

Web Accessible Real-Time Geospatial

Operations Via Satellite Communications

by

Alex Lemin Wu

TR03-159, June 03

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

www: http://www.cs.unb.ca

 ii

Abstract

This research investigates and tests two satellite communication links for application

to real-time seismic survey operations. The research includes an investigation of satellite

system physical characteristics, a cost model and the software and system integration

required to integrate satellite communications with real-time geospatial operations.

After intensive investigation of different satellite systems, Iridium and Orbcomm

were chosen as candidates for experimental validation. An XML cost model was

developed to estimate costs for various seismic survey operational scenarios involving

Iridium and Orbcomm satellite systems. Both satellite systems were tested to determine

their operational characteristics. Three different experiments transmitting packets of 108

bytes (simulating helicopter GPS information) were carried out at different frequencies,

time of day and transceiver movement (static and dynamic).

Satellite communication system cost is about 10 times less per unit of data

transmitted for Orbcomm compared to Iridium. Orbcomm has a much higher latency and

lower update rate than Iridium. Our experiments determined an average latency for

Iridium of 1465 ms while Orbcomm’s average latency was 12 minutes 45 seconds given

the same data transmission parameters.

Simple Object Access Protocol (SOAP) was also explored in this research for its

possible role in satellite link geospatial information systems. Our results show that SOAP

has good potential for use in client – server web applications for satellite cost estimation

as part of satellite-based field operations.

 iii

Acknowledgments

First of all I would like to take this chance to express my many thanks to Dr. Brad

Nickerson, my supervisor for his support, patience in guiding my research work at every

step. Without his support and guidance it would not possible for me to finish my

program.

I am also thankful to Jim McLellan, Peter Srajer and Dave Huff of Eagle Navigation

Systems Inc. for their support in providing Kodiak Office, RGU software and seismic

survey GPS data for experimental testing.

My thanks go to Dr. Peter Dare and the Geodesy and Geomatics Engineering

Department of UNB for their generous permission to use the Hydrography Lab for our

research.

I would like to thank Dr. Bernd J Kurz and all members of the examining board for

taking time to evaluate my research work.

I appreciate all the technical support from the system support team of UNB Computer

Science including Ivan Sears, Troy Cable and Sean Seeley. My appreciation also goes to

Mary Kaye, Bruce Miller and Adam Wilson of Department of Electrical and Computer

Engineering for the consultation on QNX 4.25 system and supply of equipment.

We also thank Dr. Claudia Iturriaga who provided financial support to purchase

hardware necessary to complete our research experiments.

 iv

Table of Contents

Abstract ... ii
Acknowledgments.. iii
Table of Contents... iv
List of Figures .. vi
List of Tables ... viii
List of Acronyms and Abbreviations... ix
Chapter 1. Introduction ... 1

1.1 Previous work..2
1.2 Research objectives ...2
1.3 Thesis overview...3

Chapter 2. Background ... 5
2.2 Simulation of Kodiak Office 2.5.1 and RGU500..6
2.3 Satellite systems ..9

2.3.1 Low earth orbit systems ...9
2.3.2 Geostationary earth orbit systems ..10
2.3.3 Medium earth orbit systems ...10

2.4 XML and SOAP ..12
2.4.1 XMLSpy...12
2.4.2 Xerces XML Parser ..13
2.4.3 SOAP exploration...14

Chapter 3. Cost estimation model for satellite survey operations 16
3.1 Satellite communication components..16

3.1.1 Iridium system..16
3.1.1.1 Iridium equipment ..17
3.1.1.2 Iridium technologies and services ..19

3.1.2 Orbcomm system..21
3.1.2.1 Orbcomm equipment ..22
3.1.2.2 Orbcomm technologies and services ..24

3.1.3 Summary of equipment and subscription cost ...25
3.2 Cost estimation model design..26

3.2.1 Cost estimation model equations..27
3.2.2 Cost elements and latency comparison of active satellite systems.................30
3.2.3 High accuracy seismic survey ..32
3.2.4 Forest fire operations..33
3.2.5 Radio modem model ..35

3.3 XML version ...35
3.3.1 Cost estimation model ..36
3.3.2 Software implementation ...38

3.3.2.1 Satellite system basic cost elements source file39
3.3.2.2 Project cost XML file ...42
3.3.2.3 Cost XML File Generator...44

3.3.3 Example satellite survey costs..47
3.3.4 SOAP compatibility ...49

Chapter 4. Satellite communication experiments ... 54

 v

4.1 Experiment design...54
4.1.1 System architecture ..54
4.1.2 QNX 4.25 ...55
4.1.3 Embedded serial communication programming...56
4.1.4 Satellite transceiver (modem)...58

4.2 Software development...61
4.2.1 Serial library ...62
4.2.2 Modem initialization ..64
4.2.3 Fletcher Checksum ...66
4.2.4 Sender...68
4.2.5 Receiver..75
4.2.6 Computing satellite system latency..80

Chapter 5. Testing and results analysis... 82
5.1 Test environment...82
5.2 Iridium experiments ..84

5.2.1 Static testing ...85
5.2.2 Dynamic testing..86
5.2.3 Analysis of testing results...88

5.2.3.1 Statistical testing...88
5.2.3.2 Testing results analysis...89

5.3 Orbcomm experiment..93
5.3.1 Static testing ...93
5.3.2 Analysis of results ..94

Chapter 6. Conclusions and future work... 98
6.1 Conclusions ...98
6.2 Future work ...99

References... 101
Appendix I. CostParms.dtd ... 105
Appendix II. ProjectCost.dtd .. 107
Appendix III. ProjectCost.xml output files... 110

A III. 1 High accuracy seismic survey with satellite systems110
A III. 2 High accuracy seismic survey with radio modems ..112
A III. 3 Forest fire operation #1 ..114
A III. 4 Forest fire operation #2 ..116

VITA

 vi

List of Figures

Figure 2.1 Architecture of the Kodiak system with radio frequency modems. 5
Figure 2.2 Architecture of Kodiak Office 2.5.1 and NS500 RGU simulation.................... 7
Figure 2.3 NS500 RGU software running on QNX1.. 7
Figure 2.4 Kodiak Office2.5.1 with mobile agent position information. 8
Figure 2.5 VirtualGPS software screen shot... 9

Figure 3.1 Iridium equipment used for our research... 19
Figure 3.2 Iridium Mobile Terminated Data Service [Iridium, 2002c]. 20
Figure 3.3 Orbcomm system data communication routine (from [Orbcomm, 2002])...... 22
Figure 3.4 Orbcomm equipment. .. 24
Figure 3.5 High accuracy seismic survey model using satellite communication. 32
Figure 3.6 Connections for forest fire operations model #1 (Iridium plus Orbcomm)..... 34
Figure 3.7 Connections for forest fire operations model #2 (all Orbcomm). 34
Figure 3.8 Radio model with Orbcomm link. ... 35
Figure 3.9 The survey with satellite project cost estimation model in UML. 37
Figure 3.10 Pseudo-code of the main method for project cost estimation........................ 38
Figure 3.11 Architecture of the CostXML_Generator program. 39
Figure 3.12 Part of the CostParms.dtd file (for the Orbcomm cost elements part). 40
Figure 3.13 Part of an example CostParms.xml file for forest fire operation #1.............. 41
Figure 3.14 CostXML.dtd for high accuracy seismic survey (Install part only). 43
Figure 3.15 Part of a sample ProjectCost.xml file for a high accuracy seismic survey

(Install_Cost only). .. 44
Figure 3.16 Example of source code from CostXML_Generator to compute cost element

D1 from equation (3.9). ... 46
Figure 3.17 Pseudo-code description of the createXMLFile()method

(CostXMLFile class). ... 47
Figure 3.18 Example SOAP response from SQLData3.0 SOAP Server [SQLData, 2002].

... 51
Figure 3.19 Proposed architecture of a SOAP-enabled project cost estimation application.

... 52
Figure 3.20 Example SOAP response of satellite communication cost at head office..... 53

Figure 4.1 Architecture of satellite communication experiment system. 55
Figure 4.2 Software architecture of the satellite serial communication experiments. 58
Figure 4.3 Example AT command and response sequence for the Iridium Motorola 9500

(sending side) [Iridium, 2002c]... 60
Figure 4.4 Sample code to open and configure a serial port using the Klein’s serial library

[Klein, 2001]. .. 64
Figure 4.5 The modem initialization method for the Iridium Motorola 9500 handset

(init_modem() method on Windows 2000).. 66
Figure 4.6 Fletcher’s checksum method (from [Fletcher, 1982] and [KBMW, 1999]).... 68
Figure 4.7 Sample data message (108 bytes long) for satellite communication channels

testing.. 68
Figure 4.8 Sample Iridium modem testing sessions in operation. 70

 vii

Figure 4.9 Pseudo-code for reading a file of simulated GPS data. 71
Figure 4.10 Example portion of a data transmission summary file recorded by Sender. . 72
Figure 4.11 Sender pseudo-code for Iridium on Windows 2000...................................... 74
Figure 4.12 The different part of the Sender pseudo-code for Orbcomm on QNX 4.25.. 75
Figure 4.13 Steps of serial port reading at the Receiver side for Iridium communication.

... 76
Figure 4.14 Pseudo-code for the Receiver program on Windows 2000. 78
Figure 4.15 Example portion of a rRecord.txt file recorded by the Receiver................... 80

Figure 5.1 Computer setup in Room GE112 (Hydrography Lab) of Gillin Hall.............. 82
Figure 5.2 Antennae and satellite transceiver setup on the roof of Gillin Hall. 83
Figure 5.3 Satellite antenna layout on the roof (all units in cm)....................................... 84
Figure 5.4 Dynamic Iridium transceiver layout. ... 87
Figure 5.5 The Iridium system average data transmission latency for static testing. 91
Figure 5.6 Orbcomm average latency... 96

 viii

List of Tables

Table 2.1 Technical elements of Iridium and Orbcomm satellite systems. 11
Table 2.2 Technical elements of Globalstar and MSAT satellite systems. 12

Table 3.1 Summary of equipment and subscription costs for this research...................... 26
Table 3.2 Comparison of satellite communication system cost and latency. 31
Table 3.3 Costs comparisons of different satellite survey (number in () after each

subtotal indicating % of total cost excluding cost B).. 48

Table 4.1 Common Iridium AT commands and responses [MPCS, 2000]. 60
Table 4.2 SC-Originated message of Orbcomm with an example packet data from the

Quake 1500 satellite transceiver [KBMW, 1999]... 61
Table 4.3 Classes and methods in de Klein’s serial library (from [Klein 2000]). 63

Table 5.1 Iridium static testing results during the morning of November 12, 2002......... 86
Table 5.2 Iridium static testing results during the afternoon of November 12, 2002. 86
Table 5.3 Iridium static testing results during the evening of November 12, 2002.......... 86
Table 5.4 Iridium dynamic testing results during the afternoon of November 28, 2002.. 87
Table 5.5 Iridium dynamic testing results during the afternoon of December 11, 2002. . 88
Table 5.6 Average system latencies and standard deviation at different frequencies and

different time of the day.. 90
Table 5.7 Results of the t values for Iridium static testing (equal variance assumption). 90
Table 5.8 Calculation results of t values for Iridium static and dynamic testing.............. 92
Table 5.9 Orbcomm static testing results during the morning of November 12&14, 2002.

... 93
Table 5.10 Orbcomm static testing results during the afternoon November 12&14, 2002.

... 94
Table 5.11 Orbcomm static testing results during the evening of November 12&14, 2002.

... 94
Table 5.12 Average system latencies and variances at different frequencies................... 94
Table 5.13 Results of the t values for Orbcomm testing (equal variance assumption). ... 95

 ix

List of Acronyms and Abbreviations

ACK --- Acknowledgment
API --- Application Programming Interface
CDMA --- Code Division Multiple Access
CDPD --- Cellular Digital Packet Data
COM --- Component Object Model
CPU --- Central Process Unit
CRC --- Cyclic Redundancy Check
DGPS --- Differential Global Positioning System
DTD --- Document Type Definition
FDMA --- Frequency Division Multiple Access
FTP --- File Transfer Protocol
GEO --- Geostationary Earth Orbit
GES --- Gateway Earth Station
GPS --- Global Positioning System
HTTP --- Hypertext Transfer Protocol
IDE --- Integrated Development Environment
IEEE --- Institute of Electrical and Electronics Engineers, Inc.
ISU --- Iridium Subscribing Unit
LAN --- Local Area Network
LEO --- Low Earth Orbit
MEO --- Medium Earth Orbit
MTS --- Multiplex Timing Serial
NCC --- Network Control Center
NTP --- Network Time Protocol
OEM --- Original Equipment Manufacturer
OMG --- Object Management Group
POSIX --- Portable Operating System Interface
PSTN --- Public Switched Telephone Network
RGU --- Remote Guidance Unit
SBM --- Short Burst Messaging
SC --- Subscriber Communicator
SDK --- Software Development Kit
SIM --- Subscriber Identity Module
SNTP --- Simple Network Time Protocol
SOAP --- Simple Object Access Protocol
TCP/IP --- Transmission Control Protocol/Internet Protocol
TDMA --- Time Division Multiple Access
TNC --- Threaded Neill Concelman
UHF --- Ultra High Frequency
UML --- Unified Modeling Language
VHF --- Very High Frequency
W3C --- World Wide Web Consortium
WAP --- Wireless Application
WML --- Wireless Markup Language

 x

WMLScript --- Wireless Markup Language Script
XML --- eXtensible Markup Language
XSL/XSLT --- extensible Stylesheet Language/extensible Stylesheet Language

Transformations
WSDL --- Web Service Description Language

 1

Chapter 1. Introduction

Wireless communication has entered its fastest growth period in history since the

development of technologies permitting wide spread deployment [Rappaport, 1996].

Real-time wireless information management in energy and resource operations requires

fast and seamless information flow for data acquisition, management and operational

decisions. Due to the swift advance of internet technology, communication over the web

has become an efficient alternative to many currently applied communication methods,

which is particularly advantageous for applications like real-time mobile information

management [Nickerson and Shan, 2001].

In mobile distributed environments, applications related to current location often need

to send and receive data dynamically. In geophysical surveys in remote areas, equipment

movement by using helicopter to geophone locations as well as dynamic real-time

information exchange between the pilot, base station and main office is necessary to

guide the helicopter to the right location successfully and efficiently [Chatenay, 2000].

These tasks can be accomplished by wireless mobile telephone (cellular phone), radio

modems or satellite communication link. In most cases, using radio modems is less

expensive and more convenient since cell phone coverage may not be available. The

disadvantage of using radio modems is that the maximum range of communication using

commonly available licensed radios (with a 5 to 40 watt transmitter) is limited to around

40 kilometers (with repeaters). A satellite communication link becomes a good

alternative choice in real-time geospatial operations [McLellan, 2001]. Recent

technological advancements allow the deployment of satellite networks that provide

voice and data transfer capabilities to any isolated corner of the globe [Ha, 2001].

 2

1.1 Previous work

A simulated wireless real-time geospatial operations system was achieved

successfully by Ying Shan of UNB during her graduate research [Shan, 2001]. A three-

tier working prototype was designed and implemented using WAP, WML, WMLScript,

XML, JavaServlet, Java Applet, HTML and JDBC techniques. An experiment using

recorded helicopter flight data from Eagle Navigation Systems, Inc. demonstrated that the

system could send from a WAP device simulator to the on-line central office the real-

time geospatial information of a helicopter employed for the purpose of drilling holes and

delivering equipment for seismic exploration operations. The movements and detailed

information of this helicopter can be displayed, in real-time, from a web browser with a

delay of less than one second. The system can also store all the received data in an Oracle

database and therefore any existing historic flight path can be selected and reviewed by

internet users from a web browser [Shan, 2001]. Kodiak flight path data files (KFP) were

reformatted into XML before data was used in the simulator. This research builds on

Ying Shan’s completed research to investigate the middle layer using satellite systems for

communications.

1.2 Research objectives

In the current Kodiak system, there is a limitation including a range limit of

approximately 40 km of the radio frequency communication between the helicopter and

base station and the need for expensive setup of radio modem transmission towers (e.g.

when radio repeaters are required) [Eagle, 1998].

To improve the communications within the existing Kodiak system based on Ying

Shan’s research work, a satellite communication link becomes a potential choice for the

 3

connections between helicopter, base station and head office. The objectives explored in

this research are in three parts – physical system characteristics, cost and feasibility and

software and system integration.

In the physical system characteristics part the focus is on finding if the selected

satellite communication systems are able to handle (maintain a reliable data link) the high

dynamics of aircraft (fixed wing and rotary) navigation, provide error checking

functionality and keep data link “always on” without initiating a call (e.g. like CDPD

(Cellular Digital Packet Data) for cell phone data service).

The second task is to explore if there is an appropriate active satellite system for real-

time global geospatial operations. This task includes building a cost model and

determining the long-term viability and target market for individual satellite

communication systems.

The third part of the objectives is to integrate software and systems with the satellite

system modems including experimental testing of satellite communication data link

systems. The role of Simple Object Access Protocol (SOAP) in defining a software

architecture for real-time geospatial operations is also a main topic in this part.

1.3 Thesis overview

The chapters in the thesis are organized as follows:

Chapter 2 is background introduction including Kodiak system architecture, satellite

systems overview, XML and SOAP tools for the satellite cost model. In Chapter 3 the

satellite cost model is described in detail including comparison of satellite systems, cost

model design and implementation. Satellite data communication experiments for both

Iridium and Orbcomm are introduced in Chapter 4 with system design and software

 4

development. Chapter 5 presents satellite data transmission latency testing and analyzes

the test results. Chapter 6 concludes the research and indicates future work.

 5

Chapter 2. Background

A system called Kodiak, for real-time mobile geospatial operations has been designed

and built by Eagle Navigation System, Inc. of Calgary, Alberta. Section 2.1 gives a brief

introduction to the Kodiak system and section 2.2 describes a simulation experiment

using the Kodiak system.

2.1 Kodiak system architecture overview

The architecture of Kodiak system is shown in Figure 2.1.

radio modem link
(Pacific Crest, Teledesign,
maximum range 40 km
with repeaters)

Base Station
with Kodiak Office System

GPSGPS Helicopter with
NS500 RGU

GPS

radio modem link
(Pacific Crest, Teledesign,
maximum range 40 km
with repeaters)

Base Station
with Kodiak Office System

GPSGPS Helicopter with
NS500 RGU

GPS

radio modem link
(Pacific Crest, Teledesign,
maximum range 40 km
with repeaters)

Base Station
with Kodiak Office System

GPSGPSGPSGPS Helicopter with
NS500 RGU

GPS

Figure 2.1 Architecture of the Kodiak system with radio frequency modems.

Kodiak is primarily used for helicopter guidance and management during seismic

survey operations. The system consists of two major components, namely:

1) Kodiak Office software installed on an industrial computer with Windows 98, flat

panel screen, data radio modem, UPS, UHF/VHF antenna cabling and a 12 volt power

supply. The Kodiak Office base station generates missions for the remote helicopters,

displays the current helicopter positions, and provides reports on activities [Eagle, 1998].

2) The NS500 Kodiak navigation system installed in a helicopter. The NS500 Remote

Guidance Unit (RGU) consists of a vehicle-mounted DGPS navigation and guidance

system connected via radio frequency links back to a single controlling base station

 6

(Kodiak Office) [Eagle, 2001]. The NS500 system has a NovAtel 12-Channel GPS card

working with an Omnistar OEM card providing DGPS corrections. The NS500 runs on an

embedded 586-class computer using a QNX real-time operating system. There is a

custom-built remote display for the pilot and a keypad for menu operation. The NS500

system allows the pilot to fly directly to the target without having to follow a map and

confirm terrain features. The system also reduces time in “Dead Man’s Curve” (i.e. when

the helicopter has little forward motion making positional control more difficult.),

minimizes the radio communication between pilot and base station and allows pilots to

mark waypoints (such as a fuel cache) and return to them later [McLellan, 2001].

