tag name.
CostXML_Generator also provides the user flexibility by allowing a certain degree of
modifications in both the CostParms.xml and ProjectCost.dtd files. Changing tag names,
adding a new tag or deleting a tag in ProjectCost.dtd will require appropriate changes in
CostParms.xml. Simple modifications such as these are read by the CostXML Generator
and reflected in the ProjectCost.xml file generated by the CostXML Generator without
changing and recompiling its source code.

3.3.3 Example satellite survey costs

Based on the cost estimation model equations (section 3.2.1), we calculated the

example costs for different types of 10-day surveys introduced in sections 3.2.3 to 3.2.5.

Table 3.3 shows the comparison of survey costs using various satellite systems. As we

47

can see, the Orbcomm satellite system is less expensive. In fact, cost component 4

(satellite system cost) is about 10 times less for Orbcomm compared to Iridium.

Table 3.3 Costs comparisons of different satellite survey (number in () after each
subtotal indicating % of total cost excluding cost B).

Cost Description High accuracy seismic Forest fire
element survey operations
satellite radio #1 #2
modem
Helicopter Orbcomm 0 0 10 10
A * sat cost Iridium 1 0 0 0
radio modem 0 1 0 0
cost $4,259.37 $0 $3,416.02 $3,416.02
base station | Orbcomm 1 1 0 1
Ay * sat cost Iridium 1 0 1 0
radio modem 0 1 0 0
cost $4,733.28 $474.45 $4,259.37 $474.45
A head office Internet service | 1 1 1 1
sat cost cost $32.10 $32.10 $32.10 $32.10
A total sat cost $9,025 (19) | $506 (1) $7,707 (12) | $3,922 (7)
Flying helicopter (s) 1 1 10 10
helicopter helicopter type | Bell 205 Bell 205 Bell 206B Bell 206B
B cost flying days 10 10 ok o
daily fly hours 6 6 6 6
cost $182,970 $182,970 $420,176 $420,176
Company personnel 2 2 2 2
C support cost | daily hours 8 8 8 8
cost $23,361 (48) | $23,361 (55) | $23,361 (35) $23,361 (38)
Helicopter Orbcomm 0 0 10 10
D, installation Iridium 1 0 0 0
cost radio modem 0 1 0 0
cost $2,700.68 $2,675.00 $27,285.00 $27,285.00
base station | Orbcomm 1 1 0 1
D, installation Iridium 1 0 1 0
cost radio modem 0 1 0 0
cost $10,779.18 $10,754 $5,375.68 $5,403.50
head office Internet service | 1 1 1 1
D; install cost cost $2,140.00 $2,140.00 $2,140.00 $2,140.00
Repeater repeater (s) 0 2 0 0
wu install cost Cost 0 $3,424.00 0 0
Total install $15,619 (33) | $18,992 (44) | $34,800 (53) [$34,828 (55)
D cost
A+C+D | Subtotal $48,005 $42,859 $65,868 $62,111
S Total $230,977 $225,831 $486,046 $482,289

* Costs 4; and A include capital costs of equipment purchase, monthly fee and airtime
minutes listed in Table 3.1 for Iridium and Orbcomm systems.

*% 5 helicopters fly 10 full days, 3 helicopters fly 6 days and 2 helicopters fly 2 days.

48

The cost for each survey varies because different satellite system configurations have
been used in each operation. In the high accuracy seismic survey with satellite system,
one Iridium satellite transceiver is used in the helicopter and one Iridium transceiver plus
one Orbcomm transceiver are installed at the base station. In the radio modem high
accuracy seismic survey, we replace the Iridium transceivers in both helicopter and base
station with radio modems and the total survey cost is reduced. Forest fire operation #1
differs from #2 in that, at the base station, one Iridium transceiver is installed in model #1
and one Orbcomm transceiver is used in model #2. The total survey cost including the
satellite cost subtotal of model #1 is higher than model #2 because the satellite system
cost (A4) for Iridium is higher than the cost for Orbcomm. A complete set of
ProjectCost.xml files generated by Cost XML _Generator for the examples in Table 3.3
is given in Appendix II1.

In the Orbcomm system communication cost, there is an extra per-byte cost for the
transmitted data when the data bytes are more than the free bytes included in the monthly
fee. The price used in the calculation is offered by Rom Communications Inc. (Kelowna,
BC). For every extra 25,000 data bytes, the cost is $91.95 ($0.003678 per byte). This cost
did not apply to our research experiments with the Orbcomm system because of the
special deal offered by SkyTrac Systems Ltd. (Penticton, BC).

3.3.4 SOAP compatibility

As introduced in section 2.4.4, SOAP works as a communication protocol between a
SOAP server and client. A SOAP server provides a simple way to build web services.
Web services include creating COM objects and generating a WSDL file. A SOAP server

has functions to retrieve requests from HTTP and process the parameters of the requests.

49

A SOAP server then parses the WSDL file, constructs input parameters for SOAP
response, invokes specified SOAP methods and sends a response back to the client
through HTTP [W3C, 2002] [SQLData, 2002].

SQLData3.0 SOAP Server was used in this research to test how a SOAP server
communicates with a client for information exchange over HTTP. SQLData3.0 is a
SOAP server package from SQLData Systems, Inc. SQLData SOAP server is
implemented in C++ with high performance and low footprint. It is an efficient and
reliable bottom-up implementation of the SOAP 1.1 standard with build-in HTTP/HTTPS
support. The server has a flexible WSDL parser, a SOAP Actor to fulfill SOAP requests,
a dynamic SOAP client and a smart XML Cache Manager. The SQLData SOAP server
can perform as a SOAP client or intermediary. Services from one SOAP server can be
sent to another SOAP server for processing that is transparent to the SOAP server acting
as the client. SQLData SOAP server also converts database service requests from a client
such as ODBC to automatically access SOAP server services without any additional
programming [SQLData, 2002]. Figure 3.18 shows an example SOAP response message

from a SQLData3.0 SOAP server to a client.

50

/3 http:/ /soapclient.com/SoapClient - Microsoft Internet Explorer _ =] x|

File Edit Wew Favorites Tools Help ﬁ
GBack + = - D at | Qhsearch [GeFavorites GfMedia £4 | EN- S v

Address I@ http://soapclient.comySoapClient j Go | Links **

- |

=7xml version="1.0" encoding="UTF-8" standalone="no" 7=
- <50AP-ENY: Envelope xmins: S0AP-ENY="http://schemas.xmlsoap.org/soap/envelope/"
amins: ths="http:/ /www.SoapcClient.com/xml/SoapResponder.wsdl"
amins: xsd1="http:/ /www.SoapClient.com/xml/SoapResponder.xsd"
wmlns: xsd="http:/ /www.w3.0rg/2001/XMLSchema"
Amins: soap="http:/ /schemas.dximlsoap.org/wsdi/soap/"
smins: xsi="http:/ /www . w3.0rg/ 2001/ XMLSchema-instance" zmins: SOAP-
EMC="http://schemas.xmlsoap.org/soap/encoding/">
- <SOAP-ENY: Body>
- =tns:Method1Response SOAP-
EMY:encodingStyle="http:/ /schemas.xmlsoap.org/soap/encoding/">
<bstrReturn xsiitype="xsd:string">Your input parameters are Testing SOAP server and
response message«/bstrReturn:
=/ths:Method1lResponses
=/S0OAP-ENY: Body>
=/S0AP-ENY: Envelope:>

k) L

x|

&) pone ’_ ’_ ’_ | tneernet

Figure 3.18 Example SOAP response from SQLData3.0 SOAP Server [SQLData, 2002].

Our experiments with SQLData3.0 SOAP Server have shown SOAP features that can
be an asset to the satellite cost model application. A satellite seismic services cost SOAP
server (which we call the SatSOAP server) containing the basic cost elements of satellite
systems (CostParms.xml) could be established. Customers who are interested in satellite
services for seismic survey operations can send SOAP requests through HTTP in any
web browser to the SatSOAP server to obtain satellite service costs. A SOAP client
request would contain parameter values such as type of seismic survey and length of the
project indicating a customer’s requirements for a project using satellite communications.
Methods defined in the SatSOAP server will process the SOAP request, calculate satellite
project cost for the specific operation and respond to the customer with satellite system

cost in a detailed XML format. Figure 3.19 shows the proposed architecture of a SOAP

51

enabled project cost estimation application. Figure 3.20 shows a sample SOAP response

file including information of the head office satellite communication cost.

. connect to SOAP server _/\
Client Satellite Project Cw

fetch WSDL file(HTTP) . .
construct SOAP request //I Project cost WSDL f'|e|
based on WSDL file e

send SOAP request (HTT

/

\ 4
calculate cost and construct
T SOAP response

send SOAP response (HTTP) L—

process SOAP response
and get project cost [«

Figure 3.19 Proposed architecture of a SOAP-enabled project cost estimation application.

52

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<SOAP- ENV: Envel ope xm ns: SOAP-
ENV=htt p: //schenmas. xm soap. or g/ soap/ envel ope/
xm ns:tns=http://ww. Sat Proj ect.conf xm / Sat Proj ect Co
st. wsdl
xm ns: xsd1="http://ww. Sat Proj ect.conf xm / Sat Pr oj ect
Cost . xsd"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma-
i nstance" xn ns: SOAP-
ENC="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ " >
<SOAP- ENV: Body>
<m HeadSat Cost Response xnl ns:
m="ht t p: / / www. Sat Pr oj ect. coni Sat Pr oj ect Cost/ ">
<m Head_Sat Cost A3> 32.1
</ m Head_Sat Cost _A3>
<m Head- Sat _Det ai | s>Or bconmx/ m Head-
Sat Detail s>
<m internet_nonthly cost>30
</minternet_nonthly cost>
</ m HeadSat Cost Response>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Figure 3.20 Example SOAP response of satellite communication cost at head office.

53

Chapter 4. Satellite communication experiments

4.1 Experiment design

Satellite link communication experiments were designed and implemented in this
research on both Iridium and Orbcomm systems to test system latency on data
transmission. The simulated satellite testing system is built with one Windows 2000
platform (base station) and one QNX 4.25 platform (helicopter) communicating through a
satellite link.

4.1.1 System architecture

The architecture of our satellite communication testing system is shown in Figure 4.1.
Our satellite testing system is based on previous research [Shan, 2001] and focuses on
real-time communication using satellite data transceivers (modem) and the software
components (Sender and Receiver) necessary to run the transceivers under computer
control. In our research, satellite link software components were written for Windows
2000 and QNX 4.25. We used an Iridium Motorola 9500 phone and a Quake 1500
Orbcomm modem as satellite transceivers in our testing.

Our research focused on software development for satellite system data
communication latency testing. Elements affecting satellite data communication
performance include transferred data size, transmission frequency, transmission time
period and transmission environment (static or dynamic). We investigated all of these

variables in our experiments.

54

[m——— ——m — - — Focus of satellite

I GPS Satellite Satellite Communication SySte te St| ng
System System :: |
| I/‘ 3
s |
I ! KFP over SAT link 2
H / H]
: /= @ | Kodiak Head Office
S . -
8] Kodiak Office =
: NS500 RGU 4 5 5 I | [HTTP Web Server |
GPS Receiver <
4 SAT Data - | JavaServiets |
| SAT Data Y = Transceiver | 3
Transceiver £l
I SAT Link ’ JDBC |
SAT Link | Component| |
| Component i
Helicopter I SAT Data
| Base Station |] | LTransceiver I
Internet Client Interface I SAT Link
| Component I
Web Browser HTTP I
I - Amms == - l-_| —
o
HTML/Java Applet 3
XML DTD for v
seismic operations Database

Figure 4.1 Architecture of satellite communication experiment system.

4.1.2 QNX 4.25

The QNX 4.25 real-time operating system was installed on a Pentium 166 IBM
workstation with 31 MB extended system memory and 2.56 GB hard disk (QNX1) acting
as if it was installed in a helicopter. Version 4 of QNX provides a reliable and scalable
operating system for embedded real-time systems. QNX is a true microkernel operating
system with simplicity and efficiency. The path through the operating system of an
application is very short with only a few system instructions. The QNX system can work
for ROMable embedded applications since the system is very small. It also has the power
to run a distributed network with several hundred processors. With these special features,
the QNX system uses only a very small part of a processor’s energy on the operating

system. Most of the processor’s focus is on running the application [QNX, 2002].

55

As a member of the QNX family, QNX 4.25 is a real-time system with key
characteristics such as multitasking, priority-driven preemptive scheduling and fast
context switching. QNX 4.25 is a small, simple and efficient operating system with
modularity. Two fundamental principles of QNX 4.25 are its microkernel architecture
and message-based interprocess communication. The user is also allowed to modify the
QNX 4.25 system according to their own criteria [QNX, 1996].

4.1.3 Embedded serial communication programming

An embedded system is designed to execute a special function. It contains computer
hardware and software. In some special cases an embedded system can also include
additional sections such as mechanical parts [Barr, 1999]. Embedded system
programming involves close interaction between software and hardware.

Embedded serial communication programming is an important technology in this
research for satellite system latency testing. Successful data communication between the
computer serial port and externally connected satellite transceiver is essential for this
research. In serial port communication, data is transferred one bit at a time through a
computer serial port [Sweet, 1999]. The serial port communicates with external devices
such as a keyboard, network devices or satellite transceiver (modem). A serial port has
variables of baud rate, data bits, stop bit, parity and flow control, which determine the
behavior of a serial port. Baud rate is the most important element that controls the
transmission rate of a serial port. In this research, the communication between satellite
data transceiver (modem) and satellite link component (computer) are accomplished
through a serial port on both the Windows 2000 and QNX 4.25 workstations. The serial

port setup and communications on these two different operating systems are very similar.

56

The first step of serial port communication is to open and configure the serial port. A
basic configuration requires setup of baud rate, data bits, parity, stop bit and flow control.
In order to communicate with external satellite data transceivers using modem
commands, serial port input is set as raw input. With the raw input option, a serial port
passes input characters exactly as they are received without additional processing [Sweet,
1999].

Modem commands are sent through a serial port to the external satellite transceiver
(modem) to accomplish satellite transceiver configuration and to establish a satellite data
link between the sending side and the receiving side.

After configuring both serial ports and the satellite transceiver, the satellite system is
ready for data communication by writing data to the output serial port and reading data
from the input serial port. Figure 4.2 shows the architecture of the satellite serial

communications software.