2.2 Simulation of Kodiak Office 2.5.1 and RGU500

Simulated radio frequency communication between Kodiak Office 2.5.1 and NS500

RGU was conducted on a Windows 2000 computer named Sylvius and a QNX 4.25

machine named QNX1 with the architecture shown in Figure 2.2. Kodiak Office 2.5.1

running on Sylvius sends task points with latitude, longitude and height information to a

simulated helicopter running NS500 RGU on QNX1. Meanwhile, the simulated

helicopter sends its own position information back to Kodiak Office 2.5.1. A virtual GPS

simulator running on a computer named Ltempor with Windows 98 operating system is

connected to QNX1 to generate GPS positions for the simulated helicopter. Figure 2.3

shows the NS500 RGU screen while a simulated mobile agent is approaching the target

task point from Kodiak Office 2.5.1. Figure 2.4 shows the helicopter position information

displayed on a Kodiak Office 2.5.1 screen. A VirtualGPS screen shot is given in Figure

2.5. Connections between Sylvius and QNX1, Ltempor and QNX1 are serial null modem

 7

cables (Laplink Serial cable), which allow two ends to communicate with each other

without a real modem.

Base Station

Kodiak Office 2.5.1NS500 RGU
null modem DB9 cable

Helicopter

QNX1
QNX4.25 Sylvius

Windows 2000

GPS Simulator

VirtualGPS

Ltempor
Windows 98

null modem DB9 cable Base Station

Kodiak Office 2.5.1NS500 RGU
null modem DB9 cable

Helicopter

QNX1
QNX4.25 Sylvius

Windows 2000

GPS Simulator

VirtualGPS

Ltempor
Windows 98

null modem DB9 cable

Figure 2.2 Architecture of Kodiak Office 2.5.1 and NS500 RGU simulation.

Figure 2.3 NS500 RGU software running on QNX1.

 8

Figure 2.4 Kodiak Office2.5.1 with mobile agent position information.

 9

Figure 2.5 VirtualGPS software screen shot.

2.3 Satellite systems

Satellite systems are primarily categorized by their earth orbit characteristics. This

section gives a brief introduction to each different satellite system and its typical

technical elements.

2.3.1 Low earth orbit systems

LEO stands for Low Earth Orbit satellite constellation. LEO systems have a large

number of satellites, flying in an orbit of a few hundred kilometers above the earth. Any

location on the earth is able to see one of the satellites and the system works as a cellular

phone system with a moving receiver/transmitter. With a relatively short distance to

earth, round trip latency of transmission is theoretically low (but not in practice due to

different satellite operational characteristics) [Compass, 1999].

 10

Current operating LEO systems include Iridium, Orbcomm and Globalstar. Teledesic

was scheduled to come into the market in 2005, but the Teledesic’s project of high speed

Internet service vial a constellation of satellites has been postponed due to financial and

marketing reasons [Jung, 2002].

2.3.2 Geostationary earth orbit systems

A GEO (geostationary earth orbit) satellite has a 36,000 km high orbit and it

circulates the earth directly over the equator. The satellite remains over the same earth

location since it takes 24 hours for a round trip and it can see nearly 40% of the Earth’s

surface (due to its altitude). Weather satellites are usually geostationary. MSAT and

Inmarsat are GEO satellite communication systems.

2.3.3 Medium earth orbit systems

MEO satellite systems have earth orbits with altitudes between a few hundred km to a

few thousand km. Ellipso and ICO are two MEO systems. Individual MEO satellites can

cover more of the Earth’s surface since their orbit is higher than LEO satellites and

therefore MEO can cause latency longer than LEO, but less than GEO [Compass, 1999].

Some MEO satellites have an elliptical orbit with their perigee (lowest altitude)

significantly less than their apogee (greatest altitude).

2.3.4 Satellite systems technical elements

Major satellite systems currently in operation are Iridium (LEO), Orbcomm (LEO),

Globalstar (LEO) and MSAT (GEO). Technical elements of these satellite systems are

listed in tables 2.1 and 2.2. Further details can be found in Nickerson and Wu [2002].

 11

Table 2.1 Technical elements of Iridium and Orbcomm satellite systems.

satellite
system

orbit Transmission
service band

data rate one-way
propagation delay
in ms (min, max)

Iridium
(LEO)

780 km 1616.0 - 1626.5 MHz
transmit, 1616.0 - 1626.5
MHz receive
TDMA, FDMA

2,400 bps
sustained, up to
10,000 bps burst
with Direct
Internet Data
Service

(2.6, 8.2)

Orbcomm
(LEO)

825 km Uplink: 148.0 – 150.05
MHz downlink: 137.0-138.0
MHz, Packet Data

Transmit: 4800
bps

2.7

satellite
system

first launched Range current market comments

Iridium
(LEO)

First: 1997,
commercial service
starts in 1998. 8 years
designed satellite life

Global aviation, construction,
disaster relief/emergency,
government, leisure travel,
maritime and media.

Iridium
contracted with
Boeing for its
network
operations

Orbcomm
(LEO)

First: 1991, 4th
launch in 2000, 4
year designed
satellite life

Global, near
continuous
between the
polar circles

ocean vessel track and
control, avionics weather

Orbcomm LLC
is the
managing
company since
Aug 2001.

 12

Table 2.2 Technical elements of Globalstar and MSAT satellite systems.

2.4 XML and SOAP

XML is a markup language designed to describe and carry data with user-defined tags

defined in a Document Type Definition (DTD) or Schema. Several XML tools have been

used during the development of XML satellite cost estimation model software, and these

are described briefly. Simple Object Access Protocol (SOAP) is also explored in this

research for its possible role in software designed for estimating and exchanging costs

associated with satellite communication use in field operations.

2.4.1 XMLSpy

XMLSpy is a well-developed and widely used XML development environment.

XMLSpy is an industry-standard tool for designing, editing and debugging in various

satellite
system

orbit Transmission
service band

data rate one-way
propagation delay in

ms (min, max)
GlobalStar
(LEO)

 1,410 km 2483.5 - 2500.0 MHz
transmit, 1610.0 - 1626.5
MHz receive, CDMA

7,200 bps sustained (4.6, 11.5)

MSAT (GEO) 36,000
km

1530-1559 MHz transmit
1631.5-1660.6 MHz
receive

4,800 bps (270, 400)

satellite
system

first launched Range current market comments

GlobalStar
(LEO)

1999, designed
satellite life: 7.5
years

Within +/- 68°
latitude of the
equator

High-quality voice, SMS,
packet-switched and
asynchronous data.

Finalized
agreement on
debt
restructuring
and new
business
model, made
Chapter 11
filing on Feb
15, 2002

MSAT
(GEO)

Apr.20, 1996,
designed
satellite life: 12
years

N/C America,
northern S America,
Caribbean, Hawaii,
up to 250 km
offshore

Transportation, utility, oil
& gas, government,
maritime, and resource
industries

secure and
reliable voice.

 13

XML related technologies and protocols including XML, XML Schema, eXtensible

Stylesheet Language/eXtensible Stylesheet Language Transformations (XSL/XSLT),

SOAP, Web Service Description Language (WSDL) and Web Service technologies.

Version 5 has functions for HTML-XML conversion with C, C++ and Java code

generation [Altova, 2002].

In this research XMLSpy IDE was used to test XML and SOAP file generation and

editing. The XMLSpy IDE reads from a DTD file provided by the user and generates an

XML file structure with tag names. With the editor, the user fills in all the tag values

accordingly. XMLSpy IDE can create SOAP requests by reading a WSDL file from a

SOAP server instead of a DTD. XMLSpy IDE provides a straightforward, flexible and

functional user interface and it was very useful in creating satellite cost model XML and

SOAP files.

2.4.2 Xerces XML Parser

Xerces XML Parser from Apache provides several XML functions such as counting

the number of tags or levels and parsing XML files according to a DTD to validate XML

files. Xerces Parser is written in portable C++ and follows the W3C XML 1.0

specification. Error messages generated by the Xerces Parser are very clear, which helps

a user to locate and correct errors easily and efficiently [Apache, 2001]. Xerces Parser

was used in this research to validate both the basic satellite cost elements XML file and

the satellite project cost XML files generated by CostXML_Generator, the software we

developed for satellite system cost (see section 3.3.2).

 14

2.4.3 SOAP exploration

SOAP is a lightweight information exchange protocol. SOAP has been used in a

decentralized, distributed environment [BEKL, 2001]. SOAP uses an XML structure to

generalize the file format for information exchange between applications using HTTP on

the Internet. There are three parts in a SOAP message – envelope, header and body. The

envelope is mandatory and it defines what is in a message and who should deal with it.

An optional SOAP header has information describing the SOAP message. The SOAP

body is mandatory and it contains SOAP requests and responses. SOAP is used in

communications over HTTP but it can potentially be used in combination with a variety

of other protocols [BEKL, 2001] [W3C, 2002]. SOAP must use a SOAP Envelope

Namespace and SOAP Encoding Namespace [W3C, 2002].

SOAP is simple and extensible, as well as platform, technology and programming

language independent. Due to its character-based structure, SOAP is compatible with

most existing firewalls and is a W3C standard. SOAP seems promising for widespread

use in business information exchange on the Internet [W3C, 2002]. DreamFactory Web

Services of DreamFactory Software, Inc. at Lost Gatos, CA and Enterprise Web Services

of WebMethods at Fairfax, VA are two commercial products currently using SOAP 1.1

[Winer, 2002].

The SQLData SOAP Server from SQLData Systems, Inc. was downloaded and tested

in this research for SOAP information exchange. By connecting to a SQLData SOAP

Server and fetching its WSDL file, a client enters parameter values to create a SOAP

request according to the WSDL file structure. The client then sends the request to the

SOAP server through an Internet browser. A SOAP response is fed back to the client with

 15

the information requested [SQLData, 2002]. Further details of the SOAP architecture and

operations are given in section 3.3.4.

 16

Chapter 3. Cost estimation model for satellite survey operations

3.1 Satellite communication components

After extensive research on currently active satellite systems, Iridium and Orbcomm,

both LEO systems, were chosen as candidates for satellite communication experiments in

this research [Nickerson and Wu, 2002]. Iridium represents a low latency data

transmission service over a continuous dedicated circuit switched voice link using

TDMA and FDMA technologies. Iridium has several kinds of antennae for data

transmission, including the Motorola external magnetic antenna and Sensor Systems

S67-1575-90 Iridium/GPS antenna. Both of these antennae are small and easily mounted

on a mobile agent such as a helicopter.

Orbcomm is the sole existing satellite system that provides only packet data

transmission service. Orbcomm also has one of the lowest operational costs of any

satellite communication system, which makes Orbcomm worthy of consideration for

functionality testing in this research.

3.1.1 Iridium system

With 66 active satellites in a constellation, Iridium Satellite provides global mobile

satellite voice and data services with complete coverage of the Earth. Iridium Satellite

LLC, the new owner since November 2000 (after the previous owner Iridium LLC filed

for bankruptcy in August 1999), is owned by private investors including Baralonco NV

of Netherlands Antilles (24.3%, controlled by Saudi Prince Khalid bin Abdullah bin

Abdulrahman), Bareena Holdings Party Ltd of Australia (26.9%, owned by Michael

Boyd), Milport Associates SA of Panama (8.9%, owned by Inepar, Brazil) and

Syndicated Communications Inc of USA (26.9%, controlled by Herbert Wilkins). These

 17

four main shareholders hold 87% of Iridium Satellite LLC [Hopkins, 2001]. Iridium

Satellite LLC has a contract with the Boeing Company to operate and maintain the

Iridium satellite constellation and network. Motorola continues to be the major equipment

supplier to Iridium under commercially acceptable terms. Iridium Satellite LLC has

signed a US$72 million contract with the US Department of Defense, under which

20,000 government employees will have unlimited usage of airtime over the Iridium

network for three years [Goldstein, 2000] [Analysis, 2002].

3.1.1.1 Iridium equipment

Manufactured by Motorola exclusively for the Iridium satellite system, Motorola

9500 and 9505 satellite phones are the most commonly used Iridium equipment in both

Iridium voice and data services. The Motorola 9500 was used in this research.

The Iridium Data Kit provides the hardware and software required to establish an

Iridium data call with a Motorola 9500 or Motorola 9505 portable satellite phone. The

Iridium data kit includes a data adapter and DB9 serial cable to provide a connection to a

Motorola 9500 or 9505 portable satellite phones. The Iridium World Data Services CD

contains all software and documentation required to install and configure Iridium World

Data Services on a computer.

Iridium has other more expensive transceivers for mobile aircraft communication.

Airsat I, developed by Honeywell for Iridium, provides reliable and high quality two-way

satellite communications (voice only) for light aircraft over a single digital channel in

Iridium's global satellite system (without support for data transmission). Airsat I includes

one transceiver unit, a handset and a specially designed Satcom blade antenna. With its

powerful RF output (6 watts, much higher than the 0.57 watts of a Motorola 9500 or

 18

9505) Airsat I is so far the best choice for communication under heavy blade rotation in

aircraft. Airsat I’s equipment and installation cost is very high (e.g. US$29,900 for

equipment and US$20,000 for installation per aircraft). SatTalk II is another Iridium

product for aircraft satellite communication using both voice and data. SatTalk II was

developed by Icarus and is used with a Motorola 9505 satellite portable phone. SatTalk II

provides clear telephone communications and Internet access in an aircraft cockpit and

cabin. SatTalk II costs approximately US$7,000 to purchase and install for one aircraft

[Nickerson and Wu, 2002].

Different types of Iridium modems are available for satellite data transmission using a

modified Motorola L-band transceiver (LBT). The 9500 Iridium Modem has an Internal

Subscriber Identify Module (SIM) Card Reader (CDM9500I35-I). Ruggedized modem

A00002LA-E has an external SIM Card Reader and modem A00002LA-I comes with an

internal SIM Card Reader. The Iridium modems use Time Division Duplex as a

duplexing method, TDMA/FDMA as a multiplexing method and have a standard RS-232

(AT command) interface. Average output power is from 0.60 W to 0.62 W.

Two kinds of antennae were used in our Iridium data transmission testing. The

Motorola external magnetic auxiliary antenna works as an accessory for one Motorola

9500 phone. A Sensor Systems S67-1575-109 Iridium/GPS antenna manufactured by

Sensor Systems Inc., Chatsworth, CA is connected with a second Motorola 9500 phone.

Both antennae can be installed on a mobile agent such as a helicopter. The Sensor

Systems antenna is designed to work in aircraft and operate under rotating helicopter

blades. The Sensor Systems antenna is connected to a Motorola 9500 phone through a 10

foot (3 m) antenna with a standard TNC connector at each end to satisfy the requirement

 19

of total maximum 3dB signal loss between satellite antenna and transceiver. Figure 3.2

shows the equipment used in Iridium system testing.

Iridium Motorola 9500

Sensor Systems S67-1575-109
Iridium/GPS Antenna.

Iridium data kit

Motorola 9500 with data adapter

Figure 3.1 Iridium equipment used for our research.

3.1.1.2 Iridium technologies and services

The Iridium satellite system provides both voice and data services. Dial-Up Data

Service from Iridium allows a user to send data from a computer to an end user with a

computer, a corporate network/LAN or Internet Service Provider (ISP) by dial-up

connection. The data transmission is routed through the Iridium satellite network and the

maximum data rate is 2,400 bps [Iridium, 2002b]. Roundtrip system latency for circuit

switched Dial-Up data is approximately 800 ms. Most of this latency is due to Global

System Mobile (GSM) processing and only a few tens of milliseconds is due to

propagation delay [Nickerson and Wu, 2002].

Iridium provides Direct Internet Data Service in which data is sent from a computer

directly to the Internet via an Iridium satellite phone and dedicated servers at the Iridium

 20

gateway. The data transmission rate for Direct Internet Data Services can burst up to

10,000 bps by using transparent compression technology [Iridium, 2002a].

The Iridium Mobile Terminated Data Service shown in Figure 3.2 is the architecture

we explored in this research for Iridium system data communication latency. Mobile

Terminated Data Services provides a data connection between two computers. Data calls

originate from a computer connected to an Iridium phone with a data adapter. On the

receiving side data calls terminate on a computer connected to either an Iridium phone or

a land phone on the Public Switched Telephone Network (PSTN). This research explores

the first scenario of Iridium Mobile Terminated Data Service. The data rate for Iridium

Mobile Terminated Data Service is 2,400 bps [Iridium, 2002c].

 Iridium GatewayIridium Gateway

Figure 3.2 Iridium Mobile Terminated Data Service [Iridium, 2002c].

Iridium is currently developing new Short Burst Messaging (SBM) services that will

provide low latency two-way messaging from small data messaging terminals (message

size of 50-75 bytes). SBM service is targeted for unattended sensor, alarm and control

applications [Iridium, 2002d], and is planned to start service early 2003. The SBM

service requires the use of a new software data kit and a Motorola 9522 L-Band

 21

transceiver (called a short burst data terminal). SBM will not work with Motorola 9500

and 9505 Iridium telephones.

Short Burst Messaging data requires different AT commands to dial up (circuit

switched data). Latency for Short Burst Messaging data messages from a mobile device

to the Gateway in Arizona is expected to be in the order of ten seconds or less. Delivery

of a short burst data message from one mobile device to another will incur at least double

the single hop latency. Additional latency from Internet traffic routing of the message

will apply. Mobile terminated messages will not be immediately delivered, but held in a

Gateway mailbox until the mobile device either polls the Gateway or sends a message

[Nickerson and Wu, 2002].

Iridium data service charges include a monthly fee, an activation fee and per-minute

charge. The per-minute charge only applies to the calling side. Iridium service in this

research was subscribed from Preferred Communications in Creedmoore, NC. With a

package of 1000 minutes airtime prepaid at US$0.68 per minute for data communication

from ISU to ISU, the activation fee is US$15 and the monthly fee is US$19.95 per

handset. The package is valid for 12 months and remaining airtime minutes can be rolled

over to the next 12-month period [Nickerson and Wu, 2002].

3.1.2 Orbcomm system

Orbcomm provides global 2-way data services via low earth orbit (LEO) Satellites

and ground infrastucture. Data is first sent from a satellite subscriber communicator (SC)

to the Orbcomm satellite. An Orbcomm satellite then sends data to a Gateway Earth

Station (GES). The GES relays the data message to the Network Control Center (NCC)

either through satellite or ground line. NCC routes the message to the recipient by email,

 22

phone line or fax. Figure 3.3 shows how a data message is transmitted through the

Orbcomm system [Orbcomm, 2002].

SC

LEO

GES NCC

recipient

LEO

SC

LEO

GES NCC

recipient

LEO

Figure 3.3 Orbcomm system data communication routine (from [Orbcomm, 2002]).

Orbcomm currently has 35 satellites in orbit, and is licensed by the FCC to launch

and operate up to 48 satellites. Orbcomm is designed for short packet (0.5 second)

transmission.

Orbcomm filed for Chapter 11 bankruptcy protection in September 2000. In August

2001 International Licensees LLC, a consortium of Orbcomm licensees and affiliates,

purchased the business and assets of Orbcomm Global, L.P. and its other entities. The

consortium includes OHB Systems GMBH, Orbcomm Asia Ltd. and other private

investors. The new company was incorporated as Orbcomm LLC [Orbcomm, 2002].

3.1.2.1 Orbcomm equipment

There are several kinds of Subscriber Communicators (SCs) in the current market

manufactured for Orbcomm system data communication. The Panasonic KX-G7101

 23

satellite communicator with GPS is currently available in the market. A newer version,

the Panasonic KX-G7201, is also available with a Software Development Kit (SDK). An

OEM board for the Panasonic satellite communicator was scheduled to be on the market

in January 2003.

The Magellan GSC-100 is another Orbcomm SC with a choice of antennae including

roof mount, truck mount and magnetic mount. The GSC-100 development kit is also

available with one Magellan Satellite Modem OEM Board, power supply interface board,

choice of fixed or mobile antennae, data-power cable extension, AC power adapter,

satellite PC software, evaluate® software, interface cables and user manual and reference

guide.

The Q1500 development kit from Quake Global, Inc. was used in this research for

Orbcomm system data communication testing. The Q1500 is designed for remote

monitoring and control applications using the Orbcomm system with a very rugged

military grade packaging. The Q1500 module combines high performance with a

reasonable price and is a good solution for developers who need to integrate a satellite-

based communications transceiver into customized applications. The Q1500 satellite

transceiver (one OEM board and one adapter) unit included in the development kit

provides two serial ports for communication with the host application. One serial port

works as a Multiplex Timing Serial (MTS) port and fully supports the Orbcomm Serial

Interface Specification. The second port is called a Logger port and can be custom

programmed to support application specific communications or used as a monitoring and

debugging port. Power at 12 V +/- 10% is required by the Quake 1500 modem with strict

adherence to this voltage requirement over the full 3 A range. Both serial ports on the

 24

Quake 1500 data adapter were connected to the serial ports of the testing computer

(Broca or QNX1) through a DB9 cable. A magnetic whip antenna provided in the Quake

1500 development kit can be mounted on a helicopter or other mobile device. Figure 3.4

shows the equipment used for Orbcomm testing.

Figure 3.4 Orbcomm equipment.

3.1.2.2 Orbcomm technologies and services

Orbcomm only provides small packet data transmission. The practical maximum

Orbcomm message size is 2000 bytes. If a message needs to be stored in the satellite and

then forwarded (Orbcomm Globalgram Service) when the satellite is not in view of a

ground station, each message can contain up to 229 characters for sending and 182

characters for receiving.

 25

Orbcomm service charges include a monthly fee, an activation fee and a charge per

byte. Charge per byte applies to both incoming and outgoing messages. Magellan GSC-

100 or Steller ST2500 subscription services for the Orbcomm satellite system do not have

per-byte charges, but the sending frequency is as low as one message every 5 to 10

minutes.

The Orbcomm data communication service used in this research is from SkyTrac,

Vancouver, BC. In our case charges included a monthly fee ($70 + tax) and an activation

fee ($95 + tax) for unlimited bytes of data transmission.

3.1.3 Summary of equipment and subscription cost

A significant amount of Iridium and Orbcomm satellite equipment and accessories

were used in our research with computers and cables. Table 3.1 shows a summary of all

capital equipment and satellite system subscription costs that we used during the course

of this research.

 26

Table 3.1 Summary of equipment and subscription costs for this research
(includes taxes, licensing and shipping).

category equipment quantity unit price cost

Motorola 9500 kit (new) 1 $1,167.83 $1,167.83
Motorola 9500 kit (used) 1 $951.43 $951.43
Sensor Systems Iridium Aircraft
Antenna

1 $1,069.58 $1,069.58

Data kit for Motorola 9500 2 $329.83 $659.66
Motorola Data Adapter SYN 7023A 1 $87.01

$87.01

10 foot low-loss coax cable assembly 1 $172.08 $172.08
60 foot serial cable 2 $40.38

$80.76

Subtotal (capital) $4,188.35
activation fee 2 $22.89 $45.78
monthly access fee 5 months $70.38 $351.90
prepaid airtime package 1000 minutes $1.04

$1,040.00

Motorola phone repair 1 $448.65 $448.65
Subtotal (service) $1,886.33

Iridium

Total Iridium $6,074.68
Quake 1500 Development kit 1 $1,967.49 $1,967.49
12V stable DC power supply 1 0

0

Subtotal (capital) $1,967.49
activation fee 1 $104.79 $104.79
Deactivation fee 1 $49.99 $49.99
monthly fee 4 months $78.60

$314.39
Subtotal (service) $469.17

Orbcomm

Total Orbcomm $2,436.66
Laptop (IBM A20m, PIII, 667 MHz) 1 0 0
Broca (IBM 300GL PII, 400 MHz) 1 0 0
Sylvius (IBM 300GL PII, 450 MHz) 1 0 0
Ltempor (Dell OptiPlex PIII, 500 MHz) 1 0 0
QNX1 (IBM 300GL PII, 166 MHz) 1 0 0
10 foot serial cable 1 $10.00 $10.00
10 foot laplink serial cable 2 $18.00 $36.00
power inverter to run laptop in a car 1 $44.11

$44.11

Computers

Total Computers $90.11
Grand Total $8,601.45

3.2 Cost estimation model design

A satellite system cost estimation model was designed and implemented in C++. This

cost model is designed to present the suitability of satellite system used in seismic survey

operations from a business perspective. Given the basic cost elements of satellite systems

such as monthly charges, per-minute cost, helicopter hourly cost, the satellite system cost

 27

estimation application calculates the total system cost for different seismic survey

operations and creates a project cost file in XML.

3.2.1 Cost estimation model equations

The satellite system cost estimation calculations are based on a series of equations

designed according to various seismic project scenarios. The total cost S for one seismic

project involving one or more helicopters is a function of d, the number of operational

days per project. The cost S (in Canadian dollars) is as follows:

 () DCBAdS +++= (3.1)

where A = satellite communication system cost, B = helicopter cost, C = company

support cost and D = initial project setup cost.

There are three parts in cost A:

 () 321 AAAdA ++= (3.2)

where A1 = the satellite communication system cost in helicopter(s), A2 = the satellite

communication system cost at base station and A3 = the satellite communication system

cost at head office (only standard Internet connection is required at head office for

Orbcomm satellite communication with helicopter(s) or base station). They are computed

(in Canadian dollars) as follows:

() () () ()()()∑
=

 ++

−+−+

+=

s

i
ieiiii

i
si n

GEdRbpfhryhCd
d

MRTdA
1

1 7
26060

31
1 (3.3)

() () () ()()()∑
=

 ++

−+−+

+=

2

1
2 7

26060
31

1
i

ii
eiiiisi n

GE
dRbpfhryhCddMRTdA (3.4)

() ()

+=
31

13
dXTdA (3.5)

 28

where M = monthly cost, C = air-time calling cost per minute, h = number of operational

hours per day, y = free airtime in hours per day included in monthly fee, r = cost per byte

additional to bytes included in monthly cost, f = number of message transmissions per

minute in one direction (multiply by 2 for bi-directional charge), p = number of bytes of

each message, b = daily free bytes included in monthly fee, d = number of total

operational days per project, di = number of operational days for satellite transceiver i,

E = equipment weekly rental cost, G = equipment purchase cost, X = monthly fee for

standard Internet access, n = number of days in capital period, T = tax rate, s = number of

satellite transceivers, Rsi = currency exchange rate for service charge and Rei = currency

exchange rate for equipment purchase.

The second cost B of flying the helicopter (s) is computed as follows (in Canadian

dollars):

 () () ()∑
=

+++++=
z

i
iiii YIHhFhLhdTzB

1
1 (3.6)

where L = hourly cost for hiring pilot(s), F = hourly fuel cost, H = hourly helicopter

rental cost, I = daily insurance cost, di = number of days of flying helicopter i,

hi = number of daily hours of flying helicopter i, Y = daily maintenance cost and z =

number of helicopters.

Assuming that a commercial company carries out a seismic survey project operation,

the equation for calculating the third cost C of the commercial company support (in

Canadian dollars) is

 () ()() ()

++= ∑

=

m

i
ii PhQdTdC

1
1 (3.7)

where Pi = the individual commercial company’s hourly personnel cost for person i,

 29

Q = the commercial company’s daily equipment cost, d = number of working days,

hi = number of daily working hours for person I and m = the number of employees.

The cost D of initial setup for one project has four parts as follows:

 wUDDDD +++= 321 (3.8)

where D1 = the initial setup cost in helicopter(s), D2 = the initial setup cost at the base

station, D3 = the initial setup cost at head office, U = cost to set up one repeater station

for radio modems and w = number of repeater stations. They are computed (in Canadian

dollars) as follows:

 () ()

++= ∑

=

k

i
iii RVITD

1
1 1 (3.9)

 () ()

++= ∑

=

2

1
2 1

j
jjj RVJTD (3.10)

 ()KTD += 13 (3.11)

where Ii = the installation cost for helicopter i, Vi = the activation cost of satellite

transceiver/radio modem i in helicopter, Jj = the installation cost for satellite

transceiver/radio modem j at the base station, Vj = the activation cost of satellite

transceiver/radio modem j at the base station, K = the installation cost at head office,

k = number of satellite transceivers/radio modems in helicopter(s), base station or head

office, R = currency exchange rate for activation fee, i = 1,2,…k and j = 1 or 2 as only

two satellite transceivers are likely for the base station.

 30

3.2.2 Cost elements and latency comparison of active satellite systems

Key cost elements in equations (3.3), (3.4), (3.9) and (3.10) for different satellite

transceivers of Iridium, Orbcomm, Globalstar, MSAT and radio modem were compared

(see Table 3.2) to guide satellite system selection for research testing. M is monthly cost,

C is air-time calling cost per minute, r is cost per byte additional to bytes included in

monthly cost, y is free airtime in hours per day included in monthly fee, G is equipment

purchase cost and V is the activation fee (all prices in Table 3.2 are in Canadian dollars

unless they are indicated by “US$”).

 31

Table 3.2 Comparison of satellite communication system cost and latency.

Iridium and Orbcomm were selected for our research experiment since they represent

two different typical types of data service and are most cost effective among all listed

systems. The Motorola 9500 for Iridium and Quake1500 for Orbcomm were chosen as

test equipment.

Satellite system M C r y G V latency
Motorola
9500

$1,440

Motorola
9505

$2,395

SatTalk II US$4,495

Iridium

Airsat I

US$19.95

US$0.68

$0

0

US$
29,995

US$
20

Data
over dial-
up: 800
ms round
trip; data
over
Direct
Internet
Data: 5-
10 s to 5
-10 min

GlobalStar Qualcomm
GSP 1600

$365 $1.39 per
extra
minute

$0 0.2 $1,495 $50 voice:
900 ms

MSAT ST211 Land
Mobile
Satphone

US$39.99 US$0.99 $0 0 US$2,300 US$
50

500 ms
[MSAT,
2002]

Technisonic
OSAT-100
SkyTrac

$70 for
5,000
bytes

$0 $0.015 0 US$8,495
+ US$800
for
antenna

$95 less 60 s
to 90
minutes

Panasonic
KX-7101

$0 $0 $0.015 0 US$725 $95 less than
60 s to
90
minutes

Magellan
GSC-100

US$29.95 $0 $0 0 US$850
antenna
included

US$
49.95

5 to 90
minutes

Stellar ST-
2500

US$29.95 $0 $0 0 US$335 +
US$45 for
antenna

US$
49.95

5 to 90
minutes

Orbcomm

Quake1500 $70 $0 $0 0 US$1,150 $95 less than
60 s to
90
minutes

Radio
modem

Pacific Crest
35 watt

$0 $0 $0 0 US$1,900 10 ms

 32

3.2.3 High accuracy seismic survey

The first satellite system cost estimation is for a high accuracy seismic survey. The

Iridium satellite communication system is used between a helicopter and base station

since the Iridium system has low system latency. The communication between base

station and head office is carrying project information for which low latency is not a

critical requirement. Thus, an Orbcomm system with higher system latency and lower

update rate, which is more cost-effective, is adopted in communication between base

station and head office.

Assuming the seismic survey field site is in Alberta at 57 degrees north, one

helicopter with one satellite transceiver installed is deployed, and two satellite

transceivers are installed at the base station, one for helicopter transmission (Iridium) and

one for head office communication (Orbcomm). A standard Internet connection is used at

head office to communicate with the base station. Figure 3.5 shows the architecture of a

high accuracy seismic survey.

Iridium Gateway Orbcomm Gateway

Iridium Satellite

Iridium Phone

Base Station

Iridium Phone

Base Station

Orbcomm SatelliteOrbcomm Satellite

Head Office

Internet

Orbcomm SC

Iridium Gateway Orbcomm Gateway

Iridium Satellite

Iridium Phone

Base Station

Iridium Phone

Base Station

Orbcomm SatelliteOrbcomm Satellite

Head Office

Internet

Orbcomm SC

Figure 3.5 High accuracy seismic survey model using satellite communication.

 33

3.2.4 Forest fire operations

In forest fire operations, low latency data transmission is not as necessary. The

Orbcomm system is used in the helicopters. Since the necessary Internet access is not

available at the base station, helicopters communicate with the base station via head

office. In forest fire cost model 1, helicopters send data to head office. Head office then

transfers the data to an Iridium ground gateway via an Internet connection. From the

Iridium ground gateway there are two choices for data transmission to an Iridium satellite

phone at the base station: (a) Mobile Terminated Data (2,400 bps) or (b) Direct Internet

Data (10,000 bps). Data rates for both Iridium data services are high enough for

transmission of KFP files (assuming each KFP file is 76 bytes and 15 transmissions per

minute for each helicopter, a resultant 190 bytes per second assuming 10 helicopters are

transmitting simultaneously). Mobile Terminated Data has a lower latency (on the order

of 200 ms as it uses a voice circuit) while Direct Internet Data has a higher data rate and

higher latency (which could be up to 10 minutes as shown in Table 3.2). The extra

bandwidth of the Direct Internet Data connection could be used to carry transmissions

besides KFP files (e.g. text E-mail messages).

We assume the operation field site is in Montana at 50 degrees N with 60 second (or

less) Orbcomm system latency. We also assume 10 helicopters are deployed in one

operation, 5 for the full 10 operational days, 3 for 6 operational days and 2 for 2

operational days. Each helicopter has one Orbcomm satellite transceiver installed. One

Motorola 9500 Iridium satellite phone is used at base station. Figure 3.6 shows the

communication connections of cost model 1 for forest fire operations.

 34

Iridium Gateway Orbcomm Gateway

Iridium Satellite

Iridium Phone

Base Station

Iridium Phone

Base Station

Orbcomm SatelliteOrbcomm Satellite

Head Office

InternetInternet

Figure 3.6 Connections for forest fire operations model #1 (Iridium plus Orbcomm).

In the 2nd forest fire operational model, every component is kept the same as model 1

except the connection between head office and base station. An Orbcomm satellite

transceiver is used at base station instead of an Iridium satellite phone. After receiving

data from helicopters, the head office transfers data to the base station through the

Orbcomm system and vice versa. Figure 3.7 shows the communication connection of this

forest fire operational model.

Orbcomm Gateway

Head OfficeOrbcomm Transceiver

Base Station

Orbcomm Transceiver

Base Station

Internet

Orbcomm SatelliteOrbcomm Satellite

Figure 3.7 Connections for forest fire operations model #2 (all Orbcomm).

 35

3.2.5 Radio modem model

In this satellite system cost model, the currently deployed radio modem [Eagle, 2001]

is kept as a link between helicopter and base station, and the Orbcomm satellite system is

used between the base station and head office with an assumption that two radio repeaters

have been built to relay the radio transmission between the helicopter and the base

station. Figure 3.8 is the architecture for the radio model. The purpose of designing a

radio modem model is to explore seismic survey system service and cost changes

compared with all-satellite communication models.

Orbcomm Gateway

Base StationBase Station

Orbcomm SatelliteOrbcomm Satellite

Head Office

Internet

Orbcomm SCRadio

R
ad

io
 m

od
em

Orbcomm Gateway

Base StationBase Station

Orbcomm SatelliteOrbcomm Satellite

Head Office

Internet

Orbcomm SCRadio

R
ad

io
 m

od
em

Figure 3.8 Radio model with Orbcomm link.

3.3 XML version

XML is used to define a file format for the satellite system cost estimation

application. The application is designed and implemented in C++ with an object-oriented

model created using Rational Rose [StPo, 2000].

 36

3.3.1 Cost estimation model

The Unified Modeling Language (UML) is an OMG standard object-oriented design

language useful for design of object-oriented software systems. Software engineers use

UML to give a clear picture of the system and ensure the system design is useful, usable,

reliable, flexible, affordable and available before any implementation and essential costs

occur [StPo, 2000]. Figure 3.9 is a UML model for the survey with satellite system cost

estimation application.

Our design for satellite system cost estimation is a typical object-oriented design.

Class objects of orbcommCost, internetCost and iridiumCost are part of a satCommCost

class that represents cost A in the satellite system cost calculation equation. Objects

heliCost, comSupportCost and installCost are constructed as cost elements B, C and D.

These cost element objects can be used in any other classes during calculation of total

seismic survey project cost and XML file generation. A fileRead class works as a tool to

read basic satellite cost element files and retrieve element values for satellite system cost

calculations.

 37

orbcommCost

serviceRate : double
monthlyCost : double
minuteCost : double
freeMinutes : double
extraByteCost : double
messagesPerMinute : double
bytesPerMessage : double
freeBytes : double
equipRate : double
weeklyRentalCost : double
purchaseCost : double
captialDays : double
taxRate : double

getOrbcommCost()
setAllElements()

(from orbcommCostClass)

internetCost

monthlyCost : double
taxRate : double

getInternetCost()
setAllElements()

(from internetCostClass)

iridiumCost

serviceRate : double
monthlyCost : double
minuteCost : double
freeMinutes : int
extraByteCost : double
messagesPerMinute : double
bytesPerMessage : double
freeBytes : double
equipRate : double
weeklyRentalCost : double
purchaseCost : double
capitalDays : double
taxRate : double

getIridiumCost()
setAllElements()

(from iridiumCostClass)

Cost Estimator

(from Use Case View)

fileRead
parmsFileName : char[]
names : string[]
values : double[]
ww : int
tag : string

readParmsFile()
getFileName()
insertValues()
addValues()
searchValue()
getNames()
getValues()
getIndex()

1

1

1

1

1

1

1

1

1

1

1

1

comSupportCost

dailyEquipCost : double
personalHourlyCost : double []
personalWDays : double []
personalWHours : double []
nPersonals : double
taxRate : double

getComSupportCost()
setAllElements()

(from comSupportCostClass)

satCommCost

orb : COrbcommCost
ird : CIridiumCost
net : CInternetCos t
inl : CInstallCost
hel : CHeliCost

getHeliSatCommCost()
getBaseSatCommCost()
getHeadSatCommCostCost()
getSatCommCost()
setAllElements()
getEachSatCost()

(from satCommCostClass)

0..n

1

+Orbcomm sat cost
0..n

1

1

1

1

1

Internet access cost

0..n

1

0..n

1

Iridium sat cost

heliCost

hourlyPilotCost : double
hourlyFuelCos t : double
hourlyRentCost : double
dailyInsuranceCost : double
dailyMaintanceCost : double
nHelicopters : int
flyingDays : double[]
flyingHours : double[]
taxRate : double

getHeliCost()
setAllElements()
getheliNumber()
getFlyingDays()
getFlyingHours()

(from heliCostClass)

1

1

1

1

installCost

heliInstallCost : double
baseInstallCost : double
headInstallCost : double
orbActivCost : double
irdActivCost : double
repeaterCost : double
nRepeaters : int
noHeliSats : int
heliSatType : char
noBaseSats : double
baseSatType : char
taxRate : double

getRepeaterCost()
getHeliInstallCost()
getBaseInstallCost()
getHeadInstallCost()
setAllElements()
getActivCost()
getProjectModel()
getOrbActivCost()
getIrdActivCost()
getRepeaterCost()
getInstallCost()
getHeliSatsNumber()
getHeliSatType()
getBaseSatType()
makeString()

(from installCostClass)

1

1

1

1

projectCost

satComm : CSatCommCost
helicopter : CHeliCost
company : CComSupportCost
install : CInstallCost

getProjectCost()
setAllElements()

(from totalSatCostClass)

1..n

1

+cost C 1..n

1

1..n

1

+cost A
1..n

1

1..n

1

+cost B1..n

1

1..n

1

+cost D

1..n

1

costXMLFile

parmsFileName : char []
xmlFileName : char []
xmlFile : ofstream

addValues()
inseretValues()
createXMLFile()
closeXMLFile()

(from costXMLFileClass)

1..n

1

1..n

+get final cost and create XML file

1

1

+1

1

1..n

1

1..n

1

Figure 3.9 The survey with satellite project cost estimation model in UML.

A user only needs a simple main method to call CostXMLFile class methods to obtain

a project cost XML file. A CostXMLFile class object is created with two parameters –

source satellite cost elements file name and project cost XML file name. The

 38

CostXMLFile object then calls the createXMLFile method to generate a project cost

XML file. Figure 3.10 shows pseudocode of a typical main method.

Read the parms file name and cost XML file name from
standard input.

Construct CostXMLFile object with two file names.
Call createXMLFile method to create project XML file.
Close project XML file.

Figure 3.10 Pseudo-code of the main method for project cost estimation.

3.3.2 Software implementation

According to the object-oriented model shown above, C++ was used to implement the

satellite system cost estimation application.

A project cost XML file ProjectCost.xml provides user satellite system costs for

different seismic survey operations in detailed layers. ProjectCost.xml is generated using

the satellite cost estimation application CostXML_Generator by reading from both a

CostParms.xml file and a ProjectCost.dtd file. Figure 3.11 shows the architecture of the

CostXML_Generator program.