57

| open and configure serial port |

| open and configure serial port |

—
initialize modem

—— »enter loop variable M, waiting seconds
T and source file name

|

| read input string S |

Get data from source data file, > read from serial port

write to modem through serial and record output

port and record output

: i=i+1 satellite link
| wait T seconds |
read string
N indicating data
link termination 2
Y -
| terminate modem l—P | terminate modem |

v
| close serial port | | close serial port |

Figure 4.2 Software architecture of the satellite serial communication experiments.
4.1.4 Satellite transceiver (modem)

The satellite transceivers used in this research act as external modems connected to
the serial port of sending and receiving computers. Modem commands are sets of unique
data strings to configure and initialize a satellite modem to set up the data transmission
link. Termination of a satellite data link is also done by modem commands. Different

satellite systems are designed to work with unique modem commands.

58

The Iridium system uses traditional Hayes AT commands. An Iridium satellite
transceiver unit is designed to be Hayes AT command compatible. The unit switches
between command mode and data mode by responding to Hayes AT commands. Basic
commands used to communicate with an Iridium satellite transceiver (modem) are from
Hayes AT commands with slight modification by Iridium and Motorola (see Table 4.1).
Figure 4.3 shows sample AT commands and responses from the sending side to configure
an Iridium Motorola 9500 phone, set the data link and send test data.

The escape sequence “+++” is used to initiate command mode for disconnecting the
data link. As shown in Figure 4.2, when the user input string is “%++”, the Sender
program stops sending data and sends “+++” to the Iridium modem for data link
disconnection. A guard time period (usually one second) where no data is transmitted
before the “+++” is received and following the “+++” ensures that transmitted data does
not inadvertently place the modem into command mode.

The Orbcomm satellite transceiver (modem) is not Hayes AT command compatible
and it communicates with its own command language embedded in Orbcomm data
strings. The procedure for modem command communication is different for the Iridium
and Orbcomm systems. The configuration and initialization of an Iridium satellite
transceiver (modem) needs to be done before any serial port data sending or receiving can
occur. The Orbcomm system transceiver coded using the Orbcomm Serial Interface
accepts one small packet of data which includes modem commands, transferred data and
all necessary information for data transmission. Orbcomm packet data is composed in

hexidecimal format. Table 4.2 shows the SC-Originated (Subscriber Communicator

59

Originated) message packet data structure of the Orbcomm system with a small example

meSssage.

Table 4.1 Common Iridium AT commands and responses [MPCS, 2000].

AT command Description Response Description
(ending with ‘\r’=carriage return)
AT attention
configure for bearer
AT+CBST= <speed><name><ce> | service (send) OK executed
configure to answer
ATS0=N incoming call
automatically
+++ Initiate disconnect ERROR rejected
ATH disconnect call
PO Turn off phone
OK executed
ERROR rejected
CONNECT connection
ATDT phone number Dial phone number established
NO CARRIER | connection
terminated
BUSY busy signal
detected
NO ANSWER | no answer
RING receiving call
AT
ok
AE+CBST:6,0,1 /|l set bearer service type val ues
(0]

ATDT 00881631416987

connect 19200

Testing data //send testing data

+++ // send escape sequence to transfer
to command node

//dial satellite phone numnber

ok
ATH //di sconnect data |ink
ok

Figure 4.3 Example AT command and response sequence for the Iridium Motorola 9500
(sending side) [Iridium, 2002c].

60

Table 4.2 SC-Originated message of Orbcomm with an example packet data from the
Quake 1500 satellite transceiver [KBMW, 1999].

byte No. | hex value Description
0 85 packet header byte (0x85 or 0x86)
1 06 packet data type, 0x06
2 23 length byte 0
3 00 length byte 1
4 00 number of times this packet has been re-sent/sequence number
5 01 Orbcomm gateway id (01 - gateway in USA)
6 00 polled by Orbcomm gateway (01) or initiated by SC (00)
7 02 ACK level (02-delivery to gateway ACK)
8 01 priority level (01 — normal)
9 00 message body type (00 — text)
10 00 DTE assigned to identify among multiple messages
11 01 number of recipients
12 00 subject indicator (00 — no subject)
13 01 pre-defined Orbcomm recipient (01)
14 05 message data type (05 — text)
15 54 68 69
73 20 69
to 73 20 61 message body (hex ASCII value for message text “This is an
6E 20 65 example”)
32 78 61 6D
70 6C 65
33 4B Fletcher Checksum byte 0
34 4D Fletcher Checksum byte 1

4.2 Software development

Software development for satellite data transmission testing was carried out using C
and C++. In the Windows 2000 environment we used the Visual C++ 6.0 compiler, and
on QNX 4.25 we used the Watcom Systems version 10.6 C complier.

Sender and Receiver are the two major components in the system test software.
Sender is responsible for opening a data file, fetching data from the data file and sending
the data through a serial port to the satellite link. Receiver listens to the serial port and
handles the incoming data stream. Data stream handling involves checking for the end of

each data transmission, checking data errors, printing data to the monitor and writing data

61

to an output record file. Both Sender and Receiver have common functions of modem
configuration, initialization and termination. Accurate system time recording for both
Sender and Receiver is important to measure the latency between the time a message is
sent and the time it is received. The basic design and structure for both Sender and
Receiver is the same for both Windows 2000 and QNX 4.25. Detailed coding is slightly
different for Windows 2000 and QNX 4.25.

4.2.1 Serial library

Serial port programming interacts with the serial ports of a computer system. The
QNX 4.25 operating system is IEEE Portable Operating System Interface (POSIX)
compliant, which provides a POSIX terminal user interface for configuration and
communication of a serial port [Sweet, 1999]. This feature of POSIX terminal I/O makes
it relatively straightforward to develop software using QNX 4.25 for serial port
communication. Other operating systems such as Windows 2000 require the developer to
use the Win32 API, and serial port communication software development is more
challenging.

A serial library written by Ramon de Klein [Klein, 2000] provides basic serial port
operational functions and simplifies serial communications programming for a developer
on these non-POSIX operating systems. De Klein’s serial library is written in C++, and
provides the object classes and methods shown in Table 4.3. An object of CSerial type is
instantiated, which is then used to call the methods to open a serial port, set a serial port,

write to a serial port and read from a serial port.

62

Table 4.3 Classes and methods in de Klein’s serial library (from [Klein 2000]).

(An * to the left indicates that we used this method for our research.)

Methods () Description
CheckPor t Check if serial port is already open
Open Open serial port
* Set up Configure serial port parameters
Get RLSD
Get Ri ng
* Wi t Event Wait for serial event (receiving)
%

Set upHandshaki ng

Enable hand shaking function

* | SetupreadTi meouts

Set time out value for reading

Cet BaudRat e Get baud rate value
CetDataBits Get data bits value
GetParity Get parity value
Get StopBits Get stop bits value

Get Event Mask

Get vent mask value

Get Event Char

Get event character value

CGet Handshaki ng

Get handshaking status

* Wite

Write data bit to serial port

* Read

Read data bit from serial port

Fl ush

* Cet Event Type

Save event

Get Error

Get CTS

Get DSR

* Cl ose

Close serial port

Set Event Char

Set Mask

Figure 4.4 shows sample code to open and configure a serial port using Klein’s serial
library [Klein, 2001]. In our research, we used de Klein’s serial library in the software

development of Sender and Receiver on Windows 2000.

63

CSerial serial;
LONG | Last Error = ERROR _SUCCESS;

/1 Attenpt to open the serial port (COWR)
| Last Error = serial.Qpen(_T("COWR"));

/1 Setup the serial port (9600,8N1l, which is the

//default setting)

| LastError = serial.Setup

CSeri al : : EBaud19200, CSeri al : : EDat a8, CSeri al : : EPar None, CSeri al : : ESt
opl);

/1 Setup handshaki ng (default is no handshaki ng)
| Last Error = seri al. Set upHandshaki ng
(CsSeri al : : EHandshakeHar dwar e) ;

Figure 4.4 Sample code to open and configure a serial port using the Klein’s serial library
[Klein, 2001].

4.2.2 Modem initialization

Modem initialization is the first step for either Sender or Receiver to communicate
with an external satellite transceiver (modem) through the serial port. Modem
initialization methods for Iridium and Orbcomm are different due to different modem
command compatibility. A separate method called init modem is built for Iridium
modem initialization. The method takes three parameters — satellite phone number,
number of AT command bytes and a character (‘s’ for modem initialization and ‘o’ for
modem termination) indicating that the method is either initializing or terminating the
Iridium satellite modem. To initialize the Iridium modem, a string containing a satellite
phone number for Receiver is written to the serial port after sending AT commands to
configure the Iridium satellite modem. During satellite modem termination, AT
commands are sent to switch the satellite modem from data mode to command mode,
terminate the data link and disconnect the communication.

With each AT command sent through a serial port to an Iridium satellite transceiver
(modem), either Sender or Receiver waits several seconds (2 to 20 seconds depending on

the AT command) before it reads from the serial port for modem response. The serial port

64

reading is repeated until the correct AT response is found in the string read from the
serial port. The satellite modem is then ready for the next AT command. The number of
waiting seconds varies for different AT commands from 2 seconds for configuration AT
commands to 20 seconds for dialing a satellite phone number. Dialing the satellite phone
number containing 14 digits and 1 carriage return takes much longer than writing “AT” to
the satellite modem to get its attention. Immediate reading from the serial port without
waiting can cause unnecessary program execution and add extra burden to the CPU.
Figure 4.5 shows the method for modem initialization. The Windows 2000 and QNX
4.25 versions of this method are essentially the same.

Modem initialization and configuration for the Orbcomm transceiver (Quake 1500
modem) is included in the packet of transferred data. As shown in Table 4.2, a SC-
Originated message contains bytes such as data type, ACK level, Orbcomm gateway ID,
priority level, recipient email address and message data type. No separate modem

initialization method is required for the Orbcomm transceiver.

65

int init_noden(char command[], int bytes, char s){

int t=0; char buffer[255]; DWORD dwByt esRead=0
bool nodentl ag=true; string signal; int times=0;
char first; char second
//determne if it is nodeminitialization of term natation
if(s=="s'") tines=3; if(s=="0") tinmes=2
whi | e(t<tines){
first="0; second='K ; nodenFl ag=true
il e(modenfl ag) {
/lit is nodeminitialization

if(s=="s"){
/it is “AT" conmmand
if(t==0){

serial . Wite("AT\r", 3); signal.assign("C!"); Sleep(2000);

}
/lit is bearer set
else if(t==1){
serial.Wite("AT+CBST=6,0, 1\r", 14);
signal .assign("Data link set!"); Sleep(2000);

/it is dialing sat nunber

else if(t==2)({
cout<<"Dialing..."<<endl; serial.Wite(comand, bytes);
first="C,; second='"O; signal.assign("Connected!");
Sl eep(30000);

/it is escape sequence
if(t==0){
serial . Wite("+++", 3); Sleep(2000); signal.assign("Data |ink
of f1");

/it is Iink disconnection

else if(t==1)({
serial . Wite("ATH\r", 4); Sleep(2000);
signal . assi gn("Di sconnected!");

/l keep reading fromserial port until the right nodem//response
is detected

dwByt esRead=0; serial . Read(buffer, sizeof(buffer)-1, &IwBytesRead);

int response=0; nodenfl ag=true
cout <<"AT response: "<<buffer<<endl
whi | e(nrodenf| ag&&r esponse<254) {
i f(buffer[response] ==first &&buffer[response+l] ==second) {
nmodent| ag=f al se; buffer[response] =
buf fer[response+1] =" '; cout<<signal <<endl|

response++
1}
t++;}
return O;

}

Figure 4.5 The modem initialization method for the Iridium Motorola 9500 handset
(i ni t _nmoden() method on Windows 2000).

4.2.3 Fletcher Checksum
Detecting and, if possible, correcting data errors is crucial in network data

communications, especially when using a wireless data link. With a one-bit loss or error a

66

runnable program can be corrupted so that it cannot run [Peterson, 2000]. An error
detection and correction algorithm is very important at the link level of a communication
network. Existing algorithms include Cyclic Redundancy Check (CRC), two-dimensional
parity and Internet checksum. The Internet checksum algorithm simply sums

(modulo 2'°) each byte of transmitted data and sends the result of the sum with the data
to the receiving side. The receiving side does the same calculation to check if there is any
error or loss in received data. This algorithm is very simple to implement using 1’s
complement, but is less protective than the CRC algorithm. If a pair of single-bit errors
occurs, one increment and one decrement, the checksum algorithm is not able to detect
the error since the sum of all bits remains the same [Seaman, 1995].

Fletcher’s checksum is another implementation of a checksum algorithm which is a
variant of the 1’s complement algorithm. In Fletcher’s checksum, the checksum is
divided into two parts, each of which is in 16-bit hexadecimal format. To calculate the
Fletcher’s checksum for N bytes of data, the algorithm uses the following equations to
calculate checksum bytes and insert them into the end of a data byte stream:

N
C, =B, (4.1)

=1

C, =S (N-iB 42)

where Cy = first checksum byte, which is the sum of all data bytes, C; =second
checksum byte, which is the sum of each data byte multiplied by its position index from
the end of the data packet, and B;= the i byte of data.

Fletcher’s checksum algorithm is slower than the 1’s complement algorithm and

involves a pair of simultaneous equations. Although it adds some complexity to data error

67

checking, Fletcher’s Checksum is an interesting possibility for binary applications
[Seaman, 1995]. The code of Fletcher’s checksum algorithm implementation for satellite

system data communication testing is shown in Figure 4.6.

voi d MSC vdFl et cher Encode(unsi gned char *buffer, int
count) {

int i;

unsi gned char c0=0, c1=0;

//set both checksum bytes to zero

*(buffer + count - 1) = *(buffer + count - 2) = 0;
[/ sum up checksum byt es

for(i =0; i <count; i++)
{cO += *(buffer+i);
cl += c0;
*(buffer + count - 2) = cO;
*(buffer + count - 1) = cl1;}

Figure 4.6 Fletcher’s checksum method (from [Fletcher, 1982] and [KBMW, 1999)).