 39

ProjectCost.dtd

error messages

CostParms.dtd

CostXML_Generator

ProjectCost.xml

CostParms.xml

Xerces XML Parser
validation generating

error messages
generating

ProjectCost.dtd

error messages

CostParms.dtd

CostXML_Generator

ProjectCost.xml

CostParms.xml

Xerces XML Parser
validation generating

error messages
generating

Figure 3.11 Architecture of the CostXML_Generator program.

3.3.2.1 Satellite system basic cost elements source file

An XML format satellite system source file contains basic cost elements of satellite

systems required for the system cost calculation equations. The satellite system source

file CostParms.xml is generated in XML format according to the grammar defined in its

XML DTD file CostParms.dtd. Figure 3.12 shows part of a CostParms.dtd file. The

complete CostParms.dtd file is given in Appendix I.

 40

!ELEMENT Orbcomm
(service_rate_o,monthly_cost_o,minute_cost_o,free_minutes_o
,cost_per_byte_o,messages_per_minute_o,bytes_per_message_o,
free_bytes_o,equipment_rate_o,weekly_rental_cost_o,equipmen
t_purchase_cost_o,capital_days_o) >
<!ELEMENT service_rate_o (#PCDATA) >
<!ELEMENT monthly_cost_o (#PCDATA) >
<!ELEMENT minute_cost_o (#PCDATA) >
<!ELEMENT free_minutes_o (#PCDATA) >
<!ELEMENT cost_per_byte_o (#PCDATA) >
<!ELEMENT messages_per_minute_o (#PCDATA) >
<!ELEMENT bytes_per_message_o (#PCDATA) >
<!ELEMENT free_bytes_o (#PCDATA) >
<!ELEMENT equipment_rate_o (#PCDATA) >
<!ELEMENT weekly_rental_cost_o (#PCDATA) >
<!ELEMENT equipment_purchase_cost_o (#PCDATA) >
<!ELEMENT capital_days_o (#PCDATA) >

Figure 3.12 Part of the CostParms.dtd file (for the Orbcomm cost elements part).

Based on CostParms.dtd, there are seven major parts in the basic satellite cost

elements file - CostParms.xml. The seven parts are defined under tag names of

“Scenario”, “Taxrate”, “Orbcomm”, “Iridium”, “Internet”, “Helicopters”,

“Companysupport” and “Install”. Each part includes basic cost elements for the particular

part of the satellite system cost model defined in the calculation equations (3.1) to (3.11).

Various survey operation’s CostParms.xml have different basic cost elements except cost

elements in “Orbcomm” and “Iridium”. Figure 3.13 shown the “Install” part of a

CostParms.xml file for fire operation model #1. According to CostParms.dtd, there are

eleven tag values within the “Install” section as follows:

(i) heli_install_cost = installation cost of each satellite transceiver in

helicopter.

(ii) base_install_cost = installation cost of each satellite transceiver at base

station.

(iii) head_install_cost = head office installation cost.

 41

(iv) orb_activation_cost = activation cost of one Orbcomm satellite

transceiver.

(v) ird_activation_cost = activation cost of one Iridium satellite transceiver.

(vi) repeater_install_cost = each repeater installation cost.

(vii) repeater_number = number of repeaters.

(viii) heli_sat_type = type of satellite transceiver in a helicopter.

(ix) heli_sat_number = number of total satellite transceivers in helicopter(s).

(x) base_sat_type = type of satellite transceiver at the base station.

(xi) base_sat_number = total number of satellite transceivers at the base station.

<Install>
 <heli_install_cost>2500</heli_install_cost>
 <base_install_cost>5000</base_install_cost>
 <head_install_cost>2000</head_install_cost>
 <orb_activation_cost>50</orb_activation_cost>
 <ird_activation_cost>24</ird_activation_cost>
 <repeater_install_cost>1600</repeater_install_cost>
 <repeater_number>0</repeater_number>
 <heli_sat_number>10</heli_sat_number>
 <heli_sat_type>0</heli_sat_type>
 <base_sat_number>1</base_sat_number>
 <base_sat_type>1</base_sat_type>
 </Install>

Figure 3.13 Part of an example CostParms.xml file for forest fire operation #1.

In the forest fire operation CostParms.xml file, “0” represents an Orbcomm satellite

transceiver, “1” indicates an Iridium satellite transceiver and “2” means a combination of

“Orbcomm” and “Iridium” is installed at the base station or in a helicopter. In forest fire

operation model #1, ten helicopters are deployed in the project, each with one Orbcomm

transceiver (“0”). One Iridium phone (“1”) is working at the base station. These satellite

system basic cost elements provide information to the system cost model software in

installation cost (cost D) calculations. Some basic cost elements in the “Install” part such

 42

as type of satellite transceiver and number of satellite transceivers are also necessary to

calculate other parts of the project cost.

3.3.2.2 Project cost XML file

ProjectCost.dtd defines the structure of a project cost XML file. Information from the

CostParms.xml file (validated by the Xerces XML Parser with CostParms.dtd) gives the

values of all elements needed by the calculation equations. The CostXML_Generator

determines the seismic survey scenario and conducts different calculations based on basic

cost information. Figure 3.14 shows the “Install” part of a ProjectCost.dtd file and Figure

3.15 shows the “Install” part of a ProjectCost.xml file generated according to

CostXML.dtd for a high accuracy seismic survey. The complete ProjectCost.dtd file is

given in Appendix II.

During the ProjectCost.xml file generation, each tag defined in ProjectCost.dtd is

printed in the ProjectCost.xml according to the basic cost element value and type of

seismic survey operation. After calculation of each installation cost, D1, D2, D3 are

displayed in the project cost file with detailed tag values. Total installation cost and its

percentage of total project cost is shown under the tag name of “Install_cost”.

 43

<!ELEMENT Install_Cost
(Heli_Install_Cost,Base_Install_Cost,Head_Install_Cost,Repeater_Ins
tall_Cost?) >
<!ATTLIST Install_Cost cost_D CDATA #REQUIRED percentage_D CDATA
#REQUIRED >
<!ELEMENT Heli_Install_Cost (Heli_Install_Details) >
<!ATTLIST Heli_Install_Cost cost_D1 CDATA #REQUIRED >
<!ELEMENT Heli_Install_Details
(heli_install_cost,heli_sat_activation_cost?) >
<!ATTLIST Heli_Install_Details heli_sat_type (0|1|2|3|9999) "0"
heli_sat_number (0|1|10) "0" >
<!ELEMENT heli_install_cost (#PCDATA) >
<!ELEMENT heli_sat_activation_cost (#PCDATA) >
<!ELEMENT Base_Install_Cost (Base_Install_Details) >
<!ATTLIST Base_Install_Cost cost_D2 CDATA #REQUIRED >
<!ELEMENT Base_Install_Details
(base_install_cost+,base_sat_activation_cost+) >
<!ATTLIST Base_Install_Details base_sat_type (0|1|2|3|9999) "0"
base_sat_number (0|1|2) "0" >
<!ELEMENT base_install_cost (#PCDATA) >
<!ELEMENT base_sat_activation_cost (#PCDATA) >
<!ELEMENT Head_Install_Cost (Head_Install_Details) >
<!ATTLIST Head_Install_Cost cost_D3 CDATA #REQUIRED >
<!ELEMENT Head_Install_Details (head_install_cost) >
<!ATTLIST Head_Install_Details head_sat_type CDATA #REQUIRED >
<!ELEMENT head_install_cost (#PCDATA) >
<!ELEMENT Repeater_Install_Cost (Repeater_Install_Details) >
<!ATTLIST Repeater_Install_Cost cost_D4 CDATA #REQUIRED >
<!ELEMENT Repeater_Install_Details (repeater_install_cost) >
<!ATTLIST Repeater_Install_Details repeater_number (0|1|2|3) "0" >
<!ELEMENT repeater_install_cost (#PCDATA) >

Figure 3.14 CostXML.dtd for high accuracy seismic survey (Install part only).

 44

<Install_Cost cost_D="15619.9" percentage_D="6.76251">
<Heli_Install_Cost cost_D1="2700.68">

<Heli_Install_Details heli_sat_type="1" heli_sat_number="1">
<heli_install_cost>2500</heli_install_cost>
<heli_sat_activation_cost>24</heli_sat_activation_cost>

</Heli_Install_Details>
</Heli_Install_Cost>

<Base_Install_Cost cost_D2="10779.2">

<Base_Install_Details base_sat_type="2" base_sat_number="2">
<base_install_cost>5000</base_install_cost>
<base_sat_activation_cost>50</base_sat_activation_cost>
<base_sat_activation_cost>24</base_sat_activation_cost>

</Base_Install_Details>
</Base_Install_Cost>

<Head_Install_Cost cost_D3="2140">

<Head_Install_Details head_sat_type="0">
<head_install_cost>2000</head_install_cost>

</Head_Install_Details>
</Head_Install_Cost>

<Repeater_Install_Cost cost_D4="0">

<Repeater_Install_Details repeater_number="0">
<repeater_install_cost>1600</repeater_install_cost>

</Repeater_Install_Details>
</Repeater_Install_Cost>

</Install_Cost>

Figure 3.15 Part of a sample ProjectCost.xml file for a high accuracy seismic survey
(Install_Cost only).

3.3.2.3 Cost XML File Generator

CostXML_Generator completes the project costs (using equations (3.1) to (3.11)) and

shows the results in an XML format ProjectCost.xml file. CostXML_Generator is coded

in C++ based on the object-oriented design model given in section 3.3.1. The fileRead

class is used in each level of satellite system cost calculation class including

orbcommCost, iridiumCost, helicopterCost, comSupportCost and projectCost in reading

CostParms.xml for basic cost element values. The fileRead program reads the satellite

basic cost elements source file name (e.g. CostParms.xml) and a keyword that indicates

which particular section of the satellite basic cost elements source file will be read in the

file access. For instance, if the keyword input is “Orbcomm”, the readParmsFile

method in the fileRead class skips other parts of the CostParms.xml file, only reads and

returns the tag values within “Orbcomm” section. Information provided to

 45

CostXML_Generator to decide the type and number of satellite transceivers, total number

of helicopters and total number of repeaters is stored in the “Install” section of the

CostParms.xml file. At top of the CostParms.xml file, there is a “Scenario” tag which

CostXML_Generator reads to determine the type of survey operation (0 for high accuracy

seismic survey, 1 for forest fire #1, 2 for forest fire #2 or 3 for seismic survey with radio

modem).

As shown in Figure 3.13, CostXML_Generator reads from the “Install” section

and determines that there are 10 helicopters in the operation, each with one Orbcomm

satellite transceiver. There is one Iridium satellite transceiver installed at the base station.

The tag value from “Install” also tells CostXML_Generator that no repeater is

involved in the operation. After reading the tag value of “Scenario”,

CostXML_Generator concludes the operation is fire operation #1 and chooses the

calculation equations accordingly. Figure 3.16 is part of the code from

CostXML_Generator to calculate installation cost D1 of satellite transceivers in one

helicopter.

 46

double CInstallCost::getHeliInstallCost(){
 double activCost=0;
 double heliCost=0;
 if(heliSatType == 0)
 activCost = orbActivCost;
 else if(heliSatType ==1)
 activCost = irdActivCost;
 else if(heliSatType==3)
 activCost=0;

heliCost=(1.0+taxRate) * noHeliSats *
(heliInstallCost + activCost);

 if(nRepeaters!=0)

heliCost=heliCost+heliInstallCost*(1.0+taxRate);
 return heliCost;
}

Figure 3.16 Example of source code from CostXML_Generator to compute cost element
D1 from equation (3.9).

A key part of the CostXML_Generator is the CostXMLFile class. The function of this

class is to generate a ProjectCost.xml file according to data type definitions in the

ProjectCost.dtd file. By reading each line of the ProjectCost.dtd file,

CostXML_Generator determines the tag names and data type defined for each tag in the

XML tree structure of the ProjectCost.xml file. CostXML_Generator must determine if

the tag just read is a parent element name, an attribute name or a child element name.

CostXML_Generator also needs to know how many children each parent tag has from

reading each line of the ProjectCost.dtd file. CostXML_Generator then searches satellite

system cost results (calculated and stored in an array in an early part of the program) to

find the value of the tag and write it into the XML file at its appropriate position. Figure

3.17 is a pseudo-code description of the createXMLFile() method of the

CostXMLFile class.

 47

Open CostParms.xml file and read tag values.
Calculate each part of survey with satellite system cost

and store them in an array for later use.
Open project ProjectCost.dtd and ProjectCost.xml files.
While not at the end of ProjectCost.dtd file, keep reading

each line of the dtd file.
Check each token read from a single line to see if it

is parent or children. If it is parent, store its
name and number of its children in arrays for later
XML file generation.

For each token of a single line, find its value in the
calculation results array.
Use information stored in the parent arrays to

determine the position of the token (tag) in
the XML structure, adjust the tab value and
print token name and value to the
ProjectCost.xml file.

Figure 3.17 Pseudo-code description of the createXMLFile()method
(CostXMLFile class).

CostXML_Generator issues an error message when tag names in a CostParms.xml

file do not match tag names in the ProjectCost.dtd file. An error message tells the user the

location of the error in the CostParms.xml file and the correct tag name.

CostXML_Generator also provides the user flexibility by allowing a certain degree of

modifications in both the CostParms.xml and ProjectCost.dtd files. Changing tag names,

adding a new tag or deleting a tag in ProjectCost.dtd will require appropriate changes in

CostParms.xml. Simple modifications such as these are read by the CostXML_Generator

and reflected in the ProjectCost.xml file generated by the CostXML_Generator without

changing and recompiling its source code.

3.3.3 Example satellite survey costs

Based on the cost estimation model equations (section 3.2.1), we calculated the

example costs for different types of 10-day surveys introduced in sections 3.2.3 to 3.2.5.

Table 3.3 shows the comparison of survey costs using various satellite systems. As we

 48

can see, the Orbcomm satellite system is less expensive. In fact, cost component A

(satellite system cost) is about 10 times less for Orbcomm compared to Iridium.

Table 3.3 Costs comparisons of different satellite survey (number in () after each
subtotal indicating % of total cost excluding cost B).

High accuracy seismic
survey

Forest fire
operations

Cost
element

Description

satellite radio
modem

#1 #2

Orbcomm 0 0 10 10
Iridium 1 0 0 0
radio modem 0 1 0 0

A1 *

Helicopter
sat cost

cost $4,259.37 $0 $3,416.02 $3,416.02
Orbcomm 1 1 0 1
Iridium 1 0 1 0
radio modem 0 1 0 0

A2 *

base station
sat cost

cost $4,733.28 $474.45 $4,259.37 $474.45
Internet service 1 1 1 1 A3 head office

sat cost cost $32.10 $32.10 $32.10 $32.10
A total sat cost $9,025 (19) $506 (1) $7,707 (12) $3,922 (7)

helicopter (s) 1 1 10 10
helicopter type Bell 205 Bell 205 Bell 206B Bell 206B
flying days 10 10 ** **
daily fly hours 6 6 6 6

B

Flying
helicopter
cost

cost $182,970 $182,970 $420,176 $420,176
personnel 2 2 2 2
daily hours 8 8 8 8

C

Company
support cost

cost $23,361 (48) $23,361 (55) $23,361 (35) $23,361 (38)
Orbcomm 0 0 10 10
Iridium 1 0 0 0
radio modem 0 1 0 0

D1

Helicopter
installation
cost

cost $2,700.68 $2,675.00 $27,285.00 $27,285.00
Orbcomm 1 1 0 1
Iridium 1 0 1 0
radio modem 0 1 0 0

D2

base station
installation
cost

cost $10,779.18 $10,754 $5,375.68 $5,403.50
Internet service 1 1 1 1

D3
head office
install cost cost $2,140.00 $2,140.00 $2,140.00 $2,140.00

repeater (s) 0 2 0 0
WU

Repeater
install cost Cost 0 $3,424.00 0 0

D

Total install
cost

 $15,619 (33) $18,992 (44) $34,800 (53) $34,828 (55)

A+C+D Subtotal $48,005 $42,859 $65,868 $62,111
S Total $230,977 $225,831 $486,046 $482,289

* Costs A1 and A2 include capital costs of equipment purchase, monthly fee and airtime
minutes listed in Table 3.1 for Iridium and Orbcomm systems.

** 5 helicopters fly 10 full days, 3 helicopters fly 6 days and 2 helicopters fly 2 days.

 49

The cost for each survey varies because different satellite system configurations have

been used in each operation. In the high accuracy seismic survey with satellite system,

one Iridium satellite transceiver is used in the helicopter and one Iridium transceiver plus

one Orbcomm transceiver are installed at the base station. In the radio modem high

accuracy seismic survey, we replace the Iridium transceivers in both helicopter and base

station with radio modems and the total survey cost is reduced. Forest fire operation #1

differs from #2 in that, at the base station, one Iridium transceiver is installed in model #1

and one Orbcomm transceiver is used in model #2. The total survey cost including the

satellite cost subtotal of model #1 is higher than model #2 because the satellite system

cost (A) for Iridium is higher than the cost for Orbcomm. A complete set of

ProjectCost.xml files generated by Cost_XML_Generator for the examples in Table 3.3

is given in Appendix III.

In the Orbcomm system communication cost, there is an extra per-byte cost for the

transmitted data when the data bytes are more than the free bytes included in the monthly

fee. The price used in the calculation is offered by Rom Communications Inc. (Kelowna,

BC). For every extra 25,000 data bytes, the cost is $91.95 ($0.003678 per byte). This cost

did not apply to our research experiments with the Orbcomm system because of the

special deal offered by SkyTrac Systems Ltd. (Penticton, BC).

3.3.4 SOAP compatibility

As introduced in section 2.4.4, SOAP works as a communication protocol between a

SOAP server and client. A SOAP server provides a simple way to build web services.

Web services include creating COM objects and generating a WSDL file. A SOAP server

has functions to retrieve requests from HTTP and process the parameters of the requests.

 50

A SOAP server then parses the WSDL file, constructs input parameters for SOAP

response, invokes specified SOAP methods and sends a response back to the client

through HTTP [W3C, 2002] [SQLData, 2002].

SQLData3.0 SOAP Server was used in this research to test how a SOAP server

communicates with a client for information exchange over HTTP. SQLData3.0 is a

SOAP server package from SQLData Systems, Inc. SQLData SOAP server is

implemented in C++ with high performance and low footprint. It is an efficient and

reliable bottom-up implementation of the SOAP 1.1 standard with build-in HTTP/HTTPS

support. The server has a flexible WSDL parser, a SOAP Actor to fulfill SOAP requests,

a dynamic SOAP client and a smart XML Cache Manager. The SQLData SOAP server

can perform as a SOAP client or intermediary. Services from one SOAP server can be

sent to another SOAP server for processing that is transparent to the SOAP server acting

as the client. SQLData SOAP server also converts database service requests from a client

such as ODBC to automatically access SOAP server services without any additional

programming [SQLData, 2002]. Figure 3.18 shows an example SOAP response message

from a SQLData3.0 SOAP server to a client.

 51

Figure 3.18 Example SOAP response from SQLData3.0 SOAP Server [SQLData, 2002].

Our experiments with SQLData3.0 SOAP Server have shown SOAP features that can

be an asset to the satellite cost model application. A satellite seismic services cost SOAP

server (which we call the SatSOAP server) containing the basic cost elements of satellite

systems (CostParms.xml) could be established. Customers who are interested in satellite

services for seismic survey operations can send SOAP requests through HTTP in any

web browser to the SatSOAP server to obtain satellite service costs. A SOAP client

request would contain parameter values such as type of seismic survey and length of the

project indicating a customer’s requirements for a project using satellite communications.

Methods defined in the SatSOAP server will process the SOAP request, calculate satellite

project cost for the specific operation and respond to the customer with satellite system

cost in a detailed XML format. Figure 3.19 shows the proposed architecture of a SOAP

 52

enabled project cost estimation application. Figure 3.20 shows a sample SOAP response

file including information of the head office satellite communication cost.

connect to SOAP server
Client

construct SOAP request
based on WSDL file

Project cost WSDL file

Satellite Project Cost SOAP Server

fetch WSDL file(HTTP)

send SOAP request (HTTP)

calculate cost and construct
SOAP response

send SOAP response (HTTP)

process SOAP response
and get project cost

connect to SOAP server
Client

construct SOAP request
based on WSDL file

Project cost WSDL file

Satellite Project Cost SOAP Server

fetch WSDL file(HTTP)

send SOAP request (HTTP)

calculate cost and construct
SOAP response

send SOAP response (HTTP)

process SOAP response
and get project cost

Figure 3.19 Proposed architecture of a SOAP-enabled project cost estimation application.

 53

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:tns=http://www.SatProject.com/xml/SatProjectCo
st.wsdl
xmlns:xsd1="http://www.SatProject.com/xml/SatProject
Cost.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:HeadSatCostResponse xmlns:
m="http://www.SatProject.com/SatProjectCost/">

<m:Head_Sat_Cost _A3> 32.1
</m:Head_Sat_Cost _A3>
<m:Head-Sat_Details>Orbcomm</m:Head-
Sat_Details>
<m: internet_monthly_cost>30
</m:internet_monthly_cost>

</m:HeadSatCostResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3.20 Example SOAP response of satellite communication cost at head office.

 54

Chapter 4. Satellite communication experiments

4.1 Experiment design

Satellite link communication experiments were designed and implemented in this

research on both Iridium and Orbcomm systems to test system latency on data

transmission. The simulated satellite testing system is built with one Windows 2000

platform (base station) and one QNX 4.25 platform (helicopter) communicating through a

satellite link.

4.1.1 System architecture

The architecture of our satellite communication testing system is shown in Figure 4.1.

Our satellite testing system is based on previous research [Shan, 2001] and focuses on

real-time communication using satellite data transceivers (modem) and the software

components (Sender and Receiver) necessary to run the transceivers under computer

control. In our research, satellite link software components were written for Windows

2000 and QNX 4.25. We used an Iridium Motorola 9500 phone and a Quake 1500

Orbcomm modem as satellite transceivers in our testing.

Our research focused on software development for satellite system data

communication latency testing. Elements affecting satellite data communication

performance include transferred data size, transmission frequency, transmission time

period and transmission environment (static or dynamic). We investigated all of these

variables in our experiments.

 55

Satellite Communication
System

Satellite Communication
System

GPS Satellite
System

GPS Satellite
System

K
FP over SAT link

Base Station

KFP over SAT link

Kodiak Office

SAT Link
Component

SAT Data
Transceiver

SAT Link
Component
SAT Link
Component

SAT Data
Transceiver
SAT Data
Transceiver

NS500 RGU
GPS Receiver

Internet Client Interface

Web Browser

HTML/Java Applet
XML DTD for
seismic operations
XML DTD for
seismic operations Database

TC
P/IP

DatabaseDatabase

TC
P/IP

HTTP

Kodiak Head Office
HTTP Web Server

JDBC

Java Servlets

SAT Link
Component

SAT Data
Transceiver

Kodiak Head Office
HTTP Web Server

JDBC

Java ServletsJava Servlets

SAT Link
Component

SAT Data
Transceiver

SAT Link
Component

SAT Data
Transceiver

K
FP over SAT link

K
FP over SAT link

Helicopter

SAT Link
Component

SAT Data
Transceiver

SAT Link
Component

SAT Data
Transceiver

Focus of satellite
system testing

Figure 4.1 Architecture of satellite communication experiment system.

4.1.2 QNX 4.25

The QNX 4.25 real-time operating system was installed on a Pentium 166 IBM

workstation with 31 MB extended system memory and 2.56 GB hard disk (QNX1) acting

as if it was installed in a helicopter. Version 4 of QNX provides a reliable and scalable

operating system for embedded real-time systems. QNX is a true microkernel operating

system with simplicity and efficiency. The path through the operating system of an

application is very short with only a few system instructions. The QNX system can work

for ROMable embedded applications since the system is very small. It also has the power

to run a distributed network with several hundred processors. With these special features,

the QNX system uses only a very small part of a processor’s energy on the operating

system. Most of the processor’s focus is on running the application [QNX, 2002].

 56

As a member of the QNX family, QNX 4.25 is a real-time system with key

characteristics such as multitasking, priority-driven preemptive scheduling and fast

context switching. QNX 4.25 is a small, simple and efficient operating system with

modularity. Two fundamental principles of QNX 4.25 are its microkernel architecture

and message-based interprocess communication. The user is also allowed to modify the

QNX 4.25 system according to their own criteria [QNX, 1996].

4.1.3 Embedded serial communication programming

An embedded system is designed to execute a special function. It contains computer

hardware and software. In some special cases an embedded system can also include

additional sections such as mechanical parts [Barr, 1999]. Embedded system

programming involves close interaction between software and hardware.

Embedded serial communication programming is an important technology in this

research for satellite system latency testing. Successful data communication between the

computer serial port and externally connected satellite transceiver is essential for this

research. In serial port communication, data is transferred one bit at a time through a

computer serial port [Sweet, 1999]. The serial port communicates with external devices

such as a keyboard, network devices or satellite transceiver (modem). A serial port has

variables of baud rate, data bits, stop bit, parity and flow control, which determine the

behavior of a serial port. Baud rate is the most important element that controls the

transmission rate of a serial port. In this research, the communication between satellite

data transceiver (modem) and satellite link component (computer) are accomplished

through a serial port on both the Windows 2000 and QNX 4.25 workstations. The serial

port setup and communications on these two different operating systems are very similar.

 57

The first step of serial port communication is to open and configure the serial port. A

basic configuration requires setup of baud rate, data bits, parity, stop bit and flow control.

In order to communicate with external satellite data transceivers using modem

commands, serial port input is set as raw input. With the raw input option, a serial port

passes input characters exactly as they are received without additional processing [Sweet,

1999].

Modem commands are sent through a serial port to the external satellite transceiver

(modem) to accomplish satellite transceiver configuration and to establish a satellite data

link between the sending side and the receiving side.

After configuring both serial ports and the satellite transceiver, the satellite system is

ready for data communication by writing data to the output serial port and reading data

from the input serial port. Figure 4.2 shows the architecture of the satellite serial

communications software.

 58

open and configure serial port

Sender

initialize modem

i = 0 ?

Get data from source data file,
write to modem through serial
port and record output

open and configure serial port

Receiver

initialize modem

read from serial port
and record output

terminate modem terminate modem

close serial port close serial port

satellite link

enter loop variable M, waiting seconds
T and source file name

i = i + 1

i ≥ M ?

wait T seconds

S ≠ %++ ?

read string
indicating data
link termination ?

Y

N

N
Y

Y

N

read input string Sread input string S

Figure 4.2 Software architecture of the satellite serial communication experiments.

4.1.4 Satellite transceiver (modem)

The satellite transceivers used in this research act as external modems connected to

the serial port of sending and receiving computers. Modem commands are sets of unique

data strings to configure and initialize a satellite modem to set up the data transmission

link. Termination of a satellite data link is also done by modem commands. Different

satellite systems are designed to work with unique modem commands.

 59

The Iridium system uses traditional Hayes AT commands. An Iridium satellite

transceiver unit is designed to be Hayes AT command compatible. The unit switches

between command mode and data mode by responding to Hayes AT commands. Basic

commands used to communicate with an Iridium satellite transceiver (modem) are from

Hayes AT commands with slight modification by Iridium and Motorola (see Table 4.1).

Figure 4.3 shows sample AT commands and responses from the sending side to configure

an Iridium Motorola 9500 phone, set the data link and send test data.

The escape sequence “+++” is used to initiate command mode for disconnecting the

data link. As shown in Figure 4.2, when the user input string is “%++”, the Sender

program stops sending data and sends “+++” to the Iridium modem for data link

disconnection. A guard time period (usually one second) where no data is transmitted

before the “+++” is received and following the “+++” ensures that transmitted data does

not inadvertently place the modem into command mode.

The Orbcomm satellite transceiver (modem) is not Hayes AT command compatible

and it communicates with its own command language embedded in Orbcomm data

strings. The procedure for modem command communication is different for the Iridium

and Orbcomm systems. The configuration and initialization of an Iridium satellite

transceiver (modem) needs to be done before any serial port data sending or receiving can

occur. The Orbcomm system transceiver coded using the Orbcomm Serial Interface

accepts one small packet of data which includes modem commands, transferred data and

all necessary information for data transmission. Orbcomm packet data is composed in

hexidecimal format. Table 4.2 shows the SC-Originated (Subscriber Communicator

 60

Originated) message packet data structure of the Orbcomm system with a small example

message.

Table 4.1 Common Iridium AT commands and responses [MPCS, 2000].

AT command
(ending with ‘\r’=carriage return)

Description Response Description

AT attention

AT+CBST= <speed><name><ce>
configure for bearer
service (send)

OK

executed

ATS0=N
configure to answer
incoming call
automatically

+++ Initiate disconnect
ATH disconnect call
P0 Turn off phone

ERROR

rejected

OK executed
ERROR rejected

CONNECT connection
established

NO CARRIER connection
terminated

BUSY busy signal
detected

NO ANSWER no answer

ATDT phone number

Dial phone number

RING receiving call

AT
ok
AT+CBST=6,0,1 //set bearer service type values
ok
ATDT 00881631416987 //dial satellite phone number
connect 19200
Testing data //send testing data
+++ //send escape sequence to transfer

to command mode
ok
ATH //disconnect data link
ok

Figure 4.3 Example AT command and response sequence for the Iridium Motorola 9500
(sending side) [Iridium, 2002c].

 61

Table 4.2 SC-Originated message of Orbcomm with an example packet data from the
Quake 1500 satellite transceiver [KBMW, 1999].

byte No. hex value Description
0 85 packet header byte (0x85 or 0x86)
1 06 packet data type, 0x06
2 23 length byte 0
3 00 length byte 1
4 00 number of times this packet has been re-sent/sequence number
5 01 Orbcomm gateway id (01 - gateway in USA)
6 00 polled by Orbcomm gateway (01) or initiated by SC (00)
7 02 ACK level (02-delivery to gateway ACK)
8 01 priority level (01 – normal)
9 00 message body type (00 – text)
10 00 DTE assigned to identify among multiple messages
11 01 number of recipients
12 00 subject indicator (00 – no subject)
13 01 pre-defined Orbcomm recipient (01)
14 05 message data type (05 – text)
15

to

32

54 68 69
73 20 69
73 20 61
6E 20 65
78 61 6D
70 6C 65

message body (hex ASCII value for message text “This is an
example”)

33 4B Fletcher Checksum byte 0
34 4D Fletcher Checksum byte 1

4.2 Software development

Software development for satellite data transmission testing was carried out using C

and C++. In the Windows 2000 environment we used the Visual C++ 6.0 compiler, and

on QNX 4.25 we used the Watcom Systems version 10.6 C complier.

Sender and Receiver are the two major components in the system test software.

Sender is responsible for opening a data file, fetching data from the data file and sending

the data through a serial port to the satellite link. Receiver listens to the serial port and

handles the incoming data stream. Data stream handling involves checking for the end of

each data transmission, checking data errors, printing data to the monitor and writing data

 62

to an output record file. Both Sender and Receiver have common functions of modem

configuration, initialization and termination. Accurate system time recording for both

Sender and Receiver is important to measure the latency between the time a message is

sent and the time it is received. The basic design and structure for both Sender and

Receiver is the same for both Windows 2000 and QNX 4.25. Detailed coding is slightly

different for Windows 2000 and QNX 4.25.

4.2.1 Serial library

Serial port programming interacts with the serial ports of a computer system. The

QNX 4.25 operating system is IEEE Portable Operating System Interface (POSIX)

compliant, which provides a POSIX terminal user interface for configuration and

communication of a serial port [Sweet, 1999]. This feature of POSIX terminal I/O makes

it relatively straightforward to develop software using QNX 4.25 for serial port

communication. Other operating systems such as Windows 2000 require the developer to

use the Win32 API, and serial port communication software development is more

challenging.

A serial library written by Ramon de Klein [Klein, 2000] provides basic serial port

operational functions and simplifies serial communications programming for a developer

on these non-POSIX operating systems. De Klein’s serial library is written in C++, and

provides the object classes and methods shown in Table 4.3. An object of CSerial type is

instantiated, which is then used to call the methods to open a serial port, set a serial port,

write to a serial port and read from a serial port.

 63

Table 4.3 Classes and methods in de Klein’s serial library (from [Klein 2000]).

(An * to the left indicates that we used this method for our research.)

 Methods () Description
* CheckPort Check if serial port is already open
* Open Open serial port
* Setup Configure serial port parameters
 GetRLSD
 GetRing
* WaitEvent Wait for serial event (receiving)
* SetupHandshaking Enable hand shaking function
* SetupreadTimeouts Set time out value for reading
 GetBaudRate Get baud rate value
 GetDataBits Get data bits value
 GetParity Get parity value
 GetStopBits Get stop bits value
 GetEventMask Get vent mask value
 GetEventChar Get event character value
 GetHandshaking Get handshaking status
* Write Write data bit to serial port
* Read Read data bit from serial port
 Flush
* GetEventType Save event
 GetError
 GetCTS
 GetDSR
* Close Close serial port
 SetEventChar
 SetMask

Figure 4.4 shows sample code to open and configure a serial port using Klein’s serial

library [Klein, 2001]. In our research, we used de Klein’s serial library in the software

development of Sender and Receiver on Windows 2000.

 64

CSerial serial;
LONG lLastError = ERROR_SUCCESS;

// Attempt to open the serial port (COM2)
lLastError = serial.Open(_T("COM2"));

// Setup the serial port (9600,8N1, which is the
//default setting)
lLastError = serial.Setup
CSerial::EBaud19200,CSerial::EData8,CSerial::EParNone,CSerial::ESt
op1);

// Setup handshaking (default is no handshaking)
lLastError = serial.SetupHandshaking
(CSerial::EHandshakeHardware);

Figure 4.4 Sample code to open and configure a serial port using the Klein’s serial library
[Klein, 2001].

4.2.2 Modem initialization

Modem initialization is the first step for either Sender or Receiver to communicate

with an external satellite transceiver (modem) through the serial port. Modem

initialization methods for Iridium and Orbcomm are different due to different modem

command compatibility. A separate method called init_modem is built for Iridium

modem initialization. The method takes three parameters – satellite phone number,

number of AT command bytes and a character (‘s’ for modem initialization and ‘o’ for

modem termination) indicating that the method is either initializing or terminating the

Iridium satellite modem. To initialize the Iridium modem, a string containing a satellite

phone number for Receiver is written to the serial port after sending AT commands to

configure the Iridium satellite modem. During satellite modem termination, AT

commands are sent to switch the satellite modem from data mode to command mode,

terminate the data link and disconnect the communication.

With each AT command sent through a serial port to an Iridium satellite transceiver

(modem), either Sender or Receiver waits several seconds (2 to 20 seconds depending on

the AT command) before it reads from the serial port for modem response. The serial port

 65

reading is repeated until the correct AT response is found in the string read from the

serial port. The satellite modem is then ready for the next AT command. The number of

waiting seconds varies for different AT commands from 2 seconds for configuration AT

commands to 20 seconds for dialing a satellite phone number. Dialing the satellite phone

number containing 14 digits and 1 carriage return takes much longer than writing “AT” to

the satellite modem to get its attention. Immediate reading from the serial port without

waiting can cause unnecessary program execution and add extra burden to the CPU.

Figure 4.5 shows the method for modem initialization. The Windows 2000 and QNX

4.25 versions of this method are essentially the same.

Modem initialization and configuration for the Orbcomm transceiver (Quake 1500

modem) is included in the packet of transferred data. As shown in Table 4.2, a SC-

Originated message contains bytes such as data type, ACK level, Orbcomm gateway ID,

priority level, recipient email address and message data type. No separate modem

initialization method is required for the Orbcomm transceiver.

 66

int init_modem(char command[], int bytes, char s){

 int t=0; char buffer[255]; DWORD dwBytesRead=0;
 bool modemFlag=true; string signal; int times=0;
 char first; char second;
 //determine if it is modem initialization of terminatation
 if(s=='s') times=3; if(s=='o') times=2;
 while(t<times){
 first='O'; second='K'; modemFlag=true;
 while(modemFlag){
 //it is modem initialization

if(s=='s'){
 //it is “AT” command
 if(t==0){

serial.Write("AT\r", 3); signal.assign("Ok!"); Sleep(2000);
 }
 //it is bearer set
 else if(t==1){

serial.Write("AT+CBST=6,0,1\r",14);
signal.assign("Data link set!"); Sleep(2000);

 }
 //it is dialing sat number
 else if(t==2){
 cout<<"Dialing..."<<endl; serial.Write(command, bytes);
 first='C'; second='O'; signal.assign("Connected!");
 Sleep(30000);
 }
 }
 //it is modem termination
 if(s=='o'){

//it is escape sequence
 if(t==0){

serial.Write("+++", 3); Sleep(2000); signal.assign("Data link
off!");

 }
 //it is link disconnection
 else if(t==1){
 serial.Write("ATH\r", 4); Sleep(2000);
 signal.assign("Disconnected!");
 }
 }

//keep reading from serial port until the right modem //response
is detected
dwBytesRead=0; serial.Read(buffer,sizeof(buffer)-1, &dwBytesRead);

 int response=0; modemFlag=true;
 cout <<"AT response: "<<buffer<<endl;
 while(modemFlag&&response<254){

if(buffer[response]==first&&buffer[response+1]==second){
 modemFlag=false; buffer[response]=' ';
 buffer[response+1]=' '; cout<<signal<<endl;
 }
 response++;
 }}
 t++;}
 return 0;
}

Figure 4.5 The modem initialization method for the Iridium Motorola 9500 handset
(init_modem() method on Windows 2000).

4.2.3 Fletcher Checksum

Detecting and, if possible, correcting data errors is crucial in network data

communications, especially when using a wireless data link. With a one-bit loss or error a

 67

runnable program can be corrupted so that it cannot run [Peterson, 2000]. An error

detection and correction algorithm is very important at the link level of a communication

network. Existing algorithms include Cyclic Redundancy Check (CRC), two-dimensional

parity and Internet checksum. The Internet checksum algorithm simply sums

(modulo 216) each byte of transmitted data and sends the result of the sum with the data

to the receiving side. The receiving side does the same calculation to check if there is any

error or loss in received data. This algorithm is very simple to implement using 1’s

complement, but is less protective than the CRC algorithm. If a pair of single-bit errors

occurs, one increment and one decrement, the checksum algorithm is not able to detect

the error since the sum of all bits remains the same [Seaman, 1995].

Fletcher’s checksum is another implementation of a checksum algorithm which is a

variant of the 1’s complement algorithm. In Fletcher’s checksum, the checksum is

divided into two parts, each of which is in 16-bit hexadecimal format. To calculate the

Fletcher’s checksum for N bytes of data, the algorithm uses the following equations to

calculate checksum bytes and insert them into the end of a data byte stream:

 ∑
=

=
N

i
iBC

1
0 (4.1)

 () i

N

i
BiNC ∑

=

−=
1

1 (4.2)

where C0 = first checksum byte, which is the sum of all data bytes, C1 = second

checksum byte, which is the sum of each data byte multiplied by its position index from

the end of the data packet, and Bi = the ith byte of data.

Fletcher’s checksum algorithm is slower than the 1’s complement algorithm and

involves a pair of simultaneous equations. Although it adds some complexity to data error

 68

checking, Fletcher’s Checksum is an interesting possibility for binary applications

[Seaman, 1995]. The code of Fletcher’s checksum algorithm implementation for satellite

system data communication testing is shown in Figure 4.6.

void MSC_vdFletcherEncode(unsigned char *buffer, int
count){
 int i;
 unsigned char c0=0, c1=0;
 //set both checksum bytes to zero
 *(buffer + count - 1) = *(buffer + count - 2) = 0;
//sum up checksum bytes
for(i = 0; i < count; i++)

 {c0 += *(buffer+i);
 c1 += c0;

 *(buffer + count - 2) = c0;
 *(buffer + count - 1) = c1;}
}

Figure 4.6 Fletcher’s checksum method (from [Fletcher, 1982] and [KBMW, 1999]).

4.2.4 Sender

Sender is the class in satellite system data communication testing that is responsible

for sending data to the satellite data link through a serial port for system latency testing.

The data transferred into the satellite link is simulated GPS position data stored in a

source file. For our research, we chose transmitted data with a size of 108 bytes, which

approximately matches the length of a message in the Kodiak seismic survey operations.

Figure 4.7 shows a sample message we used to test the satellite communication channels.

A ‘^’ character is used to indicate the end of each message.