4.2.4 Sender

Sender is the class in satellite system data communication testing that is responsible
for sending data to the satellite data link through a serial port for system latency testing.
The data transferred into the satellite link is simulated GPS position data stored in a
source file. For our research, we chose transmitted data with a size of 108 bytes, which
approximately matches the length of a message in the Kodiak seismic survey operations.
Figure 4.7 shows a sample message we used to test the satellite communication channels.

A ‘~* character is used to indicate the end of each message.

T1

200906 17 6 1 0.000

1 15 15:25:30:00 12 11 2002

1 N85635. 456 WL1343.57 H222.70
1 0.078 6.2761

1 4 5.000 6"

Figure 4.7 Sample data message (108 bytes long) for satellite communication channels
testing.

68

After modem initialization and configuration, Sender dials the satellite phone number
coded in the program and sets the satellite data link. This part of the operation only
occurs in Iridium system testing. Data arrives at the Receiver side via an e-mail message
for the Orbcomm system, and the e-mail address is included in the Orbcomm packet data
message.

Once the satellite link is set, the Sender prompts the user to enter number of times M
to repeat sending messages, time T (in seconds) to wait between sending messages and
source data file name. The user is in control of entering various values of M and T to test
satellite system latency. Figure 4.8 shows sample Iridium modem testing sessions (both
sending and receiving) in operation. The times shown in (a) and (b) of Figure 4.8 do not

correspond to the same transmission session.

69

I Select "C:\Serial\ senderWil

Flease enter sat phone number:
881631416987

Sending record from Broca (Mindows 2888)>
Time before connection: Tuwe 12 17 15:9:14 28682
OK *

Data link set ?
Dialing......

Connected *
Time after connection: Tue 12 17 15:9:48 2882
Phone number: BB81631416987

Enter sleep seconds,. space. repeat time, space, source file mame. To end session
. enter B, space,. B, x++ :
2 1 source.txt

Frequency: sending every 2 seconds.

Start sending time: 15:9:51:112
Finish sending time: 15:9:51:122 [|
Sending data:

e

200986 17 6 1 B.008

1 15 15:28:38:88 11 28 2882

1 NBS5628.888 W11359.57 H234.18
1 8.878 6.2761

1 4 5.888 6

Sending hytes: 168

(a) Sender

[Zi]Select "'C: Serial', senderWin! Diebug' sende

OK *
Data link zet %
Hlaiting...... H

Receiving record at BrocadWindows 288@A):
Time: Tue 12 17 15:32:-22 26882

Start receiving time: 15:32:24:538
Finizh receiving time=z 15:32:25:840
Fletcher checksum correct !
Received datac

18

2080986 17 6 1 6.8848 []
1 15 15:=28:39:680 11 28 26002

1 NBSh28.888 W11359.57 H234.18

1 8.878 6.2761

1 45.0060 6

Received hytes: 188

(b) Receiver

Figure 4.8 Sample Iridium modem testing sessions in operation.

Sending frequency is an important element in our satellite system latency testing.
Sending data at different frequencies was used to the test data communication capability

of the satellite link. The Iridium satellite system has a data transmission capability of

70

2400 bps and Orbomm’s data transmission capability is 4800 bps. In our research the
actual data transmission rate (maximum 1080 bps (assuming 10 bits are required to send
one byte) when sending frequency is 1 Hz) is expected to be within both Iridium and
Orbcomm system data transmission ability. Effective data rate is not necessarily equal to
system design data rate, and our testing was designed to see if the Iridium and Orbcomm
systems could keep up with our maximum sustained data rate.

In each session of data transmission, Sender opens the source data file, reads one set
of simulated GPS data (N bytes long) and sends this data to the satellite data link. Once
Sender reaches the end of the source data file, the data transmission session ends. Sender
repeats the data transmission session M times, where M is entered by the user. Figure 4.9

shows the pseudo-code algorithm for reading a file of simulated GPS data.

Initialize Buffer for sending a string
Open the source data file
While (true) do
Wiile (true) do
Read a line of data L
Buffer « Buffer + L
If (first byte of L = “end of file”) exit outer
whil e | oop
If (last byte of L = “end of data set (‘~")")
exit inner while |oop
End of inner Wile | oop
Wite data set nessage to serial port
End of outer Wile | oop
Cl ose source data file

Figure 4.9 Pseudo-code for reading a file of simulated GPS data.

When one sending session is finished, Sender prompts the user for the next session.
Sender can either start another data transmission session with new sending parameters or
enter special commands to end data communication and disconnect the satellite data link.

A record file named “sRecord.txt” is generated at the beginning of the Sender

program to record data transmission information including transferred data, error

71

checking results and system time for each transmitted data message. For each N bytes of
transmission message, Sender records the system time when data sending starts. The
recorded file information is used to compare with a Receiver side file of the same name
(sRecord.txt) to compute satellite system data transmission latency and determine if data
errors occurred during transmission. Figure 4.10 is an example of part of a file recorded

at the Sender side.

Sendi ng record from Broca (W ndows 2000)

Ti me before connection: Wed 12 11 16:20:50 2002
Time after connection: Wed 12 11 16:21:24 2002
Phone nunber: 881631416988

Frequency: sending every 1 seconds.

Start sending tine: 16:21: 30: 664
Fi ni sh sending tine: 16:21:30:714
Sendi ng dat a:

TO

200906 17 6 1 0.000

1 15 15:20:30:00 12 11 2002

1 N85628.888 WL1359. 57 H234. 10

1 0.078 6.2761

1 4 5.000 6

Sendi ng bytes: 108

Start sending tine: 16:21:31:755
Finish sending tinme: 16:21:31:815
Sendi ng dat a:

T1

200906 17 6 1 0.000

1 15 15:25:30:00 12 11 2002

1 N85635. 456 WL1343. 57 H222.70

1 0.078 6.2761
14 5.000 6

Sendi ng bytes: 108

Figure 4.10 Example portion of a data transmission summary file recorded by Sender.

The Sender programs for Windows 2000 and QNX 4.25 are essentially identical. The
only difference arises from the different file I/O processes of the two operating systems.

Sender programs for the Iridium and Orbcomm systems are different. For Iridium
system testing, Sender is dealing with data and associating with the receiving side at the

link level. Each data string D transmitted is inserted with an additional three bytes of

72

overhead. The last byte character ‘&’ indicates end of this N bytes of simulated GPS data.
The second and third last bytes are Fletcher’s checksum bytes calculated by Sender. The

three terminating bytes are used at the Receiver side to separate and handle each specific

data transmission.

For Orbcomm system testing, the receiving side receives data via e-mail through
SMTP. An Orbcomm data string is a packet of hexdecimal data as described in Table 4.2
in section 4.1.4. An Orbcomm data string contains several bytes of overhead including
recipient e-mail address, type of data format, Fletcher’s checksum, total data bytes, ACK
level, priority level and gateway ID. This packet data has commands for Orbcomm
modem initialization and configuration as well as complete data transmission instructions
for the Orbcomm data network’s TCP/IP layers. The overhead is 17 bytes if the
recipient’s e-mail address has been predefined in user account when the Orbcomm
transceiver is activated and byte No. 13 in Table 4.2 is used to indicate this. When the
value of byte No. 13 is ‘01°, the Orbcomm system will look for the actual e-mail address
in the user account instead of the data string.

Figure 4.11 shows the Iridium Sender algorithm for Windows 2000 and Figure 4.12

shows the unique part of the Orbcomm Sender algorithm on QNX 4.25.

73

CSerial serial

serial.Qpen(_T(*“COW"))

serial.setup(Baud R Data bit B, Parity P, Stop bit S)

init_nodenm PN, PN.length(), '"s') // PNis sat phone No.

Open record file r(“sRecord.txt”)

Wiile (true) do

Pronpt user for user input sending conmand S

i ncludi ng sl eep seconds T, repeat tinmes M and
data file nane

If (S = "%+") exit outer while | oop
El se
For(M // Mis no. of tines to repeat sending
Open the source data file
VWi | e(true) do
Fetch one set of data D from source data
file (as inner while loop in Figure
4.9)
N <« total nunber of data bytes in D
SYSTEMII ME tm
MSC_vdFI et cher Encode(D, N+2),
D[N+2] « '&
t, « GetSystenili nme(& m
serial . Wite(D, N+3) /* send data string
to serial port */
t, « GetSystenii me(& m
Wite t,, t,and Dintor /* record data
and tinme */
Sleep(T) /* wait T seconds to send next
data */
End of inner Wiile |oop
Cl ose source data file
End of For | oop
End If
End of outer Wiile | oop
Close r //close record file
init_nodenm(“off”, 3, '0') // termnate data |link
serial.close() // close serial port

Figure 4.11 Sender pseudo-code for Iridium on Windows 2000.

74

sdf <« open(“dev/ser2”) //open serial port #2
Configure serial port and set input option as raw
Construct packet string D wth basic O bcomm bytes

int w/* wis the actual no. of bytes successfully witten to the
serial port during one serial port witing. This value is returned
by wite (serial port file, data string, no. of bytes) nethod */

VWile (true) do
Pronpt user for user input sending conmmand S including sleep
seconds T, repeat tinmes Mand data file nane

If (T = %9999") //indicate stop sendi ng session
exit outer While | oop
El se
For(Mtimes) /* Mis no. of times to repeat sending */
Open the data file
Whil e(true) do
Fetch one set of data ds /* as inner while loop in Fig.
4.9 */
D« D+ ds, N« length of D
timeb tm/* systemtine variable for QNX system */
MSC_vdFl et cher Encode(D, N) /*insert checksumbytes into
data string */
t, « ftime(&n) //get systemtinme
w=wite(sfd, DD N /* wis no. of bytes successfully
witten to serial port */
If (w=N /* when all bytes of the data string are
successfully witten to the serial port */
t, « ftime(&n, Wite t,t,and Dto r
End of If
Sl eep(T)
End of i1nner VWile | oop
close the data file
End of For | oop
End of If Else
End of outer Wile | oop
Close r, close(sfd)//close record file and serial port

Figure 4.12 The different part of the Sender pseudo-code for Orbcomm on QNX 4.25.

4.2.5 Receiver
A Receiver was built only for Iridium system testing since the Orbcomm system
sends data in e-mail format to the Receiver side. Figure 4.13 shows the steps of serial port

reading at the Receiver side and Figure 4.14 is the pseudo-code of the Receiver program

on Windows 2000.

75

Iridium satellite constellation

transceiver messages on monitor |

> rRecord.txt

send data

. open and configure port
serial port [
Y

Receiver program

detect disconnect command

disconnect data link and close port

read from port and accumulate data bytes
Figure 4.13 Steps of serial port reading at the Receiver side for Iridium communication.

As for Sender, Receiver starts with opening a serial port, setting the serial port,
satellite modem initialization and configuration (see lines 1 to 3 in Figure 4.14). Receiver
then listens to the serial port and waits for any incoming data signal from the attached
satellite transceiver (modem) as described in lines 7 to 9. Reading data from the serial

port and handling data involves data byte accumulation and data error checking. Since the

testing is focused on satellite data transmission latency, the system time ¢, (epoch that

the first data byte arrives) and 7, (epoch that the last data byte arrives) of each data

arrival is recorded. Lines 20, 21, 30 and 33 of the pseudo-code in Figure 4.14 show how
the system time is recorded. The data arrival time is meaningful for satellite system
latency calculations only if the Receiver detects a data byte at the serial port as soon as
the data byte arrives. Serial port reading needs to be prompt and continuous.

Each serial port has an input buffer as initialized in line 4 of Figure 4.14. Serial port
reading reads data bytes from the input buffer. A user has control of the size of the input

buffer, which is the maximum number of data bytes for each serial port reading. The

76

actual number of data bytes read (rb in lines 12 and 27) each time depends on how many
bytes of data are in the input buffer at the moment. A user has no control on the actual
number of data bytes read each time. A serial read resulting in zero bytes occurs when
there is no data in the input buffer. Zero bytes read can happen at any time during data
reading and it does not indicate the end of data transmission. The Receiver program
accumulates data bytes and waits for arrival of the “end-of-data” byte (‘&’) to determine
when the end of current data transmission is received (line 32). Once the end indicator
byte of the current data transmission is detected, Receiver handles the accumulated data,
prints data to the monitor, writes data to the output file and calculates Fletcher’s
checksum on the received data to compare with the Sender’s checksum result. This
procedure is handled by a function of Handl eDat a(fs, N) (lines 25 and 34) written
separately in the Receiver program. Receiver records and shows an error message if its

checksum disagrees with the Sender’s checksum.

77

1. CsSerial serial, serial.OQpen(_T(“COW"))
2. serial.setup(Baud R Data bit B, Parity P, Stop bit S)
3. init_nodem('s'), QOpen record file r(“rRecord.txt”)
4, initialize Buffer, N « total nunber of read bytes
5. fs « final data string
6. SYSTEMIIME tm //systemtinme variable
7. Wile (true) do
8. e « serial port event /* check serial port event (data receive, br eak,
error) */
9. If(e = receive event)
10. Wi le (true) do
11. Buffer « data bytes read fromserial port
12. rb <« nunber of bytes read currently
13. If (Buffer[0] = ending session byte ‘%)
14. exit outer while |oop
15. El se
16. If(Buffer[0] !=data start byte ‘T"& rb > 0)/* current read data
bytes are the mddle part of a data set */
/* check special case when current read data bytes containing the
start bytes of next data set */
17. int Kk« 1 // look for the start byte of next data set
18. Wi | e(true)
19. If (Buffer[k]="T")
20. t, « GetSysteniline(&mn) /* start receiving tine for next
data transm ssion */
21. t, « GetSystenlinme(& m/* finish receiving tinme for current
data transm ssion */
22. C, « data bytes before k in Buffer (current transmni ssion)
23. C, « data bytes after kin Buffer (next transmi ssion)
24, fs « fs + C, Buffer « C
25. N « N + rb, HandleData(fs, N) /* call nethod to handle data
set and cal cul ate checksum */
26. witet, t,and fstor, N« 0, t, « t,/* assignt, tot,
27. rb « rb - (k-1), , Exit inner while Ioop
El se
28. k « k +1
End if
End of inner while loop (line 18)
29. Else If (Buffer[0]=data start byte ‘T') /* case inconming data is the
start of a data set and special case did not happen */
30. t, « GetSystenlime(&m // get start tinme
End if
I1f(rbl=0) //reading bytes is not zero
31. fs « fs + Buffer, N« N+ rb
End | f
32. If(fs[last]=data set ending byte ‘&) // it is the end of data
33. t, <« GetSystenTinme(&m // finish time
End | f
End | f
End of second inner Wiile loop (line 10)
34. Handl eData(fs, N, wite t,, t, and fs to r
End | f

End of outer Wiile loop (line 7)
35.Cose r, init_nmoden('o"), serial.close()

Figure 4.14 Pseudo-code for the Receiver program on Windows 2000.

On occasion, the data read on the Receiver side happens to include the last several
bytes of the current data transmission and several start bytes of the next data
transmission. This happens more when sending frequency increases and the next data
transmission is closer to the previous one. Lines 17 to 28 in Figure 4.14 show how the

Receiver program handles this occurrence. In this case, Receiver separates the data

78

stream into two parts (C, in line 22 and C, in line 23) and handles each part separately.
The same system time is recorded as finishing receiving time ¢, for the current data
transmission (line 21 in Figure 4.14) and start receiving time ¢, for the next data

transmission (line 20 in Figure 4.14). The value of ¢, is assigned to the variable ¢, after

the record of current data transmission has been written into the output file (lines 25 and
26 in Figure 4.14). This avoids over writing ¢, of current data transmission

When a user decides to stop data transmission and enters the “stop sending”
command on the Sender side, Sender ends the session and sends an AT command to
terminate the satellite modem and disconnect the data link. Upon receiving the disconnect
command as described in line 13 of Figure 4.14, the satellite transceiver at the Sender
side changes from data mode to command mode and transmits a disconnection signal to
the satellite transceiver at the Receiver side. The Receiver program then ends its data
reading session, switches the satellite transceiver from data mode to command mode,
disconnects the satellite data link and closes the serial port. Receiver coding on Windows
2000 is similar to Receiver coding on QNX 4.25 except for file I/O.

The output file “rRecord.txt” is generated to record data receiving information. The
Receiver program records the system time when the first incoming data byte of the
current transmission is detected and also when the ending data byte is received. With
N = 108 bytes of data, the start receiving time and finish receiving time are significantly

different. The satellite system latency calculation for each data transmission (see section

4.2.6) uses the finish receiving time on the receiver side (¢, in Figure 4.14 above) and the

79

start sending time on the sender side (¢, in Figure 4.11). A portion of the rRecord.txt file

for Receiver is displayed in Figure 4.15.

Recei ving record at Broca (W ndows 2000)
Time: Wed 12 11 15:41:37 2002

Start receiving time: 15:41:54: 245
Fi ni sh receiving tine: 15:41:54:786
Fl et cher checksum correct!

Recei ved dat a:

TO

200906 17 6 1 0.000

1 15 15:20:30:00 12 11 2002

1 N85628.888 WL1359. 57 H234. 10

1 0.078 6.2761

1 4 5.000 6

Recei ved bytes: 108

Start receiving time: 15:41:55:227
Fi ni sh receiving tinme: 15:41:55:768
Fl et cher checksum correct!

Recei ved dat a:

T1

200906 17 6 1 0.000

1 15 15:25:30:00 12 11 2002

1 N85635. 456 WL1343. 57 H222.70

1 0.078 6.2761

1 4 5.000 6

Recei ved bytes: 108

Figure 4.15 Example portion of a rRecord.txt file recorded by the Receiver.

4.2.6 Computing satellite system latency

Calculation of satellite system latency is based on system time recorded in output
files from Sender and Receiver (Iridium) (the receiving side time is the e-mail receiving
time for Orbcomm). Equation (4.3) shows how the satellite system latency was

calculated. Satellite system latency L;is calculated as:
L =t -t 4.3)
where L; = system latency for data message i in seconds, ¢, = time start of message i was

received by the Receiver program and ¢; = time start of message i was sent by the Sender

program.

80

Both ¢ and ¢, are system time and were obtained by using system time methods on

Windows 2000 and QNX 4.25. On Windows 2000, a system call of
Get SystemTi ne(&t i nme) (tinmeisa SYSTEMII ME type variable) was used to get
system time. On QNX 4.25 a system call of f t i me(&t) (t isati neb type variable

defined in the QNX sys/ ti meb. h file) was used to get system time.

To make both ¢ and #; comparable and the time difference meaningful as system

latency, system time on both Sender and Receiver was synchronized with the same time
server. Time synchronizing technologies on Windows 2000 and QNX 4.25 are different.
The Dimension 4 time synchronizer for Windows [Mills, 1998] was downloaded to
Windows operating systems including Broca and the laptop computer used for dynamic
Iridium testing. Xntp [Mills, 1996], version 3.5 of Network Time Protocol (NTP) was
used for QNX1. Dimension 4 and Xntp were chosen out of many available time
synchronizers because they both use the SNTP time protocol and allow the user to choose
from a list of active NTP time servers. In this research, both time synchronizers poll
ntp.unb.ca at the University of New Brunswick to synchronize system time for Broca, the
laptop used for the Iridium dynamic testing and QNX 1. The time adjustment accuracy

using Dimension 4 and Xntp is approximately 50 ms [Mills, 1998] [Mills, 2001].

81

Chapter 5. Testing and results analysis

The computers for satellite data transmissions were set up in Gillin Hall Room E112,
the Hydrography Lab of the Geodesy and Geomatics Department at the University of
New Brunswick (Fredericton, NB, Canada). To achieve the best satellite communication
signal, the satellite antennae were installed on the roof of Gillin Hall, where the satellite
antennae have the best view of the sky without being blocked by any structures.

5.1 Test environment

Satellite data transmission testing was between Broca (Windows 2000, the middle
computer in Figure 5.1) and QNX1 (QNX 4.25, the right most computer in Figure 5.1).
Two 60 foot (18 m) long RS232 DBY cables were used to connect the satellite
transceivers (one for sending and one for receiving) on the roof (as shown in Figure 5.2)

to the computer serial ports in the lab at Gillin Hall.

Figure 5.1 Computer setup in Room GE112 (Hydrography Lab) of Gillin Hall.

82

(b) Iridium Sensor Systems antenna.

Figure 5.2 Antennae and satellite transceiver setup on the roof of Gillin Hall.

Data signal loss on the antenna cable between the satellite antenna and satellite
transceiver is an important element affecting the satellite data transmission. A low-loss
cable is critical for the Iridium system which operates at 1610 — 1626.6 MHz in both
transmitting and receiving. For the Orbcomm system, the antenna cable data loss is less

important since Orbcomm operates at 148.0 — 150.05 MHz (uplink) and 137.0-138.0

83

MHz (downlink). To meet the requirement of total 3dB maximum antenna cable data loss
for the Iridium system, a 10 foot (3 m) LMR400 antenna cable assembled with two male
TNC connectors obtained from Cabco Inc., Halifax, N.S. was used to connect the Iridium
satellite antenna and satellite transceiver (Motorola 9500 phone). Figure 5.3 shows the
testing antenna layout on the roof of Gillin Hall.

Iridium Motorola auxiliary antenna location

Orbcomm whip antenna location

Edge of roof
Iridium Sensor Systems

_________ > 4 antenna location
o
9]
(oo 285 "7t >
L2 v
R S T
R
2
v
(Top view)
_____ N — o
\ o
. S
x i
m 1
v v
(Side view)

Figure 5.3 Satellite antenna layout on the roof (all units in cm).
5.2 Iridium experiments

Among three data services provided by the Iridium system, we chose the Mobile

Terminated Data Service for Iridium data transmission latency testing. As explained in

84

section 3.1.1.2, a Motorola 9500 satellite phone was set up at each end of the satellite link
for the experiments.
5.2.1 Static testing

In seismic survey operations satellite equipment can be used in a static environment
such as a base station and in a dynamic environment such as a moving helicopter. The
transmission environment can affect the satellite system latency. We measured the
Iridium satellite system latency in both static and dynamic environments.

Static testing was performed when both Sender and Receiver were stationary. To
probe overall availability of data channels of the Iridium satellite system, static testing
was done at three different time periods - morning, afternoon and night on a regular
working day. The sending frequency was also varied to test the Iridium system data
transmission capability. Sending frequencies used were 1, 0.5 and 0.25 Hz, corresponding
to sending data every 1, 2 and 4 seconds. A simulated GPS position message (see section
4.2.4) of 108 bytes was sent for each transmission. Each frequency test was conducted 40
times (20 times sending from Broca to QNX1 and 20 times from QNXI1 to Broca). The
average Iridium system latency and standard deviation are recorded in Tables 5.1 to 5.3
for three time slots, morning (8:00 am — 12:00 noon), afternoon (2:00 pm — 5:00 pm) and
evening (7:00 pm — 10:00 pm) Atlantic time on November 12, 2002. The data link loss
rate is the percentage of times that the Iridium satellite data link was lost during data
transmission sessions. On the morning of November 12, 2002, one of the 40 transmission
tests (2.5%) had a dropped satellite link. Two of 40 transmissions (5%) were lost during

the afternoon of November 12, 2002. Testing results are analyzed in section 5.2.3.

85

Table 5.1 Iridium static testing results during the morning of November 12, 2002.

frequency | N average latency standard deviation data link loss rate
(Hz) (ms) (ms) (%)
1 40 1460 560 0
0.5 40 1781 581 2.5
0.25 40 1516 460 0
average 40 1585.6 533.6 8.3

Table 5.2 Iridium static testing results during the afternoon of November 12, 2002.

frequency | N | average latency (ms) standard deviation data link loss rate
(Hz) (ms) (%)

1 40 1560 336 0

0.5 40 1186 815 0

0.25 40 1197 676 5.0

average 40 1314.3 609 1.7

Table 5.3 Iridium static testing results during the evening of November 12, 2002.

frequency | N | average latency (ms) standard deviation data link loss rate
(Hz) (ms) (%)
1 40 1420 398 0
0.5 40 1126 535 0
0.25 40 1078 629 0
average 40 1208 520.7 0
5.2.2 Dynamic testing

Dynamic testing with the Iridium system tested system latency with one satellite

transceiver moving. The dynamic test system was set up with one Windows 2000 laptop

in a moving car to simulate helicopter movement. An additional element taken into

consideration in dynamic testing is the speed of the car. The focus of dynamic testing is

to compare data transmission latency, data error and data loss rate with static testing to

check if dynamic movement affects the Iridium system’s data transmission function.

Figure 5.4 shows the equipment layout of the moving Iridium transceiver.

86

Figure 5.4 Dynamic Iridium transceiver layout.

Each dynamic test was performed 40 times (20 times from the laptop to QNX1 and
20 times from QNX1 to the laptop). Tables 5.4 and 5.5 show results for dynamic testing
with different testing parameters. Tests were done at 4:45 pm — 6:00 pm on November
28,2002 and 2:30 pm — 3:30 pm on December 11, 2002 Atlantic time. Dynamic testing

results are analyzed with static testing results in section 5.2.3.

Table 5.4 Iridium dynamic testing results during the afternoon of November 28, 2002.

speed | N | frequency average latency | standard deviation | data link loss
(km/h) (Hz) (ms) (ms) rate (%)
40 | 0.5 1544 95 0
50 40 | 0.25 1454 51 0
110 40 | 0.5 1356 225 0

87

Table 5.5 Iridium dynamic testing results during the afternoon of December 11, 2002.

speed | N | frequency | average latency | standard deviation | data link loss rate
(km/h) (Hz) (ms) (ms) (%)
50 40 |1 1510 105 0

110 40 |1 1558 89 0

5.2.3 Analysis of testing results

We used statistical analysis on both static and dynamic data transmission latency
testing results of the Iridium satellite system. The two-sample #-test for independent
samples with equal variances (two variances are equal or not significantly different) or
unequal variances (two variances are significantly different) [Rosner, 1990] was
employed.
5.2.3.1 Statistical testing

Two-sample ¢-test statistical testing was used to compare the average system latency
of two different data transmission scenarios. Our null hypothesis Hjis L1 = L> where

Li = the average system latency in the first data transmission test scenario, and L> =the
average system latency in the second transmission test scenario. We used the following

equations to calculate the test statistic value ¢ for the testing cases with equal variances:

_ ((nl _1)S12 + (”2 _I)Szz)
s —\/ (711 o _2) (5.1)
t:i (5.2)

where n; = sample size of the first data transmission test scenario, 7, = sample size of the
second transmission test scenario, s; = standard deviation of the first data transmission

test scenario, s, = standard deviation of the second data transmission test scenario,

88

Li = the average system latency of the first scenario and L= average system latency of

the second case [Rosner1990].
With the calculation result of the ¢ value, we compare the ¢ value with the value of

th1+n2-2, 1-o2 found in the ¢ distribution table. If the 7 value lies between -#,;+,2.2 ;o> and

thr+n2-2, 1-a2» Hop 18 accepted at a significance level of /-« ; otherwise Hyis rejected

[Rosner, 1990].
For the cases with unequal variances, the following equations are used to calculate the

t value:
Li—L,
= R (5.3)
S %
n, n,
2
Sﬁj
n,n, (5.4)

where d = the approximate degrees of freedom.

We rounded up d to the nearest integer d and compared the ¢ value with the value of

t4 1-o> from the T distribution table. If the ¢ value is between —; ;o2 and 4 ;.a0, Hy 1S

accepted at a significance level of /-« ; otherwise Hjis rejected [Rosner, 1990].

5.2.3.2 Testing results analysis
Table 5.6 shows average system latencies and standard deviations based on the static

testing results in the morning, afternoon and evening.

89

Table 5.6 Average system latencies and standard deviation at different frequencies and
different time of the day.

Frequency sample size average latency standard deviation

(n) (L) (s)

1 40 1480 431

0.5 40 1364 644

0.25 40 1264 588

Time of day

morning 40 1585.6 533.6

afternoon 40 1314.3 609

evening 40 1208 520.7

The standard deviations at different frequencies and different time of the day are not
significantly different. Thus we used equations (5.1) and (5.2) to calculate the ¢ values.
We have two testing result comparisons at various frequencies, 1 Hz vs 0.5 Hz, 0.5 Hz vs
0.25 Hz, 1 Hz vs 0.25 Hz, morning vs afternoon, afternoon vs evening and morning vs

evening. Table 5.7 shows the calculation results of the ¢ values with o= 0.01.