T1
200906 17 6 1 0.000
1 15 15:25:30:00 12 11 2002
1 N85635.456 W11343.57 H222.70
1 0.078 6.2761
1 4 5.000 6^

Figure 4.7 Sample data message (108 bytes long) for satellite communication channels
testing.

 69

After modem initialization and configuration, Sender dials the satellite phone number

coded in the program and sets the satellite data link. This part of the operation only

occurs in Iridium system testing. Data arrives at the Receiver side via an e-mail message

for the Orbcomm system, and the e-mail address is included in the Orbcomm packet data

message.

Once the satellite link is set, the Sender prompts the user to enter number of times M

to repeat sending messages, time T (in seconds) to wait between sending messages and

source data file name. The user is in control of entering various values of M and T to test

satellite system latency. Figure 4.8 shows sample Iridium modem testing sessions (both

sending and receiving) in operation. The times shown in (a) and (b) of Figure 4.8 do not

correspond to the same transmission session.

 70

(a) Sender

(b) Receiver

Figure 4.8 Sample Iridium modem testing sessions in operation.

Sending frequency is an important element in our satellite system latency testing.

Sending data at different frequencies was used to the test data communication capability

of the satellite link. The Iridium satellite system has a data transmission capability of

 71

2400 bps and Orbomm’s data transmission capability is 4800 bps. In our research the

actual data transmission rate (maximum 1080 bps (assuming 10 bits are required to send

one byte) when sending frequency is 1 Hz) is expected to be within both Iridium and

Orbcomm system data transmission ability. Effective data rate is not necessarily equal to

system design data rate, and our testing was designed to see if the Iridium and Orbcomm

systems could keep up with our maximum sustained data rate.

In each session of data transmission, Sender opens the source data file, reads one set

of simulated GPS data (N bytes long) and sends this data to the satellite data link. Once

Sender reaches the end of the source data file, the data transmission session ends. Sender

repeats the data transmission session M times, where M is entered by the user. Figure 4.9

shows the pseudo-code algorithm for reading a file of simulated GPS data.

Initialize Buffer for sending a string
Open the source data file
While (true) do

While (true) do
Read a line of data L
Buffer ← Buffer + L
If (first byte of L = “end of file”) exit outer

while loop
If (last byte of L = “end of data set (‘^’)”)

exit inner while loop
 End of inner While loop
 Write data set message to serial port

End of outer While loop
Close source data file

Figure 4.9 Pseudo-code for reading a file of simulated GPS data.

When one sending session is finished, Sender prompts the user for the next session.

Sender can either start another data transmission session with new sending parameters or

enter special commands to end data communication and disconnect the satellite data link.

A record file named “sRecord.txt” is generated at the beginning of the Sender

program to record data transmission information including transferred data, error

 72

checking results and system time for each transmitted data message. For each N bytes of

transmission message, Sender records the system time when data sending starts. The

recorded file information is used to compare with a Receiver side file of the same name

(sRecord.txt) to compute satellite system data transmission latency and determine if data

errors occurred during transmission. Figure 4.10 is an example of part of a file recorded

at the Sender side.

Sending record from Broca (Windows 2000)
Time before connection: Wed 12 11 16:20:50 2002
Time after connection: Wed 12 11 16:21:24 2002
Phone number: 881631416988
Frequency: sending every 1 seconds.

Start sending time: 16:21:30:664
Finish sending time: 16:21:30:714
Sending data:
T0
200906 17 6 1 0.000
1 15 15:20:30:00 12 11 2002
1 N85628.888 W11359.57 H234.10
1 0.078 6.2761
1 4 5.000 6
Sending bytes: 108

Start sending time: 16:21:31:755
Finish sending time: 16:21:31:815
Sending data:
T1
200906 17 6 1 0.000
1 15 15:25:30:00 12 11 2002
1 N85635.456 W11343.57 H222.70
1 0.078 6.2761
1 4 5.000 6
Sending bytes: 108

Figure 4.10 Example portion of a data transmission summary file recorded by Sender.

The Sender programs for Windows 2000 and QNX 4.25 are essentially identical. The

only difference arises from the different file I/O processes of the two operating systems.

Sender programs for the Iridium and Orbcomm systems are different. For Iridium

system testing, Sender is dealing with data and associating with the receiving side at the

link level. Each data string D transmitted is inserted with an additional three bytes of

 73

overhead. The last byte character ‘&’ indicates end of this N bytes of simulated GPS data.

The second and third last bytes are Fletcher’s checksum bytes calculated by Sender. The

three terminating bytes are used at the Receiver side to separate and handle each specific

data transmission.

For Orbcomm system testing, the receiving side receives data via e-mail through

SMTP. An Orbcomm data string is a packet of hexdecimal data as described in Table 4.2

in section 4.1.4. An Orbcomm data string contains several bytes of overhead including

recipient e-mail address, type of data format, Fletcher’s checksum, total data bytes, ACK

level, priority level and gateway ID. This packet data has commands for Orbcomm

modem initialization and configuration as well as complete data transmission instructions

for the Orbcomm data network’s TCP/IP layers. The overhead is 17 bytes if the

recipient’s e-mail address has been predefined in user account when the Orbcomm

transceiver is activated and byte No. 13 in Table 4.2 is used to indicate this. When the

value of byte No. 13 is ‘01’, the Orbcomm system will look for the actual e-mail address

in the user account instead of the data string.

Figure 4.11 shows the Iridium Sender algorithm for Windows 2000 and Figure 4.12

shows the unique part of the Orbcomm Sender algorithm on QNX 4.25.

 74

CSerial serial
serial.Open(_T(“COM2”))
serial.setup(Baud R,Data bit B, Parity P, Stop bit S)
init_modem(PN, PN.length(), 's') // PN is sat phone No.
Open record file r(“sRecord.txt”)
While (true) do

Prompt user for user input sending command S
including sleep seconds T, repeat times M and
data file name

If (S = “%++”) exit outer while loop
Else

For(M) // M is no. of times to repeat sending
Open the source data file
While(true) do

Fetch one set of data D from source data
file (as inner while loop in Figure
4.9)

N ← total number of data bytes in D
SYSTEMTIME tm
MSC_vdFletcherEncode(D, N+2),
D[N+2] ← '&'
t1 ← GetSystemTime(&tm)
serial.Write(D, N+3) /* send data string

to serial port */
t2 ← GetSystemTime(&tm)
Write t1, t2 and D into r /* record data

and time */
Sleep(T) /* wait T seconds to send next

data */
End of inner While loop
Close source data file

End of For loop
End If

End of outer While loop
Close r //close record file
init_modem(“off”, 3, 'o') // terminate data link
serial.close() // close serial port

Figure 4.11 Sender pseudo-code for Iridium on Windows 2000.

 75

sdf ← open(“dev/ser2”) //open serial port #2
Configure serial port and set input option as raw
Construct packet string D with basic Orbcomm bytes

int w /* w is the actual no. of bytes successfully written to the

serial port during one serial port writing. This value is returned
by write (serial port file, data string, no. of bytes) method */

While (true) do
Prompt user for user input sending command S including sleep

seconds T, repeat times M and data file name

If (T = “9999”) //indicate stop sending session

exit outer While loop
Else

 For(M times) /* M is no. of times to repeat sending */
Open the data file
While(true) do

Fetch one set of data ds /* as inner while loop in Fig.
4.9 */

D ← D + ds, N ← length of D
timeb tm /* system time variable for QNX system */
MSC_vdFletcherEncode(D, N) /*insert checksum bytes into

data string */
t1 ← ftime(&tm) //get system time
w = write(sfd, D, N) /* w is no. of bytes successfully

written to serial port */
If (w = N) /* when all bytes of the data string are

successfully written to the serial port */
t2 ← ftime(&tm), Write t1,t2 and D to r

End of If
Sleep(T)

End of inner While loop
close the data file

End of For loop
End of If Else

End of outer While loop
Close r, close(sfd)//close record file and serial port

Figure 4.12 The different part of the Sender pseudo-code for Orbcomm on QNX 4.25.

4.2.5 Receiver

A Receiver was built only for Iridium system testing since the Orbcomm system

sends data in e-mail format to the Receiver side. Figure 4.13 shows the steps of serial port

reading at the Receiver side and Figure 4.14 is the pseudo-code of the Receiver program

on Windows 2000.

 76

serial port

Iridium satellite constellation

open and configure port

read from port and accumulate data bytes

send data

rRecord.txt

disconnect data link and close port

detect disconnect command

transceiver

Receiver program

messages on monitor

serial port

Iridium satellite constellation

open and configure port

read from port and accumulate data bytes

send data

rRecord.txt

disconnect data link and close port

detect disconnect command

transceiver

Receiver program

messages on monitor

Figure 4.13 Steps of serial port reading at the Receiver side for Iridium communication.

As for Sender, Receiver starts with opening a serial port, setting the serial port,

satellite modem initialization and configuration (see lines 1 to 3 in Figure 4.14). Receiver

then listens to the serial port and waits for any incoming data signal from the attached

satellite transceiver (modem) as described in lines 7 to 9. Reading data from the serial

port and handling data involves data byte accumulation and data error checking. Since the

testing is focused on satellite data transmission latency, the system time 3t (epoch that

the first data byte arrives) and 4t (epoch that the last data byte arrives) of each data

arrival is recorded. Lines 20, 21, 30 and 33 of the pseudo-code in Figure 4.14 show how

the system time is recorded. The data arrival time is meaningful for satellite system

latency calculations only if the Receiver detects a data byte at the serial port as soon as

the data byte arrives. Serial port reading needs to be prompt and continuous.

Each serial port has an input buffer as initialized in line 4 of Figure 4.14. Serial port

reading reads data bytes from the input buffer. A user has control of the size of the input

buffer, which is the maximum number of data bytes for each serial port reading. The

 77

actual number of data bytes read (rb in lines 12 and 27) each time depends on how many

bytes of data are in the input buffer at the moment. A user has no control on the actual

number of data bytes read each time. A serial read resulting in zero bytes occurs when

there is no data in the input buffer. Zero bytes read can happen at any time during data

reading and it does not indicate the end of data transmission. The Receiver program

accumulates data bytes and waits for arrival of the “end-of-data” byte (‘&’) to determine

when the end of current data transmission is received (line 32). Once the end indicator

byte of the current data transmission is detected, Receiver handles the accumulated data,

prints data to the monitor, writes data to the output file and calculates Fletcher’s

checksum on the received data to compare with the Sender’s checksum result. This

procedure is handled by a function of HandleData(fs, N) (lines 25 and 34) written

separately in the Receiver program. Receiver records and shows an error message if its

checksum disagrees with the Sender’s checksum.

 78

1. CSerial serial, serial.Open(_T(“COM2”))
2. serial.setup(Baud R,Data bit B, Parity P, Stop bit S)
3. init_modem('s'), Open record file r(“rRecord.txt”)
4. initialize Buffer, N ← total number of read bytes
5. fs ← final data string
6. SYSTEMTIME tm //system time variable
7. While (true) do
8. e ← serial port event /* check serial port event (data receive, break,

 error) */
9. If(e = receive event)
10. While (true) do
11. Buffer ← data bytes read from serial port
12. rb ← number of bytes read currently
13. If (Buffer[0] = ending session byte ‘%’)
14. exit outer while loop
15. Else
16. If(Buffer[0] !=data start byte ‘T’&& rb > 0)/* current read data
 bytes are the middle part of a data set */

 /* check special case when current read data bytes containing the
 start bytes of next data set */

17. int k ← 1 // look for the start byte of next data set
18. While(true)
19. If (Buffer[k]=‘T’)
20. t5 ← GetSystemTime(&tm) /* start receiving time for next

data transmission */
21. t4 ← GetSystemTime(&tm)/* finish receiving time for current

 data transmission */
22. C1 ← data bytes before k in Buffer (current transmission)
23. C2 ← data bytes after k in Buffer (next transmission)
24. fs ← fs + C1 , Buffer ← C2
25. N ← N + rb, HandleData(fs, N) /* call method to handle data

 set and calculate checksum */
26. write t3, t4 and fs to r, N ← 0, t3 ← t5 /* assign t5 to t3
27. rb ← rb – (k-1), , Exit inner while loop

Else
28. k ← k + 1

End if
 End of inner while loop (line 18)

29. Else If (Buffer[0]=data start byte ‘T’) /* case incoming data is the
 start of a data set and special case did not happen */

30. t3 ← GetSystemTime(&tm) // get start time
 End if

 If(rb!=0) //reading bytes is not zero
31. fs ← fs + Buffer, N ← N + rb
 End If
32. If(fs[last]=data set ending byte ‘&’) // it is the end of data
33. t4 ← GetSystemTime(&tm) // finish time

 End If
 End If
End of second inner While loop (line 10)

34. HandleData(fs, N), write t3, t4 and fs to r
End If

 End of outer While loop (line 7)
35.Close r, init_modem('o'), serial.close()

Figure 4.14 Pseudo-code for the Receiver program on Windows 2000.

On occasion, the data read on the Receiver side happens to include the last several

bytes of the current data transmission and several start bytes of the next data

transmission. This happens more when sending frequency increases and the next data

transmission is closer to the previous one. Lines 17 to 28 in Figure 4.14 show how the

Receiver program handles this occurrence. In this case, Receiver separates the data

 79

stream into two parts (1C in line 22 and 2C in line 23) and handles each part separately.

The same system time is recorded as finishing receiving time 4t for the current data

transmission (line 21 in Figure 4.14) and start receiving time 5t for the next data

transmission (line 20 in Figure 4.14). The value of 5t is assigned to the variable 3t after

the record of current data transmission has been written into the output file (lines 25 and

26 in Figure 4.14). This avoids over writing 3t of current data transmission

When a user decides to stop data transmission and enters the “stop sending”

command on the Sender side, Sender ends the session and sends an AT command to

terminate the satellite modem and disconnect the data link. Upon receiving the disconnect

command as described in line 13 of Figure 4.14, the satellite transceiver at the Sender

side changes from data mode to command mode and transmits a disconnection signal to

the satellite transceiver at the Receiver side. The Receiver program then ends its data

reading session, switches the satellite transceiver from data mode to command mode,

disconnects the satellite data link and closes the serial port. Receiver coding on Windows

2000 is similar to Receiver coding on QNX 4.25 except for file I/O.

The output file “rRecord.txt” is generated to record data receiving information. The

Receiver program records the system time when the first incoming data byte of the

current transmission is detected and also when the ending data byte is received. With

N = 108 bytes of data, the start receiving time and finish receiving time are significantly

different. The satellite system latency calculation for each data transmission (see section

4.2.6) uses the finish receiving time on the receiver side (4t in Figure 4.14 above) and the

 80

start sending time on the sender side (1t in Figure 4.11). A portion of the rRecord.txt file

for Receiver is displayed in Figure 4.15.

Receiving record at Broca (Windows 2000)
Time: Wed 12 11 15:41:37 2002

Start receiving time: 15:41:54:245
Finish receiving time: 15:41:54:786
Fletcher checksum correct!
Received data:
T0
200906 17 6 1 0.000
1 15 15:20:30:00 12 11 2002
1 N85628.888 W11359.57 H234.10
1 0.078 6.2761
1 4 5.000 6
Received bytes: 108

Start receiving time: 15:41:55:227
Finish receiving time: 15:41:55:768
Fletcher checksum correct!
Received data:
T1
200906 17 6 1 0.000
1 15 15:25:30:00 12 11 2002
1 N85635.456 W11343.57 H222.70
1 0.078 6.2761
1 4 5.000 6
Received bytes: 108

Figure 4.15 Example portion of a rRecord.txt file recorded by the Receiver.

4.2.6 Computing satellite system latency

Calculation of satellite system latency is based on system time recorded in output

files from Sender and Receiver (Iridium) (the receiving side time is the e-mail receiving

time for Orbcomm). Equation (4.3) shows how the satellite system latency was

calculated. Satellite system latency Li is calculated as:

s
i

r
ii ttL −= (4.3)

where Li = system latency for data message i in seconds, r
it = time start of message i was

received by the Receiver program and s
it = time start of message i was sent by the Sender

program.

 81

Both r
it and s

it are system time and were obtained by using system time methods on

Windows 2000 and QNX 4.25. On Windows 2000, a system call of

GetSystemTime(&time) (time is a SYSTEMTIME type variable) was used to get

system time. On QNX 4.25 a system call of ftime(&t) (t is a timeb type variable

defined in the QNX sys/timeb.h file) was used to get system time.

To make both r
it and s

it comparable and the time difference meaningful as system

latency, system time on both Sender and Receiver was synchronized with the same time

server. Time synchronizing technologies on Windows 2000 and QNX 4.25 are different.

The Dimension 4 time synchronizer for Windows [Mills, 1998] was downloaded to

Windows operating systems including Broca and the laptop computer used for dynamic

Iridium testing. Xntp [Mills, 1996], version 3.5 of Network Time Protocol (NTP) was

used for QNX1. Dimension 4 and Xntp were chosen out of many available time

synchronizers because they both use the SNTP time protocol and allow the user to choose

from a list of active NTP time servers. In this research, both time synchronizers poll

ntp.unb.ca at the University of New Brunswick to synchronize system time for Broca, the

laptop used for the Iridium dynamic testing and QNX 1. The time adjustment accuracy

using Dimension 4 and Xntp is approximately 50 ms [Mills, 1998] [Mills, 2001].

 82

Chapter 5. Testing and results analysis

The computers for satellite data transmissions were set up in Gillin Hall Room E112,

the Hydrography Lab of the Geodesy and Geomatics Department at the University of

New Brunswick (Fredericton, NB, Canada). To achieve the best satellite communication

signal, the satellite antennae were installed on the roof of Gillin Hall, where the satellite

antennae have the best view of the sky without being blocked by any structures.

5.1 Test environment

Satellite data transmission testing was between Broca (Windows 2000, the middle

computer in Figure 5.1) and QNX1 (QNX 4.25, the right most computer in Figure 5.1).

Two 60 foot (18 m) long RS232 DB9 cables were used to connect the satellite

transceivers (one for sending and one for receiving) on the roof (as shown in Figure 5.2)

to the computer serial ports in the lab at Gillin Hall.

Figure 5.1 Computer setup in Room GE112 (Hydrography Lab) of Gillin Hall.

 83

(a) Orbcomm (right) and Iridium (left) antennae.

 (b) Iridium Sensor Systems antenna.

Figure 5.2 Antennae and satellite transceiver setup on the roof of Gillin Hall.

Data signal loss on the antenna cable between the satellite antenna and satellite

transceiver is an important element affecting the satellite data transmission. A low-loss

cable is critical for the Iridium system which operates at 1610 – 1626.6 MHz in both

transmitting and receiving. For the Orbcomm system, the antenna cable data loss is less

important since Orbcomm operates at 148.0 – 150.05 MHz (uplink) and 137.0-138.0

 84

MHz (downlink). To meet the requirement of total 3dB maximum antenna cable data loss

for the Iridium system, a 10 foot (3 m) LMR400 antenna cable assembled with two male

TNC connectors obtained from Cabco Inc., Halifax, N.S. was used to connect the Iridium

satellite antenna and satellite transceiver (Motorola 9500 phone). Figure 5.3 shows the

testing antenna layout on the roof of Gillin Hall.

285

90

155 135
115

15

(Top view)

Edge of roof

Iridium Motorola auxiliary antenna location

Orbcomm whip antenna location

Iridium Sensor Systems
antenna location

285

90

155 135
115

15

(Top view)

Edge of roof

Iridium Motorola auxiliary antenna location

Orbcomm whip antenna location

Iridium Sensor Systems
antenna location

88

100

(Side view)

Figure 5.3 Satellite antenna layout on the roof (all units in cm).

5.2 Iridium experiments

Among three data services provided by the Iridium system, we chose the Mobile

Terminated Data Service for Iridium data transmission latency testing. As explained in

 85

section 3.1.1.2, a Motorola 9500 satellite phone was set up at each end of the satellite link

for the experiments.

5.2.1 Static testing

In seismic survey operations satellite equipment can be used in a static environment

such as a base station and in a dynamic environment such as a moving helicopter. The

transmission environment can affect the satellite system latency. We measured the

Iridium satellite system latency in both static and dynamic environments.