Table 5.7 Results of the ¢ values for Iridium static testing (equal variance assumption).

7 7 1 1

Comparison L(lr;lsgz SW’n_l + n t 178, 0.995
1 and 0.5 116 122.5 0.947 2.640
0.5 and 0.25 100 137.9 0.725 2.640
1 and 0.25 216 1153 1.873 2.640
morning vs afternoon 271.3 127.9 2.119 2.640
afternoon vs evening 106.3 126.6 0.840 2.640
morning vs evening 3717.6 117.7 3.208 2.640

From the Table 5.7 we can see that the ¢ value in frequency comparison cases are
within the range of the -1,,;412-2 1.2 and #7122, 1-02. We can conclude that the system
latencies at different frequencies in static testing are not significantly different at the 99%

confidence level.

90

The available data rate provided by the Iridium system is 2400 bps, or approximately
240 bytes every second. Our maximum testing data transmission rate of 111 bytes (108
bytes data with 3 additional bytes) every second is less than half of the available data rate
provided by Iridium.

Static testing also shows that during different times of the day, data transmission
latency is slightly different due to the traffic on the Iridium satellite system’s data
channels. Figure 5.5 is plots the average Iridium data transmission latency for the three
time slots. Data transmission in the evening has the lowest average system latency.
Results of hypothesis testing for different time of a day from Table 5.7 indicate that only
the average system latency in the morning is significantly different from the latency in

the evening at the 99% confidence level.

- 2000

£ 1500 > : ——morning
g 1000 - —— afternoon
f 500 evening
& 0

S 1 0.5 0.25

sending frequency (hz)

Figure 5.5 The Iridium system average data transmission latency for static testing.

Table 5.8 shows the average system latencies, standard deviations and ¢ values of the
static and dynamic testing results for our observed frequencies (1 Hz and 0.5 Hz) and

time slots with the a value of 1%. Since the variances of static and dynamic testing are

91

significantly different, equations (5.3) and (5.4) are used to calculate ¢ values. The sample

size for each testing case is 40.

Table 5.8 Calculation results of ¢ values for Iridium static and dynamic testing.

Comparison average latency | standard deviation t 14 0.995
(L) ()
1 Hz dynamic 1534 97 0.773 2.695
Static 1480 431 (d=43)
0.5 Hz | dynamic 1450 160 0.820 2.692
Static 1364 644 (d=44)

We can see that in both scenarios the ¢ values are between -, ;.o and t; .o/, Which
indicates that the system latencies of static and dynamic data transmissions are not
significantly different at the 99% confidence level. Testing result indicate that movement
does not affect Iridium system latency, at least for the vehicle speed (up to 110 km per
hour) we tested. The average system latency also does not increase when the moving
speed is higher. The Iridium system works well in a dynamic environment. The testing
results indicate that the Iridium system would perform well in both static and dynamic
seismic survey scenarios.

Modem initialization for the Iridium system is the first step of satellite
communication. Testing shows that modem initialization and data link setup in the
dynamic situation takes longer than in the static situation. Average modem initialization
time in static testing is 46 seconds and 83 seconds in dynamic testing. The maximum
modem initialization time in the static case is 61 seconds compared with 5 minutes during
our dynamic testing.

The data error rate is defined as percentage of times where a received data bit is

different from the data bit sent by the sending side during the satellite data transmission.

92

For the Iridium system in both static and dynamic scenarios, testing results show that the
data error rate is 0% in all testing cases. Data link loss only occurred three times in more
than 1000 data transmissions. Testing results show that the Iridium system has good
reliability.
5.3 Orbcomm experiment

Orbcomm system data transmission latency was tested only for the static case.
Orbcomm testing uses one satellite transceiver as Sender that sends data through the
Orbcomm network. The receiving side of the Orbcomm testing system receives data in
email format.
5.3.1 Static testing

Static testing of the Orbcomm system was designed to test Orbcomm data
transmission latency at different time slots of the day with various frequencies. As for the
Iridium system testing, each Orbcomm test was performed 40 times (20 times from Broca
to QNX1 and 20 times from QNX1 to Broca) to achieve reliable statistical information of
Orbcomm system latency. The test data is the same 111 bytes simulated position data as
was used for Iridium testing. Tables 5.9 to 5.11 shows static testing results for Orbcomm
system data transmission. Testing was conducted during the morning, afternoon and

evening (as defined for the Iridium testing) on November 12 and November 14, 2002.

Table 5.9 Orbcomm static testing results during the morning of November 12&14, 2002.

frequency average latency standard deviation data link loss rate
(Hz) (min sec) (min sec) (%)
0.5 14 min 39 sec 9 min 59 sec 0
0.25 15 min O sec 7 min 3 sec 0
0.125 18 min 12 sec 11 min 23 sec 0
0.0625 21 min 30 sec 7 min 54 sec 0
average 17 min 20 sec 9 min 4 sec 0

93

Table 5.10 Orbcomm static testing results during the afternoon November 12&14, 2002.

frequency average latency standard deviation data link loss rate
(Hz) (min sec) (min sec) (%)
0.5 22 min 12 sec 8 min 58 sec 0
0.25 6 min 18 sec 3 min 57 sec 0
0.125 9 min 35 sec 3 min 40 sec 0
0.0625 5 min 0 sec 2 min 53 sec 0
average 10 min 46 sec 4 min 52 sec 0

Table 5.11 Orbcomm static testing results during the evening of November 12&14, 2002.

frequency average latency standard deviation data link loss rate
(Hz) (min sec) (min sec) (%)
0.5 8 min 12 sec 7 min 2 sec 0
0.25 9 min 30 sec 3 min 12 sec 0
0.125 7 min 6 sec 3 min 30 sec 0
0.0625 15 min 35 sec 5 min 2 sec 0
average 10 min 9 sec 4 min 41 sec 0

5.3.2 Analysis of results
The same statistical testing used for the Iridium testing results was used to analyze the

Orbcomm system latency testing results. Table 5.12 shows average system latencies and

standard deviations based on the static testing results of the morning, afternoon and

evening.

Table 5.12 Average system latencies and variances at different frequencies.

frequency sample size average latency standard deviation
(H2)) (D) (s)
0.5 (2 sec) 40 15 min 01 sec 8 min 40 sec
0.25 (4 sec) 40 10 min 16 sec 4 min 43 sec
0.125 (8 sec) 40 11 min 38 sec 6 min 11 sec
0.0625 (16 sec) 40 14 min 02 sec 5 min 16 sec

We compare the Orbcomm testing results in nine cases based on frequency and time
of day. In each case, the standard deviations for different frequencies are not significantly
different. The ¢ values are calculated by equations (5.1) and (5.2). Table 5.13 shows the

calculation results for ¢ values with = 0.01.

94

Table 5.13 Results of the ¢ values for Orbcomm testing (equal variance assumption).

A 1 1
case Comparison Li-L Sw/ PR t 17, 0.995

1 2
#1 0.5vs 0.25 4 min 55 sec 1 min 36 sec 3.073 2.640
#2 0.5vs 0.125 3 min 23 sec 1 min 41 sec 2.010 2.640
#3 0.5 vs 0.0625 0 min 59 sec 1 min 36 sec 0.615 2.640
#4 0.25 vs 0.125 1 min 22 sec 1 min 14 sec 1.108 2.640
#5 0.25 vs 0.0625 3 min 46 sec 1 min 7 sec 3.373 2.640
#6 0.125 vs 0.0625 2 min 24 sec 1 min 17 1.091 2.640
#7 morning vs afternoon | 6 min 20 sec 1 min 38 sec 2.653 | 2.640
#8 afternoon vs evening 0 min 37 sec 1 min 4 sec 0.578 | 2.640
#9 morning vs evening 7 min 11 sec 1 min 37 sec 4.463 | 2.640

Calculation results in Table 5.13 show that the ¢ values in case #2, #3, #4, #6 and #8

are within the range of the -#,,; 1,22 1-o2 value and the ;1,22 ;-2 value. In cases #1, #3,

#7 and #9, ¢ values are out of the -£,,; 1,22 1.2 and the ;4,22 1.2 Value range. The null

hypothesis in two out of six cases is rejected in the frequency comparisons, and for two

out of three cases in the comparisons of different transmission time of day. With a

confidence level of 99%, the conclusion is that the Orbcomm system data transmission

latencies are not affected by frequency of transmission in most cases. For different

transmission time of day, the Orbcomm system latencies are significantly different (at

99% confidence level) in the morning compared to the afternoon and evening

transmissions. The lowest average system latency occurs in the afternoon session. Figure

5.6 plots Orbcomm system latency for different frequencies and time of day.

95

E 25

E 20 |

) —— morning
c 15

9 \ — afternoon
S 10 \ — :
o _— evening
2 5

o

S

m O [[

0.5 0.25 0.125 0.0625
frequency (Hz)

Figure 5.6 Orbcomm average latency.

Comparison of Orbcomm and Iridium testing shows a large difference between
system average latency with the same size of data transmission, frequency and time of
day. The Iridium system, with an overall average of 1465 ms data transmission latency is,
on average, 522 times faster than the Orbcomm system average of 12 minutes 45
seconds. The technology used by the Orbcomm system to transfer data is very different
from the Iridium system. When the Orbcomm satellite is in view of both the Gateway
Earth Station (GES) and the satellite transceiver, a data message is transferred in real-
time. Otherwise, data is stored on board the satellite and transferred when the satellite
comes into view of the GES. This causes a major delay in Orbcomm data transmission. In
the Fredericton, NB area, where testing was performed, the percentage of time that the
Orbcomm satellite in view of the transceiver is as high as 99%. The nearest Orbcomm
GES used for data relay is located in New York, N.Y., USA. The percentage of time that
both the satellite transceiver and the GES are simultaneously in view of an Orbcomm

satellite is 70%. This percentage is spread over the whole day following the satellite orbit

96

dynamics. The Orbcomm system latency is affected by time of day, requiring
significantly more time in the morning compared to the afternoon and evening. Less

significant “time-of-day” affect was noticed for the Iridium system.

97

Chapter 6. Conclusions and future work

6.1 Conclusions

In this research we have investigated satellite data communication systems in several
different aspects including system cost, data link capacity and data transmission latency.
Our research has shown that the Iridium satellite system has potential for use in real-time
seismic survey operations. Our testing indicates that Orbcomm is better suited for
applications such as e-mail where delays of greater than 12 minutes (on average) are
acceptable. Our testing showed that the Iridium system was very reliable with
consistently low latencies around 1.46 seconds for both static and dynamic operations.

We have developed a detailed cost model for seismic survey and forest fire
operations using satellite data communications along with an XML-based computer
implementation of the cost model. Orbcomm satellite communication system cost is
about 10 times less than the Iridium system costs. Availability of Orbcomm satellite
transceiver OEM boards is an advantage of the Orbomm system that can provide the user
an opportunity for customized application integration.

In the satellite survey operation cost models (not counting the helicopter (s) flying
costs), satellite communication cost is 19% of the total cost in a high accuracy seismic
survey using both Iridium and Orbcomm systems. When the Iridium transceiver is
replaced by a radio modem, the communication cost is only 1% of the total survey cost.

These percentages ignore the helicopter (s) flying costs which are the same in both
cases. The increase in communication costs is partly offset by the cost of installing

repeater stations for the radio modems. It is conceivable that the cost with satellite

98

communications would be less if the cost of installing repeater stations increased
substantially.

The research also explored the possible role of SOAP in communicating satellite
system operational costs. A SOAP server can provide convenient access to a client to
retrieve satellite geospatial system costs in XML format using a standard Web browser.
6.2 Future work

Our research is a start for deploying satellite communications in real-time seismic
survey system operations. There are interesting and challenging future investigations
required before satellite data communications can be routinely used in helicopter
operations. They include:

1) Integration of Kodiak Office and RGUS500 software with satellite data transmission
software. The existing Kodiak Office and RGUS500 software need to be integrated with
satellite data transmission software to provide a platform for field testing satellite
communication links.

2) Investigation of automatic hand-off from a satellite system link to a cellular
telephone link when cell phone signal strength of sufficient quality is detected. This
hand-off can reduce seismic survey costs without losing the advantage of global coverage
of satellite links. Automatic hand-off from a satellite link to cell phone and vice versa
would be most convenient for the user.

3) Testing of Orbcomm satellite data transmission using a transfer protocol other than
SMTP. Our testing shows that the Orbcomm system has a high system latency. Orbcomm
also has advantages, however, such as low cost and availability of OEM boards. When

real-time transmission is not critical, the Orbcomm system is a good choice as data

99

carrier. Normally, Orbcomm users receive data through e-mail. There is a possibility that
other file transmission protocols such as FTP can be used in Orbcomm data transmission
and that the recipient can receive data using an Orbcomm satellite transceiver directly.
Motorola is currently exploring a project using FTP via Orbcomm. The project is called
“Spatial Utility Portfolio Management”. The project provides near real-time solutions of
spatial data for information of gas, water and electricity [Motorola, 2000]. An
investigation of how Orbcomm handles data transmission using other protocols such as
FTP in terms of latency and data error rate would be valuable in satellite system

development for other near real-time geospatial operations.

100

References

[Altova, 2002] Altova, “XMLSpy 5 Product Information”, 1 page, 2002, available at
http://www.xmlspy.com/products _ide.html.

[Analysis, 2002] Analysis Ltd., “Iridium”, 10 pages, Feb 08, 2002, available at
http://www.analysys.com/satellite/profiles/iridium.htm.

[Apache, 2001] Apache Software Foundation, “Xerces C++ Parser”, 3 pages, 2001,
available at http://xml.apache.org/xerces-c/.

[Barr, 1999] Barr, Michael, Programming Embedded Systems in C and C++, O’Reilly &
Associates, Inc., 1999.

[BEKL, 2000] Box, Don, Ehnebuske, David, Kakivaya, Gopal, Layman, Andrew,
Mendelsohn, Noah, Nielsen, Henrik Frystyk, Thatte, Satish and Winer, Dave, “Simple
Object Access Protocol (SOAP) 1.1”, W3C, May 08, 2000 available at
http://www.w3.0org/TR/SOAP/.

[Chatenay, 2000] Chatenay, Allen, “Seismic Surveys, Getting Geophysical with GPS”,
GPS World, May 2000, pp 22-30.

[Compass, 1999] CompassRose International Publications, “Introduction to Global
Satellite Systems”, 6 pages, 1999, available at
http://www.compassroseintl.com/pubs/Intro_to_sats.html.

[Eagle, 1998] Eagle Navigation System, Inc., “Kodiak: A Vehicle Guidance and
Management System for Seismic Operations Design Document”, version 1.2, internal
report, Calgary, Alberta, Canada, July 16, 1998, 52 pages.

[Eagle, 2001] Eagle Navigation System, Inc., “Kodiak NS500 RGU Operational
Manual”, version 2.1.1, internal report, Calgary, Albert, Aug. 2001, 50 pages.

[Fletcher, 1982] Fletcher, J., “An Arithmetic Checksum for Serial Transmissions”, IEEE
Transactions on Communication, Vol. COM-30, No. 1, pp. 247-252, January, 1982.

[Goldstein, 2000] Tally Goldstein, “Defence set to revive Iridium”, FT.com Financial
News, available at http://flashcommerce.com/articles/00/12/05/194357.html (click on
“source”), December 6, 2000, 1 page.

[Ha, 2001] Ha, Rick, “Preliminary Survey on Satellite Wireless Standards”, Faculty of
Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
February 9", 2001, 11 pages.

101

[Hopkins, 2001] Hopkins, Joe, “Iridium Ownership Revealed”, SPACEandTECH Digest,
April 09, 2001, 1 page, available at http://www.spaceandtech.com/digest/sd2001-
14/sd2001-14-007.shtml.

[IBM, 2002] IBM, “XML Parser for Java”, 1 page, 2002, available at
http://www.alphaworks.ibm.com/tech/xml4;j.

[Iridium, 2002a] Iridium Satellite LLC, “Direct Internet Data User’s Guide”, Rev. 4,
February 1, 2002, 38 pages.

[Iridium, 2002b] Iridium Satellite LLC, “Dial-Up Data User’s Guide”, Rev. 4, February
1,2002, 67 pages.

[Iridium, 2002c] Iridium Satellite LLC, “Mobile Terminated Data User’s Guide”, Rev. 2,
February 1, 2002, 25 pages.

[Iridium, 2002d] Iridium, FQA, “What is Short Burst Messaging?”, 1 page, 2002, available
at http://www.iridium.com/customer/iri customer-detail.asp?careid=92.

[Jung, 2002] Jung, Helen, “Teledesic shuts down, dimming a dream”, 4 pages, October
14, 2002, available at http://www.startribune.com/stories/535/3357432.html.

[KBMW, 1999] Kirchner, Al, Brickerd, D., Mazur, S. and Williams, B., “Orbcomm
Serial Interface Specification”, E80050015 Revision F, Orbcomm Global L.P., Dulles,
VA, USA, April 20, 1999.

[Klein, 2001] Klein, Ramon de, “Serial Library for C++”, 20 pages, 2001, available at
http://www.codeproject.com/system/serial.asp.

[Lloyd, 2002] Lloyd Wood, “Lloyd’s satellite constellations”,
http://www.ee.surrey.ac.uk/Personal/L.Wood/constellations/teledesic.html, October 18,
2002.

[McLellan, 2001] McLellan, James F., Schleppe, John B., Huff, Dave and Srajar, Peter,
“Mobile Asset Management For Land Exploration”, internal working document of Eagle
Navigation System Inc., Calgary, Alberta, Canada, June 20, 2001, 9 pages.

[Mills, 1996] Mills, David L., “The Network Time Protocol (NTP) Distribution”, 1996,
available at ftp://ftp.gnx.com/usr/free/qnx4/tcpip/utils/xntp3-5f.tgz.

[Mills, 1998] Mills, Dave, “Time Synchronization Software”, University of Delaware,
1998, available at http://www.eecis.udel.edu/~ntp/software/win9x.html.

[Mills, 2001] Mills, Dave, “NTP Performance Analysis”, University of Delaware,
available at http://www.eecis.udel.edu/~mills/database/brief/new/new files/frame.htm
23 pages, June 01, 2001.

102

[Motorola, 2000] Motorola, “SpatialTM Product Description”, 3 pages, 2000, available at
http://www.motorola.com/cgiss/utility.shtml.

[MPCS, 2000] Motorola Personal Communications Sector, Satellite Subscriber products
Division, “Iridium AT Command Reference”, SSP-ISU-CPSW-USER-0005, Version 1.3,
February 23, 2000, 61 pages.

[MSAT, 2002] O’Rourke, Neil, personnel E-mail communication, April 01, 2002.

[Nickerson and Shan, 2001] Nickerson, Bradford G., Shan, Ying, McLellan, James,
“Demo Presentation Real-Time Wireless Mobile Geospatial Information Access using
the Web”, GEOIDE Conference, 2001, June 21-22, 2001, 1 page.

[Nickerson and Wu, 2002] Nickerson, Bradford G., Wu, Alex L., “Cost Model of
Satellite Systems for Real-Time Helicopter Operations”, Technical Report TR02-157,
Faculty of Computer Science, University of New Brunswick, August 7, 2002, 26 pages.

[Orbcomm, 2001] Orbcomm, FAQs, “How does the Orbcomm System work”, 1 page,
2001, available at http://www.orbcomm.com/fags.htm#3.

[Peterson, 2000] Peterson, Larry L. and Davie, Bruce S. Computer Networks: A Systems
Approach, Morgan Kaufmann, 2000, ISBN 1-55860-514-2.

[QNX, 1996] QNX Software Systems Ltd., ONX Operating System, System Architecture,
Kanata, ON, Canada, 1996, 139 pages.

[QNX, 2002] QNX Software Systems Ltd., “Products and Services”, 1 page, 2002,
available at http://www.gnx.com/products/index.html.

[Rappaport, 1996] Rappaport, Theodore S., Wireless Communications Principles and
Practice, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1996.

[Rosner, 1990] Rosner, Bernard, Harvard University, Fundamentals of Biostatistics, 3
Edition, PWS-Kent Publishing Company, Boston, MA, USA, 1990.

[Regents, 1998] The Regents of University of Berkeley, “TCP/IP User Guide”, 1998,
available at http://alert.udfcd.org/help/tepip/user _guide.

[Seaman, 1995] Seaman, R.L. and Pence W.D., “FITS Checksum Proposal”, August 24,
1995, http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/oldchecksum/checksum.html.

[Shan, 2001] Shan,Ying, “Web Access to Real-Time Wireless Mobile Geospatial
Information”, Technical Report TR02-140, Faculty of Computer Science, University of
New Brunswick, Fredericton, NB, Canada, June 2001, 111 pages.

103

[Smith, 2001] Smith, Scott J., “Managing your mobile fleet through integrated wireless
solutions”, www.ceswireless.com/DOWNLO~1/SYSTEMSO0.PDF, January 17, 2002, 32

pages.

[SQLData, 2002] SQLData Systems Inc., “SQLData SOAP Server v3.0”, 3 pages, 2002,
available at http://www.sgldata.com/soap.htm.

[Stevens, 2000] Stevens, W. Richard, TCP/IP Illustrated Volume 1 The Protocol,
Addison-Wesley Longman Ltd., 2000, ISBN 0-201-63346-9.

[StPo, 2000] Stevens, Perdita and Pooley, Rob, Using UML Sofiware Engineering with
Objects and Components, Updated Edition (2“d), Addison-Wesley Longman Ltd. and
Pearson Education Ltd, London, UK, 2000, ISBN 0-201-64860-1.

[Sweet, 1999] Sweet, Michael R., “Serial port communication programming guide for
POSIX operating system”, 5th Edition, 2nd Revision, 60 pages, 1999, available at
http://www.easysw.com/~mike/serial/serial.html#4 2..

[W3C, 2002] W3Schools, “SOAP Tutorial”, 2002, available at
http://www.w3schools.com/soap/default.asp.

[Winer, 2002] Winer, Dave, “The leading directory for SOAP 1.1 developer”, 2002,
available at http://www.soapware.org.

104

Appendix I. CostParms.dtd

CostParms.dtd is the Document Type Definition file for satellite systems basic cost

elements XML file.

<?xm encodi ng="1 SO 8859- 1" ?>
<l-- @ersion: -->

<! ELEMENT

Cost Parns (scenario, taxrate, O bcomm

Iridiumlnternet, Hel i copters, Conpanysupport,Install)>

<! ELEMENT
<! ELEMENT

<! ELEMENT

scenari o (#PCDATA) >
t axrate (#PCDATA) >

Orbcomm

(service_rate_o,monthly_cost_o, m nute_cost_o,free_m nutes_o, cost_per_byt
€_0, nessages_per_m nute_o, bytes_per_nessage_o, free_bytes_o, equi pnent _r at
e _o,weekly rental cost_o, equi pnent _purchase_cost_o, capital days o) >

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT

service_rate_o (#PCDATA) >

nonthly cost_o (#PCDATA) >

m nute_cost_o (#PCDATA) >

free_m nutes_o (#PCDATA) >

cost _per _byte o (#PCDATA) >
nmessages_per_ni nute_o (#PCDATA) >
byt es_per_nessage_o (#PCDATA) >
free bytes o (#PCDATA) >

equi prent _rate_o (#PCDATA) >
weekly rental cost_o (#PCDATA) >
equi pnment _pur chase_cost _o (#PCDATA) >
capi tal days_o (#PCDATA) >

Iridium

(service rate_ i,monthly cost _i,nmnute_cost _i,free_mnutes i,cost_per byt
e_i,nessages_per_mnute_i, bytes_per_nessage_i,free_bytes_i, equi pnent _r at
e i,weekly rental cost i, equipnent_purchase cost _i,capital _days i) >

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT

<! ELEMENT
(hourly_pi

ost,daily_

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

service_rate_ i (#PCDATA) >
mont hly_cost _i (#PCDATA) >

m nute_cost i (#PCDATA) >
free_mnutes_ i (#PCDATA) >

cost _per_byte_ i (#PCDATA) >
nessages_per_ninute_i (#PCDATA) >
byt es_per _nessage i (#PCDATA) >
free_bytes i (#PCDATA) >

equi prent _rate_ i (#PCDATA) >
weekly rental cost i (#PCDATA) >
equi pment _pur chase_cost _i (#PCDATA) >
capi tal days_i (#PCDATA) >

Internet (internet_nonthly cost) >
internet_nonthly cost (#PCDATA) >

Hel i copters

| ot _cost, hourly fuel cost,hourly rental cost,daily_insurance_c
mai nt enance_cost,total helis, flying days+, flying hours+) >
hourly_pilot_cost (#PCDATA) >

hourly fuel cost (#PCDATA) >

hourly rental cost (#PCDATA) >

dai | y_i nsurance_cost (#PCDATA) >

dai |l y_mai nt enance_cost (#PCDATA) >

105

<l ELEMENT total _helis (#PCDATA) >
<! ELEMENT flyi ng_days (#PCDATA) >
<!l ELEMENT flyi ng_hours (#PCDATA) >

<! ELEMENT Conpanysupport

(dai l y_equi pment _cost,total personal s, personal _hourly_cost +, per sonal _wor
ki ng_days+, per sonal _wor ki ng_hours+) >

<!l ELEMENT dai |l y_equi pment _cost (#PCDATA) >

<! ELEMENT total personals (#PCDATA) >

<! ELEMENT personal _hourly_cost (#PCDATA) >
<I ATTLI ST personal hourly_cost nunber (1|2]|3]|4|5|6|7]|8 9 10 "1" >

<l ELEMENT personal _wor ki ng_days (#PCDATA) >
<I ATTLI ST personal worki ng_days nunber (1|2|3|4|5]|6]|7]8]9 10) "1" >

<! ELEMENT personal _wor ki ng_hours (#PCDATA) >
<l ATTLI ST personal worki ng_hours nunber (1]|2]|3|4|5|6]7]89]10) "1" >

<! ELEMENT I nstall

(heli __install _cost,base_install _cost,head_install _cost,orb_activation_co
st,ird_activation_cost,repeater_install_cost,repeater_nunber, heli_sat_nu
nber, hel i _sat _type, base_sat nunber, base_sat _type) >

<! ELEMENT heli _install _cost (#PCDATA) >

<I ELEMENT base_install _cost (#PCDATA) >

<! ELEMENT head_i nstall _cost (#PCDATA) >

<! ELEMENT orb_activati on_cost (#PCDATA) >

<IELEMENT ird_activati on_cost (#PCDATA) >

<! ELEMENT repeater _install cost (#PCDATA) >

<! ELEMENT repeat er _nunber (#PCDATA) >

<l ELEMENT hel i _sat _nunber (#PCDATA) >

<! ELEMENT base_sat nunber (#PCDATA) >

<! ELEMENT hel i _sat_type (#PCDATA) >

<! ELEMENT base_sat _type (#PCDATA) >

106

Appendix II. ProjectCost.dtd

ProjectCost.dtd is the Document Type Definition file for satellite project cost XML

file generation.