Static testing was performed when both Sender and Receiver were stationary. To

probe overall availability of data channels of the Iridium satellite system, static testing

was done at three different time periods - morning, afternoon and night on a regular

working day. The sending frequency was also varied to test the Iridium system data

transmission capability. Sending frequencies used were 1, 0.5 and 0.25 Hz, corresponding

to sending data every 1, 2 and 4 seconds. A simulated GPS position message (see section

4.2.4) of 108 bytes was sent for each transmission. Each frequency test was conducted 40

times (20 times sending from Broca to QNX1 and 20 times from QNX1 to Broca). The

average Iridium system latency and standard deviation are recorded in Tables 5.1 to 5.3

for three time slots, morning (8:00 am – 12:00 noon), afternoon (2:00 pm – 5:00 pm) and

evening (7:00 pm – 10:00 pm) Atlantic time on November 12, 2002. The data link loss

rate is the percentage of times that the Iridium satellite data link was lost during data

transmission sessions. On the morning of November 12, 2002, one of the 40 transmission

tests (2.5%) had a dropped satellite link. Two of 40 transmissions (5%) were lost during

the afternoon of November 12, 2002. Testing results are analyzed in section 5.2.3.

 86

Table 5.1 Iridium static testing results during the morning of November 12, 2002.

frequency
(Hz)

N average latency
(ms)

standard deviation
(ms)

data link loss rate
(%)

1 40 1460 560 0
0.5 40 1781 581 2.5
0.25 40 1516 460 0
average 40 1585.6 533.6 8.3

Table 5.2 Iridium static testing results during the afternoon of November 12, 2002.

frequency
(Hz)

N average latency (ms) standard deviation
(ms)

data link loss rate
(%)

1 40 1560 336 0
0.5 40 1186 815 0
0.25 40 1197 676 5.0
average 40 1314.3 609 1.7

Table 5.3 Iridium static testing results during the evening of November 12, 2002.

frequency
(Hz)

N average latency (ms) standard deviation
(ms)

data link loss rate
(%)

1 40 1420 398 0
0.5 40 1126 535 0
0.25 40 1078 629 0
average 40 1208 520.7 0

5.2.2 Dynamic testing

Dynamic testing with the Iridium system tested system latency with one satellite

transceiver moving. The dynamic test system was set up with one Windows 2000 laptop

in a moving car to simulate helicopter movement. An additional element taken into

consideration in dynamic testing is the speed of the car. The focus of dynamic testing is

to compare data transmission latency, data error and data loss rate with static testing to

check if dynamic movement affects the Iridium system’s data transmission function.

Figure 5.4 shows the equipment layout of the moving Iridium transceiver.

 87

Figure 5.4 Dynamic Iridium transceiver layout.

Each dynamic test was performed 40 times (20 times from the laptop to QNX1 and

20 times from QNX1 to the laptop). Tables 5.4 and 5.5 show results for dynamic testing

with different testing parameters. Tests were done at 4:45 pm – 6:00 pm on November

28, 2002 and 2:30 pm – 3:30 pm on December 11, 2002 Atlantic time. Dynamic testing

results are analyzed with static testing results in section 5.2.3.

Table 5.4 Iridium dynamic testing results during the afternoon of November 28, 2002.

speed
(km/h)

N frequency
(Hz)

average latency
(ms)

standard deviation
(ms)

data link loss
rate (%)

40 0.5 1544 95 0
50 40 0.25 1454 51 0
110 40 0.5 1356 225 0

 88

Table 5.5 Iridium dynamic testing results during the afternoon of December 11, 2002.

speed
(km/h)

N frequency
(Hz)

average latency
(ms)

standard deviation
(ms)

data link loss rate
(%)

50 40 1 1510 105 0
110 40 1 1558 89 0

5.2.3 Analysis of testing results

We used statistical analysis on both static and dynamic data transmission latency

testing results of the Iridium satellite system. The two-sample t-test for independent

samples with equal variances (two variances are equal or not significantly different) or

unequal variances (two variances are significantly different) [Rosner, 1990] was

employed.

5.2.3.1 Statistical testing

Two-sample t-test statistical testing was used to compare the average system latency

of two different data transmission scenarios. Our null hypothesis H0 is 1L = 2L where

1L = the average system latency in the first data transmission test scenario, and 2L = the

average system latency in the second transmission test scenario. We used the following

equations to calculate the test statistic value t for the testing cases with equal variances:

() ()()

()2
11

21

2
22

2
11

−+
−+−

=
nn

SnSns (5.1)

+

−
=

21

2

_

1

_

11
nn

s

LLt (5.2)

where n1 = sample size of the first data transmission test scenario, n2 = sample size of the

second transmission test scenario, s1 = standard deviation of the first data transmission

test scenario, s2 = standard deviation of the second data transmission test scenario,

 89

1L = the average system latency of the first scenario and 2L = average system latency of

the second case [Rosner1990].

With the calculation result of the t value, we compare the t value with the value of

tn1+n2-2, 1-α/2 found in the t distribution table. If the t value lies between -tn1+n2-2, 1-α/2 and

tn1+n2-2, 1-α/2, H0 is accepted at a significance level of 1-α ; otherwise H0 is rejected

[Rosner, 1990].

For the cases with unequal variances, the following equations are used to calculate the

t value:

2

2
2

1

2
1

2

_

1

_

n
s

n
s

LLt

+

−
= (5.3)

() ()

−

+
−

+

=

11 2

2

2

2
2

1

2

1

2
1

2

2

2
2

1

2
1

'

n
n
s

n
n
s

n
s

n
s

d (5.4)

where d’ = the approximate degrees of freedom.

We rounded up d’ to the nearest integer d and compared the t value with the value of

td, 1-α/2 from the T distribution table. If the t value is between –td, 1-α/2 and td, 1-α/2, H0 is

accepted at a significance level of 1-α ; otherwise H0 is rejected [Rosner, 1990].

5.2.3.2 Testing results analysis

Table 5.6 shows average system latencies and standard deviations based on the static

testing results in the morning, afternoon and evening.

 90

Table 5.6 Average system latencies and standard deviation at different frequencies and
different time of the day.

Frequency sample size
(n)

average latency
(L)

standard deviation
(s)

1 40 1480 431
0.5 40 1364 644
0.25 40 1264 588
Time of day
morning 40 1585.6 533.6
afternoon 40 1314.3 609
evening 40 1208 520.7

The standard deviations at different frequencies and different time of the day are not

significantly different. Thus we used equations (5.1) and (5.2) to calculate the t values.

We have two testing result comparisons at various frequencies, 1 Hz vs 0.5 Hz, 0.5 Hz vs

0.25 Hz, 1 Hz vs 0.25 Hz, morning vs afternoon, afternoon vs evening and morning vs

evening. Table 5.7 shows the calculation results of the t values with α = 0.01.

Table 5.7 Results of the t values for Iridium static testing (equal variance assumption).

Comparison 2

_

1

_
LL −

(ms) 21

11
nn

s +

t

t78, 0.995

1 and 0.5 116 122.5 0.947 2.640
0.5 and 0.25 100 137.9 0.725 2.640
1 and 0.25 216 115.3 1.873 2.640
morning vs afternoon 271.3 127.9 2.119 2.640
afternoon vs evening 106.3 126.6 0.840 2.640
morning vs evening 377.6 117.7 3.208 2.640

From the Table 5.7 we can see that the t value in frequency comparison cases are

within the range of the -tn1+n2-2, 1-α/2 and tn1+n2-2, 1-α/2. We can conclude that the system

latencies at different frequencies in static testing are not significantly different at the 99%

confidence level.

 91

The available data rate provided by the Iridium system is 2400 bps, or approximately

240 bytes every second. Our maximum testing data transmission rate of 111 bytes (108

bytes data with 3 additional bytes) every second is less than half of the available data rate

provided by Iridium.

Static testing also shows that during different times of the day, data transmission

latency is slightly different due to the traffic on the Iridium satellite system’s data

channels. Figure 5.5 is plots the average Iridium data transmission latency for the three

time slots. Data transmission in the evening has the lowest average system latency.

Results of hypothesis testing for different time of a day from Table 5.7 indicate that only

the average system latency in the morning is significantly different from the latency in

the evening at the 99% confidence level.

0
500

1000
1500
2000

1 0.5 0.25
sending frequency (hz)

av
er

ag
e

la
te

nc
y

(m
s)

morning
afternoon
evening

Figure 5.5 The Iridium system average data transmission latency for static testing.

Table 5.8 shows the average system latencies, standard deviations and t values of the

static and dynamic testing results for our observed frequencies (1 Hz and 0.5 Hz) and

time slots with the α value of 1%. Since the variances of static and dynamic testing are

 92

significantly different, equations (5.3) and (5.4) are used to calculate t values. The sample

size for each testing case is 40.

Table 5.8 Calculation results of t values for Iridium static and dynamic testing.

Comparison average latency
(L)

standard deviation
(s)

t td, 0.995

dynamic 1534 97 1 Hz
 Static 1480 431

0.773 2.695
(d = 43)

dynamic 1450 160 0.5 Hz
 Static 1364 644

0.820 2.692
(d = 44)

We can see that in both scenarios the t values are between -td, 1-α/2 and td, 1-α/2, which

indicates that the system latencies of static and dynamic data transmissions are not

significantly different at the 99% confidence level. Testing result indicate that movement

does not affect Iridium system latency, at least for the vehicle speed (up to 110 km per

hour) we tested. The average system latency also does not increase when the moving

speed is higher. The Iridium system works well in a dynamic environment. The testing

results indicate that the Iridium system would perform well in both static and dynamic

seismic survey scenarios.

Modem initialization for the Iridium system is the first step of satellite

communication. Testing shows that modem initialization and data link setup in the

dynamic situation takes longer than in the static situation. Average modem initialization

time in static testing is 46 seconds and 83 seconds in dynamic testing. The maximum

modem initialization time in the static case is 61 seconds compared with 5 minutes during

our dynamic testing.

The data error rate is defined as percentage of times where a received data bit is

different from the data bit sent by the sending side during the satellite data transmission.

 93

For the Iridium system in both static and dynamic scenarios, testing results show that the

data error rate is 0% in all testing cases. Data link loss only occurred three times in more

than 1000 data transmissions. Testing results show that the Iridium system has good

reliability.

5.3 Orbcomm experiment

Orbcomm system data transmission latency was tested only for the static case.

Orbcomm testing uses one satellite transceiver as Sender that sends data through the

Orbcomm network. The receiving side of the Orbcomm testing system receives data in

email format.

5.3.1 Static testing

Static testing of the Orbcomm system was designed to test Orbcomm data

transmission latency at different time slots of the day with various frequencies. As for the

Iridium system testing, each Orbcomm test was performed 40 times (20 times from Broca

to QNX1 and 20 times from QNX1 to Broca) to achieve reliable statistical information of

Orbcomm system latency. The test data is the same 111 bytes simulated position data as

was used for Iridium testing. Tables 5.9 to 5.11 shows static testing results for Orbcomm

system data transmission. Testing was conducted during the morning, afternoon and

evening (as defined for the Iridium testing) on November 12 and November 14, 2002.

Table 5.9 Orbcomm static testing results during the morning of November 12&14, 2002.

frequency
(Hz)

average latency
(min sec)

standard deviation
(min sec)

data link loss rate
(%)

0.5 14 min 39 sec 9 min 59 sec 0
0.25 15 min 0 sec 7 min 3 sec 0
0.125 18 min 12 sec 11 min 23 sec 0
0.0625 21 min 30 sec 7 min 54 sec 0
average 17 min 20 sec 9 min 4 sec 0

 94

Table 5.10 Orbcomm static testing results during the afternoon November 12&14, 2002.

frequency
(Hz)

average latency
(min sec)

standard deviation
(min sec)

data link loss rate
(%)

0.5 22 min 12 sec 8 min 58 sec 0
0.25 6 min 18 sec 3 min 57 sec 0
0.125 9 min 35 sec 3 min 40 sec 0
0.0625 5 min 0 sec 2 min 53 sec 0
average 10 min 46 sec 4 min 52 sec 0

Table 5.11 Orbcomm static testing results during the evening of November 12&14, 2002.

frequency
(Hz)

average latency
(min sec)

standard deviation
(min sec)

data link loss rate
(%)

0.5 8 min 12 sec 7 min 2 sec 0
0.25 9 min 30 sec 3 min 12 sec 0
0.125 7 min 6 sec 3 min 30 sec 0
0.0625 15 min 35 sec 5 min 2 sec 0
average 10 min 9 sec 4 min 41 sec 0

5.3.2 Analysis of results

The same statistical testing used for the Iridium testing results was used to analyze the

Orbcomm system latency testing results. Table 5.12 shows average system latencies and

standard deviations based on the static testing results of the morning, afternoon and

evening.

Table 5.12 Average system latencies and variances at different frequencies.

frequency
(Hz)

sample size
(N)

average latency
(L)

standard deviation
(s)

0.5 (2 sec) 40 15 min 01 sec 8 min 40 sec
0.25 (4 sec) 40 10 min 16 sec 4 min 43 sec
0.125 (8 sec) 40 11 min 38 sec 6 min 11 sec
0.0625 (16 sec) 40 14 min 02 sec 5 min 16 sec

We compare the Orbcomm testing results in nine cases based on frequency and time

of day. In each case, the standard deviations for different frequencies are not significantly

different. The t values are calculated by equations (5.1) and (5.2). Table 5.13 shows the

calculation results for t values with α = 0.01.

 95

Table 5.13 Results of the t values for Orbcomm testing (equal variance assumption).

case

Comparison 2

_

1

_
LL −

 21

11
nn

s +

t

t78, 0.995

#1 0.5 vs 0.25 4 min 55 sec 1 min 36 sec 3.073 2.640
#2 0.5 vs 0.125 3 min 23 sec 1 min 41 sec 2.010 2.640
#3 0.5 vs 0.0625 0 min 59 sec 1 min 36 sec 0.615 2.640
#4 0.25 vs 0.125 1 min 22 sec 1 min 14 sec 1.108 2.640
#5 0.25 vs 0.0625 3 min 46 sec 1 min 7 sec 3.373 2.640
#6 0.125 vs 0.0625 2 min 24 sec 1 min 17 1.091 2.640
#7 morning vs afternoon 6 min 20 sec 1 min 38 sec 2.653 2.640
#8 afternoon vs evening 0 min 37 sec 1 min 4 sec 0.578 2.640
#9 morning vs evening 7 min 11 sec 1 min 37 sec 4.463 2.640

Calculation results in Table 5.13 show that the t values in case #2, #3, #4, #6 and #8

are within the range of the -tn1+n2-2, 1-α/2 value and the tn1+n2-2, 1-α/2 value. In cases #1, #3,

#7 and #9, t values are out of the -tn1+n2-2, 1-α/2 and the tn1+n2-2, 1-α/2 value range. The null

hypothesis in two out of six cases is rejected in the frequency comparisons, and for two

out of three cases in the comparisons of different transmission time of day. With a

confidence level of 99%, the conclusion is that the Orbcomm system data transmission

latencies are not affected by frequency of transmission in most cases. For different

transmission time of day, the Orbcomm system latencies are significantly different (at

99% confidence level) in the morning compared to the afternoon and evening

transmissions. The lowest average system latency occurs in the afternoon session. Figure

5.6 plots Orbcomm system latency for different frequencies and time of day.

 96

0

5

10

15

20

25

0.5 0.25 0.125 0.0625

frequency (Hz)

av
er

ag
e

la
te

nc
y

(m
in

)

morning
afternoon
evening

Figure 5.6 Orbcomm average latency.

Comparison of Orbcomm and Iridium testing shows a large difference between

system average latency with the same size of data transmission, frequency and time of

day. The Iridium system, with an overall average of 1465 ms data transmission latency is,

on average, 522 times faster than the Orbcomm system average of 12 minutes 45

seconds. The technology used by the Orbcomm system to transfer data is very different

from the Iridium system. When the Orbcomm satellite is in view of both the Gateway

Earth Station (GES) and the satellite transceiver, a data message is transferred in real-

time. Otherwise, data is stored on board the satellite and transferred when the satellite

comes into view of the GES. This causes a major delay in Orbcomm data transmission. In

the Fredericton, NB area, where testing was performed, the percentage of time that the

Orbcomm satellite in view of the transceiver is as high as 99%. The nearest Orbcomm

GES used for data relay is located in New York, N.Y., USA. The percentage of time that

both the satellite transceiver and the GES are simultaneously in view of an Orbcomm

satellite is 70%. This percentage is spread over the whole day following the satellite orbit

 97

dynamics. The Orbcomm system latency is affected by time of day, requiring

significantly more time in the morning compared to the afternoon and evening. Less

significant “time-of-day” affect was noticed for the Iridium system.

 98

Chapter 6. Conclusions and future work

6.1 Conclusions

In this research we have investigated satellite data communication systems in several

different aspects including system cost, data link capacity and data transmission latency.

Our research has shown that the Iridium satellite system has potential for use in real-time

seismic survey operations. Our testing indicates that Orbcomm is better suited for

applications such as e-mail where delays of greater than 12 minutes (on average) are

acceptable. Our testing showed that the Iridium system was very reliable with

consistently low latencies around 1.46 seconds for both static and dynamic operations.

We have developed a detailed cost model for seismic survey and forest fire

operations using satellite data communications along with an XML-based computer

implementation of the cost model. Orbcomm satellite communication system cost is

about 10 times less than the Iridium system costs. Availability of Orbcomm satellite

transceiver OEM boards is an advantage of the Orbomm system that can provide the user

an opportunity for customized application integration.

In the satellite survey operation cost models (not counting the helicopter (s) flying

costs), satellite communication cost is 19% of the total cost in a high accuracy seismic

survey using both Iridium and Orbcomm systems. When the Iridium transceiver is

replaced by a radio modem, the communication cost is only 1% of the total survey cost.

These percentages ignore the helicopter (s) flying costs which are the same in both

cases. The increase in communication costs is partly offset by the cost of installing

repeater stations for the radio modems. It is conceivable that the cost with satellite

 99

communications would be less if the cost of installing repeater stations increased

substantially.

The research also explored the possible role of SOAP in communicating satellite

system operational costs. A SOAP server can provide convenient access to a client to

retrieve satellite geospatial system costs in XML format using a standard Web browser.

6.2 Future work

Our research is a start for deploying satellite communications in real-time seismic

survey system operations. There are interesting and challenging future investigations

required before satellite data communications can be routinely used in helicopter

operations. They include:

1) Integration of Kodiak Office and RGU500 software with satellite data transmission

software. The existing Kodiak Office and RGU500 software need to be integrated with

satellite data transmission software to provide a platform for field testing satellite

communication links.

2) Investigation of automatic hand-off from a satellite system link to a cellular

telephone link when cell phone signal strength of sufficient quality is detected. This

hand-off can reduce seismic survey costs without losing the advantage of global coverage

of satellite links. Automatic hand-off from a satellite link to cell phone and vice versa

would be most convenient for the user.

3) Testing of Orbcomm satellite data transmission using a transfer protocol other than

SMTP. Our testing shows that the Orbcomm system has a high system latency. Orbcomm

also has advantages, however, such as low cost and availability of OEM boards. When

real-time transmission is not critical, the Orbcomm system is a good choice as data

 100

carrier. Normally, Orbcomm users receive data through e-mail. There is a possibility that

other file transmission protocols such as FTP can be used in Orbcomm data transmission

and that the recipient can receive data using an Orbcomm satellite transceiver directly.

Motorola is currently exploring a project using FTP via Orbcomm. The project is called

“Spatial Utility Portfolio Management”. The project provides near real-time solutions of

spatial data for information of gas, water and electricity [Motorola, 2000]. An

investigation of how Orbcomm handles data transmission using other protocols such as

FTP in terms of latency and data error rate would be valuable in satellite system

development for other near real-time geospatial operations.

 101

References

[Altova, 2002] Altova, “XMLSpy 5 Product Information”, 1 page, 2002, available at
http://www.xmlspy.com/products_ide.html.

[Analysis, 2002] Analysis Ltd., “Iridium”, 10 pages, Feb 08, 2002, available at
http://www.analysys.com/satellite/profiles/iridium.htm.

[Apache, 2001] Apache Software Foundation, “Xerces C++ Parser”, 3 pages, 2001,
available at http://xml.apache.org/xerces-c/.

[Barr, 1999] Barr, Michael, Programming Embedded Systems in C and C++, O’Reilly &
Associates, Inc., 1999.