<?xm encodi ng="1 SO 8859- 1" ?>

<I--

<! ELEMENT
(Sat _Conm_
<! ATTLI ST
#REQUI RED >

<! ELEMENT
<! ATTLI ST
#REQUI RED

<! ELEMENT
<I ATTLI ST

<! ELEMENT

(service_rate_h?, nmonthly_ cost
byt e h?, mnessages_per
rate_

ment _
ys_h?) >

<! ATTLI ST
hel i _sat

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<I ATTLI ST

<! ELEMENT

(service_rate_b+, mont hly_cost
_byte b+, messages_per
b+, weekly_rental

nent _rate
ys_b+) >

<! ATTLI ST
base sat

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

@er sion:

_numnber

number

-->

Pr oj ect Cost
Cost, Hel i _Cost, Com Support _Cost, I nstall _Cost) >

Pr oj ect Cost cost S CDATA #REQUI RED proj ect _nodel CDATA

Sat _Comm Cost (Heli_Sat Cost, Base Sat Cost, Head Sat Cost) >
Sat _Comm Cost cost_ A CDATA #REQJI RED percent age_A CDATA

>

Hel i _Sat Cost (Heli_Sat Details) >

Hel i _Sat _Cost cost Al CDATA #REQUI RED >

Heli Sat Details

_h?, mnute_cost_h?,free_m nutes_h?, cost_per
_message_h?,free_bytes _h?, equip
_purchase_cost_h?, capital _da

_mnute_h?, bytes_per
h?, weekl y_rental cost _h?, equi prment
Sat _Details heli

(0] 1] 2] 10) "0"

service_rate_h (#PCDATA) >

nont hly _cost _h (#PCDATA) >

m nut e_cost _h (#PCDATA) >

free_m nutes_h (#PCDATA) >

cost _per_byte h (#PCDATA) >
nmessages_per_nmi nute_h (#PCDATA) >
byt es_per _message_h (#PCDATA) >
free_bytes _h (#PCDATA) >

equi pnent _rate_h (#PCDATA) >
weekly rental cost_h (#PCDATA) >
equi pment _purchase_cost _h (#PCDATA) >
capi tal _days_h (#PCDATA) >

Hel i sat_type (0| 1|2|3]9999) "0"

each_hel i _sat_cost CDATA #REQU RED >

Base_Sat Cost
Base Sat Cost cost

(Base_Sat _Details) >

_A2 CDATA #REQUI RED >
Base Sat Details

_b+, minute_cost_b+, free_m nutes_b+, cost _per
_message_b+, free_bytes b+, equip
_purchase_cost b+, capital _da

_mnute_b+, bytes_ per
_cost _b+, equi prrent

Base_Sat Details base_sat_type (0] 1]2]3]9999) "0O"
(0]1]2) "0" each_base sat_cost CDATA #REQU RED >
service_rate_b (#PCDATA) >

rmnthly cost b (#PCDATA) >

m nute_cost _b (#PCDATA) >

free_m nutes b (#PCDATA) >

cost_per _byte b (#PCDATA) >

nessages_per_ni nute_b (#PCDATA) >

byt es_per _nessage_b (#PCDATA) >

free _bytes b (#PCDATA) >

equi pnent _rate_b (#PCDATA) >

weekly rental _cost_b (#PCDATA) >

107

<! ELEMENT equi pnent _purchase_cost_b (#PCDATA) >
<! ELEMENT capi tal _days_b (#PCDATA) >

<! ELEMENT Head_Sat Cost (Head_Sat Details) >
<! ATTLI ST Head_Sat _Cost cost_A3 CDATA #REQUI RED >

<!l ELEMENT Head_Sat Details (internet_nonthly cost) >
<! ATTLI ST Head_Sat Details head_sat _type CDATA #REQU RED >

<! ELEMENT i nternet_nonthly_cost (#PCDATA) >

<! ELEMENT Hel i _Cost

(hourly_pilot_cost, hourly_fuel cost, hourly_rental cost,daily_insurance_c
ost, dai | y_mai nt enance_cost, hel i copters) >

<I ATTLI ST Hel i _Cost cost_ B CDATA #REQUI RED per cent age_B CDATA #REQUI RED
>

<!l ELEMENT hourly_ pil ot _cost (#PCDATA) >

<! ELEMENT hourly_fuel _cost (#PCDATA) >

<! ELEMENT hourly rental cost (#PCDATA) >

<! ELEMENT dai |l y_insurance_cost (#PCDATA) >
<! ELEMENT dai | y_mai nt enance_cost (#PCDATA) >

<! ELEMENT hel i copters (flying_days+, fIy| ng_hours+) >
<I ATTLI ST helicopters total _helis (1]2]|3]|4|5|6]78] 9 10) "1" >

<! ELEMENT flyi ng_days (#PCDATA) >
<! ELEMENT flyi ng_hours (#PCDATA) >

<! ELEMENT Com Support Cost (daily_equi prent_cost, personals) >
<I ATTLI ST Com Support_Cost cost_C CDATA #REQUI RED per cent age_C CDATA
#REQUI RED >

<! ELEMENT dai |l y_equi prment _cost (#PCDATA) >

<! ELEMENT personal s
(personal _hourly_cost+, personal _wor ki ng_days+, per sonal _wor ki ng_hours+) >
<I ATTLI ST personal s total _personals (1]2|3|4|5|6|7|89]10) "1" >

<! ELEMENT personal _hourly_cost (#PCDATA) >
<l ELEMENT personal _wor ki ng_days (#PCDATA) >
<! ELEMENT personal wor ki ng_hours (#PCDATA) >

<! ELEMENT I nstal | _Cost

(Heli Install Cost,Base Install_Cost, Head I nstall _Cost, Repeater Install _
Cost?) >

<I' ATTLI ST Install_Cost cost_D CDATA #REQUI RED per cent age_D CDATA

#REQUI RED >

<IELEMENT Heli _Install_Cost (Heli_Install_Details) >
<! ATTLI ST Hel i _Install_Cost cost_ D1 CDATA #REQU RED >

<! ELEMENT Heli _Install _Details

(heli _install _cost,heli _sat_activation _cost?) >

<IATTLI ST Heli Install _Details heli_sat_type (0]|1]2]3]|9999) "0"
hel i _sat _nunber (0| 1]|10) "0" >

<! ELEMENT heli _install _cost (#PCDATA) >
<l ELEMENT hel i _sat _activati on_cost (#PCDATA) >

<! ELEMENT Base_lInstall_Cost (Base_Install_Details) >
<! ATTLI ST Base_l nstal | _Cost cost_D2 CDATA #REQUI RED >

108

<! ELEMENT Base_lnstall _Details

(base_install _cost+, base_sat _activation_cost+) >

<I ATTLI ST Base _Install _Details base sat type (0] 1]2|3]9999) "0O"
base _sat nunber (0] 1]2) "0" >

<! ELEMENT base_install _cost (#PCDATA) >
<! ELEMENT base_sat activati on_cost (#PCDATA) >

<! ELEMENT Head_Install_ Cost (Head Install _Details) >

<! ATTLI ST Head_I nstal | _Cost cost_D3 CDATA #REQUI RED >

<l ELEMENT Head _Install _ Details (head install _cost) >
<I ATTLI ST Head_Install _Details head_sat type CDATA #REQUI RED >

<! ELEMENT head_i nstall _cost (#PCDATA) >

<I ELEMENT Repeater _Install_Cost (Repeater_lInstall_Details) >
<I ATTLI ST Repeater Install Cost cost D4 CDATA #REQUI RED >

<l ELEMENT Repeater _Install _Details (repeater_install_cost) >
<I ATTLI ST Repeater Install _Details repeater_nunber (0| 1]2|3) "0" >

<! ELEMENT repeater_install _cost (#PCDATA) >

109

Appendix III. ProjectCost.xml output files

A II1. 1 High accuracy seismic survey with satellite systems
This is the projectCost.xml file for high accuracy seismic survey with Iridium and
Orbcomm satellite systems. The helicopter has one Iridium transceiver. The base station

is installed with one Iridium transceiver and one Orbcomm transceiver.

<?xm version="1.0" encodi ng="i so-8859-1" 7>
<! DOCTYPE Proj ect Cost (View Source for full doctype...)>
<Proj ect Cost cost_S="230977" project_nodel ="0">
<Sat _Conmm Cost cost _A="9025.29" percent age_ A="3.90744">
<Hel i _Sat_Cost cost_Al1="4259. 37">
<Heli Sat Details heli_sat type="1" heli_sat nunber="1"
each_heli _sat cost="4259. 37">
<service_rate_h>1. 6</service_rate_h>
<nmont hly_cost _h>19. 95</ nont hl y_cost _h>
<m nut e_cost _h>0. 68</ m nute_cost_h>
<free_m nutes_h>0</free_m nutes_h>
<cost per_byte h>0</cost_per _byte h>
<messages_per _m nut e_h>0</ nessages_per _m nute_h>
<byt es_per nessage_h>0</ byt es_per nessage_h>
<free_bytes h>0</free_bytes_h>
<equi prent _rate_h>1</equi prent _rate_h>
<weekly rental cost_ h>0</weekly rental cost_h>
<equi prent _pur chase_cost _h>1440</ equi pnent _pur chase_cost _h>
<capi t al _days_h>450</ capi tal _days_h>
</ Heli_Sat_Detail s>
</ Hel i _Sat _Cost >
<Base_Sat Cost cost_ A2="4733.82">
<Base_Sat Details base sat type="2" base_sat nunber="2"
each_base sat cost="474.448 4259. 37">
<service_rate b>1</service_rate_b>
<service_rate_b>1. 6</service_rate_b>
<nmont hl'y_cost _b>0</ nont hl y_cost _b>
<nmont hly_cost _b>19. 95</ nont hl y_cost _b>
<m nut e_cost _b>0</ni nut e_cost_b>
<m nute_cost_b>0. 68</ m nute_cost _b>
<free_m nutes_b>0</free_m nutes_b>
<free_nmi nutes_b>0</free_ni nutes_b>
<cost_per _byte b>0.003678</ cost _per byte b>
<cost_per_byte b>0</cost_per_byte b>
<messages_per _m nute_b>0. 2</ nessages_per _m nute_b>
<messages_per_ni nut e_b>0</ nessages_per_m nute_b>
<byt es_per _nessage_b>76</ byt es_per _nessage_b>
<byt es_per _nessage_b>0</ byt es_per nessage_b>
<free_bytes_b>0</free_bytes_b>
<free_bytes_b>0</free_bytes _b>
<equi prent _rate_b>1. 6</ equi pnent _rate_b>
<equi prent _rate_b>1</equi pnment_rate b>
<weekly rental cost b>0</weekly rental cost_ b>
<weekly rental cost_ b>0</weekly rental cost_b>
<equi pnent _pur chase_cost _b>1150</ equi pnent _pur chase_cost _b>
<equi pment _pur chase_cost _b>1440</ equi pment _pur chase_cost _b>
<capi tal _days_b>450</capital _days_b>
<capi tal days b>450</capital days_ b>
</ Base_Sat _Detai |l s>
</ Base_Sat _Cost >

110

<Head_Sat _Cost cost_A3="32.1">
<Head_Sat Details head_sat_type="0">
<internet_nonthly_cost>30</internet_nonthly cost>
</ Head_Sat Det ai | s>
</ Head_Sat Cost >
</ Sat _Comm Cost >
<Hel i Cost cost B="182970" percentage B="79.2156">
<hourly pilot _cost>0</hourly pilot_cost>
<hourly fuel cost>350</hourly fuel cost>
<hourly_rental cost>2500</hourly_rental cost>
<dai | y_i nsurance_cost >0</dai |l y_i nsurance_cost >
<dai | y_mai nt enance_cost >0</dai | y_nai nt enance_cost >
<helicopters total helis="1">
<flyi ng_days>10</flyi ng_days>
<flyi ng_hours>6</flyi ng_hours>
</ hel i copters>
</ Hel i _Cost >
<Com Support _Cost cost_C="23362" percentage_C="10.1144">
<dai | y_equi pnent _cost >600</ dai | y_equi pnent _cost >
<personal s total personal s="2">
<personal _hourly cost>72.92</personal _hourly_cost>
<personal _hour|y_cost >125</ per sonal _hourly_cost >
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
</ per sonal s>
</ Com Support _Cost >
<Install Cost cost D="15619.9" percentage D="6.76251">
<Heli Install_ Cost cost_D1="2700.68">
<Heli Install _Details heli_sat _type="1" heli _sat_ number="1">
<heli _install _cost>2500</heli install_cost>
<hel i _sat _activation_cost>24</heli_sat_activation_cost>
</Heli Install _ Detail s>
</Heli _Install _Cost>
<Base_lInstall_Cost cost_D2="10779.2">
<Base_Install _Details base sat _type="2" base_sat number="2">
<base_i nstal | _cost>5000</ base_instal | _cost>
<base_sat _acti vation_cost >50</ base_sat _acti vation_cost >
<base_sat_activation_cost>24</ base_sat_activati on_cost>
</Base_Install Detail s>
</ Base_Install _Cost>
<Head Install Cost cost_ D3="2140">
<Head Install Details head sat_type="0">
<head_i nstal | _cost >2000</ head_i nstal | _cost >
</Head Install_Detail s>
</ Head_I nstal | _Cost >
<Repeater Install_Cost cost_D4="0">
<Repeater Install _Details repeater_ nunber="0">
<repeater_install_cost>1600</repeater_install_cost>
</ Repeater Install _Detail s>
</ Repeat er I nstall _Cost>
</Install _Cost>
</ Pr oj ect Cost >

111

A II1. 2 High accuracy seismic survey with radio modems
This is the ProjectCost.xml file for high accuracy seismic survey with one radio
modem in the helicopter, plus one radio modem and one Orbcomm transceiver at the base

station.

<?xm version="1.0" encodi ng="i so-8859-1" 7>
<! DOCTYPE Proj ect Cost (View Source for full doctype...)>
<Proj ect Cost cost_S="225831" project_nodel ="3">
<Sat _Conm Cost cost A="506.548" percentage A="0.224304">
<Hel i _Sat _Cost cost_A1="0">
<Heli _Sat Details heli_sat_type="3" heli_sat_nunber="0"
each_heli _sat_cost="0">
<service_rate_h>0</service_rate_h>
<nmont hl y_cost _h>0</ nont hl y_cost _h>
<m nut e_cost _h>0</ mi nute_cost_h>
<free_m nutes_h>0</free_m nutes_h>
<cost per_byte h>0</cost_per_byte h>
<nessages_per _m nute_h>0</ nmessages_per_mni nute_h>
<byt es_per _nessage_h>0</bytes per_nessage_h>
<free_bytes_h>0</free_bytes_h>
<equi prent _rate_h>0</equi pnent_rate_h>
<weekly rental cost_ h>0</weekly rental cost_h>
<equi pment _pur chase_cost _h>0</ equi pnent _pur chase_cost _h>
<capi t al _days_h>0</capi tal _days_h>
</ Heli_Sat_Detail s>
</ Hel i _Sat Cost >
<Base_Sat Cost cost_ A2="474.448">
<Base_Sat Details base sat type="0" base_sat nunber="1"
each_base_sat _cost="474. 448" >
<service_rate_b>1</service_rate b>
<nmont hly_cost _b>0</ nont hl y_cost _b>
<m nut e_cost _b>0</ mi nute_cost _b>
<free_m nutes_b>0</free_m nutes_b>
<cost _per_byte b>0.003678</cost _per_byte b>
<nessages_per _m nute_b>0. 2</ nessages_per_m nute_b>
<byt es_per nessage_b>76</ byt es_per_ nessage_b>
<free_bytes b>0</free_bytes b>
<equi pnent _rate_b>1. 6</ equi pnent _rate_b>
<weekl y_rental _cost_b>0</weekl y_rental _cost_b>
<equi prent _pur chase_cost _b>1150</ equi pnent _pur chase_cost _b>
<capi tal _days_b>450</ capi t al _days_b>
</ Base_Sat _Det ai | s>
</ Base_Sat _Cost >
<Head_Sat Cost cost A3="32.1">
<Head Sat Details head_sat_type="0">
<internet_nonthly_cost>30</internet_nonthly cost>
</ Head_Sat Det ai | s>
</ Head_Sat _Cost >
</ Sat _Conm Cost >
<Hel i _Cost cost_B="182970" percentage B="81.0208">
<hourly pilot _cost>0</hourly pilot _cost>
<hourly fuel cost>350</hourly fuel cost>
<hourly rental cost>2500</hourly rental cost>
<dai | y_i nsurance_cost >0</ dai |l y_i nsurance_cost >
<dai | y_mai nt enance_cost >0</ dai | y_nai nt enance_cost >
<helicopters total helis="1">
<flyi ng_days>10</flyi ng_days>
<flyi ng_hours>6</flying _hours>

112

</ hel i copters>
</ Hel i _Cost >
<Com Support_Cost cost_C="23362" percentage C="10.3449">
<dai | y_equi pnent _cost >600</ dai | y_equi pnent _cost >
<personal s total personal s="2">
<personal _hourly_cost>72.92</ personal _hourly_ cost>
<personal _hourly cost>125</personal hourly_ cost>
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
</ per sonal s>
</ Com Support _Cost >
<Install Cost cost D="18992.5" percentage D="8.41005">
<Heli _Install_Cost cost_D1="2675">
<Heli Install _Details heli_sat_type="3" heli_sat_nunber="0">
<heli _install cost>2500</heli _install_cost>
<hel i _sat_activation_cost>0</heli _sat_activation_cost>
</Heli _Install _ Detail s>
</ Heli_lnstall_Cost>
<Base Install Cost cost_ D2="10753.5">
<Base_Install _Details base_sat_type="0" base_sat_nunber="1">
<base_install cost>5000</base _install_cost>
<base_sat _activation_cost>50</base_sat activati on_cost>
</Base_Install Detail s>
</ Base_Install_Cost>
<Head Install Cost cost_ D3="2140">
<Head Install Details head_sat_type="0">
<head_install cost>2000</head install _cost>
</Head_Install Detail s>
</ Head_I nstal |l _Cost >
<Repeater_lInstall _Cost cost_D4="3424">
<Repeater_lInstall _Details repeater_ nunmber="2">
<repeater_install_cost>1600</repeater_install_cost>
</ Repeater Install _Detail s>
</ Repeat er I nstall _ Cost>
</Install_Cost>
</ Pr oj ect Cost >

113

A II1. 3 Forest fire operation #1
This is the ProjectCost.xml file for forest fore operation #1. The model has one
Iridium system installed at base station and one Orbcomm transceiver for each of the 10

helicopters.

<?xm version="1.0" encodi ng="i so-8859-1" 7>
<! DOCTYPE Proj ect Cost (View Source for full doctype...)>
<Proj ect Cost cost_S="486046" project_nodel ="1">
<Sat _Conm Cost cost_A="7707.49" percentage A="1.58575">
<Hel i _Sat _Cost cost_A1="3416.02">
<Heli _Sat Details heli_sat_type="0" heli_sat_nunber="10"
each_heli sat_cost="474.448">
<service_rate_h>1</service_rate_h>
<nmont hly_cost _h>0</ nont hl y_cost _h>
<m nut e_cost _h>0</ mi nute_cost _h>
<free_m nutes_h>0</free_m nutes_h>
<cost _per_byte h>0.003678</cost _per_byte h>
<nessages_per_m nute_h>0. 2</ nessages_per_mni nute_h>
<byt es_per _nessage_h>76</ byt es_per_nessage_h>
<free_bytes_h>0</free_bytes_h>
<equi prent _rate_h>1. 6</ equi pnent_rate_h>
<weekly rental cost_ h>0</weekly rental cost_h>
<equi prent _pur chase_cost _h>1150</ equi pnent _pur chase_cost _h>
<capi t al _days_h>450</ capi tal _days_h>
</Heli_Sat Detail s>
</ Hel i _Sat Cost >
<Base_Sat Cost cost_A2="4259.37">
<Base _Sat Details base sat_type="1" base_sat_nunber="1"
each_base_sat cost="4259. 37" >
<service _rate_b>1.6</service rate_b>
<mont hly_cost _b>19. 95</ nont hly_cost _b>
<m nut e_cost_b>0. 68</ m nute_cost _b>
<free_m nutes_b>0</free_m nutes_b>
<cost _per_byte b>0</cost_per_byte b>
<nessages_per_m nute_b>0</ nmessages_per_m nute_b>
<byt es_per _nessage_b>0</bytes per_nessage_b>
<free_bytes b>0</free_bytes b>
<equi prent _rate_b>1</equi prent _rate_b>
<weekl y_rental _cost_b>0</weekly_rental _cost_b>
<equi prent _pur chase_cost _b>1440</ equi pnent _pur chase_cost _b>
<capi tal _days_b>450</ capi t al _days_b>
</ Base_Sat _Det ai | s>
</ Base_Sat _Cost >
<Head_Sat Cost cost A3="32.1">
<Head Sat Details head_sat_type="0">
<internet _nonthly_cost>30</internet_nonthly cost>
</ Head_Sat Detai | s>
</ Head_Sat _Cost >
</ Sat _Conm Cost >
<Hel i _Cost cost_B="420176" percentage B="86.4478">
<hourly pilot _cost>0</hourly pilot_cost>
<hourly fuel cost>114</hourly fuel cost>
<hourly rental cost>795</hourly rental cost>
<dai | y_i nsurance_cost >0</ dai |l y_i nsurance_cost >
<dai | y_mai nt enance_cost >0</ dai | y_nai nt enance_cost >
<hel i copters total helis="10">
<flyi ng_days>10</flyi ng_days>
<flying_days>10</flyi ng_days>

114

<flying days>10</flying days>
<flyi ng_days>10</flyi ng_days>
<flyi ng_days>10</flyi ng_days>
<flyi ng_days>6</flying_days>
<flyi ng_days>6</flyi ng_days>
<flyi ng_days>6</flyi ng_days>
<flying_days>2</flying_days>
<flyi ng_days>2</flying_days>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flying _hours>
<flyi ng_hours>6</flying _hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flyi ng_hours>
</ hel i copters>
</ Hel i _Cost >
<Com Support_Cost cost_C="23362" percentage C="4.80653">

<dai | y_equi pnment _cost >600</ dai | y_equi pment _cost >
<personal s total personal s="2">

<personal _hourly_ cost>72.92</ personal _hourly_cost>
<personal _hourly cost>125</personal hourly_ cost>

<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>

</ per sonal s>
</ Com Support _Cost >

<Install Cost cost_ D="34800.7" percentage D="7.15995">
<Heli Install_Cost cost_ D1="27285">
<Heli Install _Details heli_sat_type="0" heli _sat_number="10">
<heli _install _cost>2500</heli install _cost>
<hel i _sat _activation_cost>50</heli _sat_activation_cost>
</Heli _Install _Detail s>
</Heli _Install_Cost>
<Base_lInstal |l _Cost cost_D2="5375.68">

<Base_Install _Details base _sat_type="1" base_sat
<base_instal | _cost>5000</base install _cost>
<base_sat _activation_cost>24</base_sat _activati on_cost>

_nunber="1">

</Base _Install Detail s>
</ Base_Install_Cost>
<Head Install Cost cost_ D3="2140">

<Head_Install_Details head_sat_type="0">

<head_i nst al | _cost >2000</ head_i nstal | _cost >
</ Head Install Detail s>
</ Head_I nstal | _Cost >
<Repeater _Install_Cost cost_D4="0">
<Repeater Install _Details repeater_ nunber="0">
<repeater _install_cost>1600</repeater_install _cost>
</ Repeater Install _Detail s>
</ Repeat er Install _ Cost>

</Install_Cost>
</ Pr oj ect Cost >

115

A II1. 4 Forest fire operation #2
The ProjectCost.xml file for forest fire operation #2 shows one Orbcomm transceiver
used at the base station and one Orbcomm transceiver installed at each of the 10

helicopters.

<?xm version="1.0" encodi ng="i so-8859-1" ?>
<! DOCTYPE Proj ect Cost (View Source for full doctype...)>
<Proj ect Cost cost_S="482289" project nodel ="2">
<Sat _Comm Cost cost_A="3922. 57" percentage_A="0.813324">
<Hel i _Sat_Cost cost_A1="3416.02">
<Heli _Sat Details heli_sat_type="0" heli_sat_nunber="10"
each_heli sat cost="474.448">
<service _rate_h>1</service_rate_h>
<nmont hly_cost _h>0</nmonthly_cost_h>
<m nut e_cost _h>0</m nute_cost _h>
<free_m nutes_h>0</free_m nutes_h>
<cost _per_byte h>0.003678</cost _per_byte h>
<messages_per _m nut e_h>0. 2</ messages_per _m nute_h>
<byt es_per _nessage_h>76</ byt es_per _nessage_h>
<free_bytes h>0</free_bytes h>
<equi prent _rate_h>1. 6</ equi pnent _rate_h>
<weekly rental cost_h>0</weekly rental cost_h>
<equi pnent _pur chase_cost _h>1150</ equi pment _pur chase_cost _h>
<capi t al _days_h>450</ capi tal _days_h>
</ Hel i1 _Sat_Detail s>
</ Hel i _Sat _Cost >
<Base_Sat Cost cost_A2="474. 448" >
<Base _Sat Details base sat_type="0" base_sat_nunber="1"
each_base_sat _cost="474. 448" >
<service _rate_b>l1</service_rate_b>
<mont hly_cost _b>0</nonthly_cost _b>
<m nut e_cost _b>0</m nute_cost _b>
<free_m nutes_b>0</free_m nutes_b>
<cost_per _byte b>0.003678</cost_per byte b>
<messages_per _nm nut e_b>0. 2</ nessages_per_ni nute_b>
<byt es_per _nmessage_b>76</ byt es_per _nessage_b>
<free _bytes b>0</free_bytes b>
<equi prent _rate_b>1. 6</ equi pnent _rate_b>
<weekly rental cost_b>0</weekly rental cost_ b>
<equi pment _pur chase_cost _b>1150</ equi pnent _pur chase_cost _b>
<capi t al _days_b>450</ capi t al _days_b>
</ Base_Sat _Detai |l s>
</ Base_Sat _Cost >
<Head_Sat Cost cost_A3="32.1">
<Head_Sat Details head_sat type="0">
<internet _nonthly_cost>30</internet_nonthly cost>
</ Head_Sat Detail s>
</ Head_Sat Cost >
</ Sat _Conmm Cost >
<Hel i Cost cost B="420176" percentage B="87.1212">
<hourly pilot _cost>0</hourly pilot_cost>
<hourly fuel cost>114</hourly fuel cost>
<hourly_rental cost>795</hourly _rental cost>
<dai | y_i nsurance_cost >0</dai |l y_i nsurance_cost >
<dai | y_nmai nt enance_cost >0</ dai | y_nai nt enance_cost >
<hel i copters total helis="10">
<flyi ng_days>10</flyi ng_days>
<flyi ng_days>10</flyi ng_days>

116

<flying days>10</flying days>
<flyi ng_days>10</flyi ng_days>
<flyi ng_days>10</flyi ng_days>
<flyi ng_days>6</flying_days>
<flyi ng_days>6</flyi ng_days>
<flyi ng_days>6</flyi ng_days>
<flying_days>2</flying_days>
<flyi ng_days>2</flying_days>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flying _hours>
<flyi ng_hours>6</flying _hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flying_hours>
<flyi ng_hours>6</flyi ng_hours>
<flyi ng_hours>6</flyi ng_hours>
</ hel i copters>
</ Hel i _Cost >
<Com Support_Cost cost_C="23362" percentage C="4.84397">

<dai | y_equi pnment _cost >600</ dai | y_equi pment _cost >
<personal s total personal s="2">

<personal _hourly_ cost>72.92</ personal _hourly_cost>
<personal _hourly cost>125</personal hourly_ cost>

<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_days>10</ per sonal _wor ki ng_days>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>
<per sonal _wor ki ng_hour s>8</ per sonal _wor ki ng_hour s>

</ per sonal s>
</ Com Support _Cost >

<Install Cost cost_ D="34828.5" percentage D="7.2215">
<Heli Install_Cost cost_ D1="27285">
<Heli Install _Details heli_sat_type="0" heli _sat_number="10">
<heli _install _cost>2500</heli install _cost>
<hel i _sat _activation_cost>50</heli _sat_activation_cost>
</Heli _Install _Detail s>
</Heli _Install_Cost>
<Base_lnstal |l _Cost cost_D2="5403.5">

<Base_Install _Details base _sat_type="0" base_sat
<base_instal | _cost>5000</base install _cost>
<base_sat activati on_cost>50</base_sat activati on_cost>

_nunber="1">

</Base _Install_ Detail s>
</ Base_Install_Cost>
<Head Install Cost cost_ D3="2140">

<Head_Install_Details head_sat_type="0">

<head_i nst al | _cost >2000</ head_i nstal | _cost >
</ Head Install Detail s>
</ Head_I nstal | _Cost >
<Repeater _|Install_Cost cost_D4="0">
<Repeater Install _Details repeater_ nunber="0">
<repeater _install_cost>1600</repeater_install _cost>
</ Repeater Install _Detail s>
</ Repeat er Install _ Cost>

</Install_Cost>
</ Proj ect Cost >

117

VITA

Candidate’s full name: Alex Lemin Wu
Place of birth: Hunan, P.R.China
University attended: Bachelor of Engineering (Metal Material), 1984 — 1988

Central South University of Technology,
Hunan, P.R.China

Selected publications:

Nickerson, Bradford G., Wu, Alex L., “Cost Model of Satellite Systems for Real-Time
Helicopter Operations”, Technical Report TR02-157, Faculty of Computer Science,
University of New Brunswick, August 7, 2002, 26 pages.

118