[BEKL, 2000] Box, Don, Ehnebuske, David, Kakivaya, Gopal, Layman, Andrew,
Mendelsohn, Noah, Nielsen, Henrik Frystyk, Thatte, Satish and Winer, Dave, “Simple
Object Access Protocol (SOAP) 1.1”, W3C, May 08, 2000 available at
http://www.w3.org/TR/SOAP/.

[Chatenay, 2000] Chatenay, Allen, “Seismic Surveys, Getting Geophysical with GPS”,
GPS World, May 2000, pp 22-30.

[Compass, 1999] CompassRose International Publications, “Introduction to Global
Satellite Systems”, 6 pages, 1999, available at
http://www.compassroseintl.com/pubs/Intro_to_sats.html.

[Eagle, 1998] Eagle Navigation System, Inc., “Kodiak: A Vehicle Guidance and
Management System for Seismic Operations Design Document”, version 1.2, internal
report, Calgary, Alberta, Canada, July 16, 1998, 52 pages.

[Eagle, 2001] Eagle Navigation System, Inc., “Kodiak NS500 RGU Operational
Manual”, version 2.1.1, internal report, Calgary, Albert, Aug. 2001, 50 pages.

[Fletcher, 1982] Fletcher, J., “An Arithmetic Checksum for Serial Transmissions”, IEEE
Transactions on Communication, Vol. COM-30, No. 1, pp. 247-252, January, 1982.

[Goldstein, 2000] Tally Goldstein, “Defence set to revive Iridium”, FT.com Financial
News, available at http://flashcommerce.com/articles/00/12/05/194357.html (click on
“source”), December 6, 2000, 1 page.

[Ha, 2001] Ha, Rick, “Preliminary Survey on Satellite Wireless Standards”, Faculty of
Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
February 9th, 2001, 11 pages.

 102

[Hopkins, 2001] Hopkins, Joe, “Iridium Ownership Revealed”, SPACEandTECH Digest,
April 09, 2001, 1 page, available at http://www.spaceandtech.com/digest/sd2001-
14/sd2001-14-007.shtml.

[IBM, 2002] IBM, “XML Parser for Java”, 1 page, 2002, available at
http://www.alphaworks.ibm.com/tech/xml4j.

[Iridium, 2002a] Iridium Satellite LLC, “Direct Internet Data User’s Guide”, Rev. 4,
February 1, 2002, 38 pages.

[Iridium, 2002b] Iridium Satellite LLC, “Dial-Up Data User’s Guide”, Rev. 4, February
1, 2002, 67 pages.

[Iridium, 2002c] Iridium Satellite LLC, “Mobile Terminated Data User’s Guide”, Rev. 2,
February 1, 2002, 25 pages.

[Iridium, 2002d] Iridium, FQA, “What is Short Burst Messaging?”, 1 page, 2002, available
at http://www.iridium.com/customer/iri_customer-detail.asp?careid=92.

[Jung, 2002] Jung, Helen, “Teledesic shuts down, dimming a dream”, 4 pages, October
14, 2002, available at http://www.startribune.com/stories/535/3357432.html.

[KBMW, 1999] Kirchner, Al, Brickerd, D., Mazur, S. and Williams, B., “Orbcomm
Serial Interface Specification”, E80050015 Revision F, Orbcomm Global L.P., Dulles,
VA, USA, April 20, 1999.

[Klein, 2001] Klein, Ramon de, “Serial Library for C++”, 20 pages, 2001, available at
http://www.codeproject.com/system/serial.asp.

[Lloyd, 2002] Lloyd Wood, “Lloyd’s satellite constellations”,
http://www.ee.surrey.ac.uk/Personal/L.Wood/constellations/teledesic.html, October 18,
2002.

[McLellan, 2001] McLellan, James F., Schleppe, John B., Huff, Dave and Srajar, Peter,
“Mobile Asset Management For Land Exploration”, internal working document of Eagle
Navigation System Inc., Calgary, Alberta, Canada, June 20, 2001, 9 pages.

[Mills, 1996] Mills, David L., “The Network Time Protocol (NTP) Distribution”, 1996,
available at ftp://ftp.qnx.com/usr/free/qnx4/tcpip/utils/xntp3-5f.tgz.

[Mills, 1998] Mills, Dave, “Time Synchronization Software”, University of Delaware,
1998, available at http://www.eecis.udel.edu/~ntp/software/win9x.html.

[Mills, 2001] Mills, Dave, “NTP Performance Analysis”, University of Delaware,
available at http://www.eecis.udel.edu/~mills/database/brief/new/new_files/frame.htm
23 pages, June 01, 2001.

 103

[Motorola, 2000] Motorola, “SpatialTM Product Description”, 3 pages, 2000, available at
http://www.motorola.com/cgiss/utility.shtml.

[MPCS, 2000] Motorola Personal Communications Sector, Satellite Subscriber products
Division, “Iridium AT Command Reference”, SSP-ISU-CPSW-USER-0005, Version 1.3,
February 23, 2000, 61 pages.

[MSAT, 2002] O’Rourke, Neil, personnel E-mail communication, April 01, 2002.

[Nickerson and Shan, 2001] Nickerson, Bradford G., Shan, Ying, McLellan, James,
“Demo Presentation Real-Time Wireless Mobile Geospatial Information Access using
the Web”, GEOIDE Conference, 2001, June 21-22, 2001, 1 page.

[Nickerson and Wu, 2002] Nickerson, Bradford G., Wu, Alex L., “Cost Model of
Satellite Systems for Real-Time Helicopter Operations”, Technical Report TR02-157,
Faculty of Computer Science, University of New Brunswick, August 7, 2002, 26 pages.

[Orbcomm, 2001] Orbcomm, FAQs, “How does the Orbcomm System work”, 1 page,
2001, available at http://www.orbcomm.com/faqs.htm#3.

[Peterson, 2000] Peterson, Larry L. and Davie, Bruce S. Computer Networks: A Systems
Approach, Morgan Kaufmann, 2000, ISBN 1-55860-514-2.

[QNX, 1996] QNX Software Systems Ltd., QNX Operating System, System Architecture,
Kanata, ON, Canada, 1996, 139 pages.

[QNX, 2002] QNX Software Systems Ltd., “Products and Services”, 1 page, 2002,
available at http://www.qnx.com/products/index.html.

[Rappaport, 1996] Rappaport, Theodore S., Wireless Communications Principles and
Practice, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1996.

[Rosner, 1990] Rosner, Bernard, Harvard University, Fundamentals of Biostatistics, 3rd
Edition, PWS-Kent Publishing Company, Boston, MA, USA, 1990.

[Regents, 1998] The Regents of University of Berkeley, “TCP/IP User Guide”, 1998,
available at http://alert.udfcd.org/help/tcpip/user_guide.

[Seaman, 1995] Seaman, R.L. and Pence W.D., “FITS Checksum Proposal”, August 24,
1995, http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/oldchecksum/checksum.html.

[Shan, 2001] Shan,Ying, “Web Access to Real-Time Wireless Mobile Geospatial
Information”, Technical Report TR02-140, Faculty of Computer Science, University of
New Brunswick, Fredericton, NB, Canada, June 2001, 111 pages.

 104

[Smith, 2001] Smith, Scott J., “Managing your mobile fleet through integrated wireless
solutions”, www.ceswireless.com/DOWNLO~1/SYSTEMS0.PDF, January 17, 2002, 32
pages.

[SQLData, 2002] SQLData Systems Inc., “SQLData SOAP Server v3.0”, 3 pages, 2002,
available at http://www.sqldata.com/soap.htm.

[Stevens, 2000] Stevens, W. Richard, TCP/IP Illustrated Volume 1 The Protocol,
Addison-Wesley Longman Ltd., 2000, ISBN 0-201-63346-9.

[StPo, 2000] Stevens, Perdita and Pooley, Rob, Using UML Software Engineering with
Objects and Components, Updated Edition (2nd), Addison-Wesley Longman Ltd. and
Pearson Education Ltd, London, UK, 2000, ISBN 0-201-64860-1.

[Sweet, 1999] Sweet, Michael R., “Serial port communication programming guide for
POSIX operating system”, 5th Edition, 2nd Revision, 60 pages, 1999, available at
http://www.easysw.com/~mike/serial/serial.html#4_2..

[W3C, 2002] W3Schools, “SOAP Tutorial”, 2002, available at
http://www.w3schools.com/soap/default.asp.

[Winer, 2002] Winer, Dave, “The leading directory for SOAP 1.1 developer”, 2002,
available at http://www.soapware.org.

 105

Appendix I. CostParms.dtd

CostParms.dtd is the Document Type Definition file for satellite systems basic cost

elements XML file.

<?xml encoding="ISO-8859-1"?>
<!-- @version: -->

<!ELEMENT CostParms (scenario, taxrate, Orbcomm,
Iridium,Internet,Helicopters,Companysupport,Install)>

<!ELEMENT scenario (#PCDATA) >
<!ELEMENT taxrate (#PCDATA) >

<!ELEMENT Orbcomm
(service_rate_o,monthly_cost_o,minute_cost_o,free_minutes_o,cost_per_byt
e_o,messages_per_minute_o,bytes_per_message_o,free_bytes_o,equipment_rat
e_o,weekly_rental_cost_o,equipment_purchase_cost_o,capital_days_o) >
<!ELEMENT service_rate_o (#PCDATA) >
<!ELEMENT monthly_cost_o (#PCDATA) >
<!ELEMENT minute_cost_o (#PCDATA) >
<!ELEMENT free_minutes_o (#PCDATA) >
<!ELEMENT cost_per_byte_o (#PCDATA) >
<!ELEMENT messages_per_minute_o (#PCDATA) >
<!ELEMENT bytes_per_message_o (#PCDATA) >
<!ELEMENT free_bytes_o (#PCDATA) >
<!ELEMENT equipment_rate_o (#PCDATA) >
<!ELEMENT weekly_rental_cost_o (#PCDATA) >
<!ELEMENT equipment_purchase_cost_o (#PCDATA) >
<!ELEMENT capital_days_o (#PCDATA) >

<!ELEMENT Iridium
(service_rate_i,monthly_cost_i,minute_cost_i,free_minutes_i,cost_per_byt
e_i,messages_per_minute_i,bytes_per_message_i,free_bytes_i,equipment_rat
e_i,weekly_rental_cost_i,equipment_purchase_cost_i,capital_days_i) >
<!ELEMENT service_rate_i (#PCDATA) >
<!ELEMENT monthly_cost_i (#PCDATA) >
<!ELEMENT minute_cost_i (#PCDATA) >
<!ELEMENT free_minutes_i (#PCDATA) >
<!ELEMENT cost_per_byte_i (#PCDATA) >
<!ELEMENT messages_per_minute_i (#PCDATA) >
<!ELEMENT bytes_per_message_i (#PCDATA) >
<!ELEMENT free_bytes_i (#PCDATA) >
<!ELEMENT equipment_rate_i (#PCDATA) >
<!ELEMENT weekly_rental_cost_i (#PCDATA) >
<!ELEMENT equipment_purchase_cost_i (#PCDATA) >
<!ELEMENT capital_days_i (#PCDATA) >

<!ELEMENT Internet (internet_monthly_cost) >
<!ELEMENT internet_monthly_cost (#PCDATA) >

<!ELEMENT Helicopters
(hourly_pilot_cost,hourly_fuel_cost,hourly_rental_cost,daily_insurance_c
ost,daily_maintenance_cost,total_helis,flying_days+,flying_hours+) >
<!ELEMENT hourly_pilot_cost (#PCDATA) >
<!ELEMENT hourly_fuel_cost (#PCDATA) >
<!ELEMENT hourly_rental_cost (#PCDATA) >
<!ELEMENT daily_insurance_cost (#PCDATA) >
<!ELEMENT daily_maintenance_cost (#PCDATA) >

 106

<!ELEMENT total_helis (#PCDATA) >
<!ELEMENT flying_days (#PCDATA) >
<!ELEMENT flying_hours (#PCDATA) >

<!ELEMENT Companysupport
(daily_equipment_cost,total_personals,personal_hourly_cost+,personal_wor
king_days+,personal_working_hours+) >
<!ELEMENT daily_equipment_cost (#PCDATA) >
<!ELEMENT total_personals (#PCDATA) >

<!ELEMENT personal_hourly_cost (#PCDATA) >
<!ATTLIST personal_hourly_cost number (1|2|3|4|5|6|7|8|9|10) "1" >

<!ELEMENT personal_working_days (#PCDATA) >
<!ATTLIST personal_working_days number (1|2|3|4|5|6|7|8|9|10) "1" >

<!ELEMENT personal_working_hours (#PCDATA) >
<!ATTLIST personal_working_hours number (1|2|3|4|5|6|7|8|9|10) "1" >

<!ELEMENT Install
(heli_install_cost,base_install_cost,head_install_cost,orb_activation_co
st,ird_activation_cost,repeater_install_cost,repeater_number,heli_sat_nu
mber,heli_sat_type,base_sat_number,base_sat_type) >
<!ELEMENT heli_install_cost (#PCDATA) >
<!ELEMENT base_install_cost (#PCDATA) >
<!ELEMENT head_install_cost (#PCDATA) >
<!ELEMENT orb_activation_cost (#PCDATA) >
<!ELEMENT ird_activation_cost (#PCDATA) >
<!ELEMENT repeater_install_cost (#PCDATA) >
<!ELEMENT repeater_number (#PCDATA) >
<!ELEMENT heli_sat_number (#PCDATA) >
<!ELEMENT base_sat_number (#PCDATA) >
<!ELEMENT heli_sat_type (#PCDATA) >
<!ELEMENT base_sat_type (#PCDATA) >

 107

Appendix II. ProjectCost.dtd

ProjectCost.dtd is the Document Type Definition file for satellite project cost XML

file generation.

<?xml encoding="ISO-8859-1"?>
<!-- @version: -->

<!ELEMENT ProjectCost
(Sat_Comm_Cost,Heli_Cost,Com_Support_Cost,Install_Cost) >
<!ATTLIST ProjectCost cost_S CDATA #REQUIRED project_model CDATA
#REQUIRED >

<!ELEMENT Sat_Comm_Cost (Heli_Sat_Cost,Base_Sat_Cost,Head_Sat_Cost) >
<!ATTLIST Sat_Comm_Cost cost_A CDATA #REQUIRED percentage_A CDATA
#REQUIRED >

<!ELEMENT Heli_Sat_Cost (Heli_Sat_Details) >
<!ATTLIST Heli_Sat_Cost cost_A1 CDATA #REQUIRED >

<!ELEMENT Heli_Sat_Details
(service_rate_h?,monthly_cost_h?,minute_cost_h?,free_minutes_h?,cost_per
_byte_h?,messages_per_minute_h?,bytes_per_message_h?,free_bytes_h?,equip
ment_rate_h?,weekly_rental_cost_h?,equipment_purchase_cost_h?,capital_da
ys_h?) >
<!ATTLIST Heli_Sat_Details heli_sat_type (0|1|2|3|9999) "0"
heli_sat_number (0|1|2|10) "0" each_heli_sat_cost CDATA #REQUIRED >

<!ELEMENT service_rate_h (#PCDATA) >
<!ELEMENT monthly_cost_h (#PCDATA) >
<!ELEMENT minute_cost_h (#PCDATA) >
<!ELEMENT free_minutes_h (#PCDATA) >
<!ELEMENT cost_per_byte_h (#PCDATA) >
<!ELEMENT messages_per_minute_h (#PCDATA) >
<!ELEMENT bytes_per_message_h (#PCDATA) >
<!ELEMENT free_bytes_h (#PCDATA) >
<!ELEMENT equipment_rate_h (#PCDATA) >
<!ELEMENT weekly_rental_cost_h (#PCDATA) >
<!ELEMENT equipment_purchase_cost_h (#PCDATA) >
<!ELEMENT capital_days_h (#PCDATA) >

<!ELEMENT Base_Sat_Cost (Base_Sat_Details) >
<!ATTLIST Base_Sat_Cost cost_A2 CDATA #REQUIRED >

<!ELEMENT Base_Sat_Details
(service_rate_b+,monthly_cost_b+,minute_cost_b+,free_minutes_b+,cost_per
_byte_b+,messages_per_minute_b+,bytes_per_message_b+,free_bytes_b+,equip
ment_rate_b+,weekly_rental_cost_b+,equipment_purchase_cost_b+,capital_da
ys_b+) >
<!ATTLIST Base_Sat_Details base_sat_type (0|1|2|3|9999) "0"
base_sat_number (0|1|2) "0" each_base_sat_cost CDATA #REQUIRED >
<!ELEMENT service_rate_b (#PCDATA) >
<!ELEMENT monthly_cost_b (#PCDATA) >
<!ELEMENT minute_cost_b (#PCDATA) >
<!ELEMENT free_minutes_b (#PCDATA) >
<!ELEMENT cost_per_byte_b (#PCDATA) >
<!ELEMENT messages_per_minute_b (#PCDATA) >
<!ELEMENT bytes_per_message_b (#PCDATA) >
<!ELEMENT free_bytes_b (#PCDATA) >
<!ELEMENT equipment_rate_b (#PCDATA) >
<!ELEMENT weekly_rental_cost_b (#PCDATA) >

 108

<!ELEMENT equipment_purchase_cost_b (#PCDATA) >
<!ELEMENT capital_days_b (#PCDATA) >

<!ELEMENT Head_Sat_Cost (Head_Sat_Details) >
<!ATTLIST Head_Sat_Cost cost_A3 CDATA #REQUIRED >

<!ELEMENT Head_Sat_Details (internet_monthly_cost) >
<!ATTLIST Head_Sat_Details head_sat_type CDATA #REQUIRED >

<!ELEMENT internet_monthly_cost (#PCDATA) >

<!ELEMENT Heli_Cost
(hourly_pilot_cost,hourly_fuel_cost,hourly_rental_cost,daily_insurance_c
ost,daily_maintenance_cost,helicopters) >
<!ATTLIST Heli_Cost cost_B CDATA #REQUIRED percentage_B CDATA #REQUIRED
>

<!ELEMENT hourly_pilot_cost (#PCDATA) >
<!ELEMENT hourly_fuel_cost (#PCDATA) >
<!ELEMENT hourly_rental_cost (#PCDATA) >
<!ELEMENT daily_insurance_cost (#PCDATA) >
<!ELEMENT daily_maintenance_cost (#PCDATA) >

<!ELEMENT helicopters (flying_days+,flying_hours+) >
<!ATTLIST helicopters total_helis (1|2|3|4|5|6|7|8|9|10) "1" >

<!ELEMENT flying_days (#PCDATA) >
<!ELEMENT flying_hours (#PCDATA) >

<!ELEMENT Com_Support_Cost (daily_equipment_cost,personals) >
<!ATTLIST Com_Support_Cost cost_C CDATA #REQUIRED percentage_C CDATA
#REQUIRED >

<!ELEMENT daily_equipment_cost (#PCDATA) >

<!ELEMENT personals
(personal_hourly_cost+,personal_working_days+,personal_working_hours+) >
<!ATTLIST personals total_personals (1|2|3|4|5|6|7|8|9|10) "1" >

<!ELEMENT personal_hourly_cost (#PCDATA) >
<!ELEMENT personal_working_days (#PCDATA) >
<!ELEMENT personal_working_hours (#PCDATA) >

<!ELEMENT Install_Cost
(Heli_Install_Cost,Base_Install_Cost,Head_Install_Cost,Repeater_Install_
Cost?) >
<!ATTLIST Install_Cost cost_D CDATA #REQUIRED percentage_D CDATA
#REQUIRED >

<!ELEMENT Heli_Install_Cost (Heli_Install_Details) >
<!ATTLIST Heli_Install_Cost cost_D1 CDATA #REQUIRED >

<!ELEMENT Heli_Install_Details
(heli_install_cost,heli_sat_activation_cost?) >
<!ATTLIST Heli_Install_Details heli_sat_type (0|1|2|3|9999) "0"
heli_sat_number (0|1|10) "0" >

<!ELEMENT heli_install_cost (#PCDATA) >
<!ELEMENT heli_sat_activation_cost (#PCDATA) >

<!ELEMENT Base_Install_Cost (Base_Install_Details) >
<!ATTLIST Base_Install_Cost cost_D2 CDATA #REQUIRED >

 109

<!ELEMENT Base_Install_Details
(base_install_cost+,base_sat_activation_cost+) >
<!ATTLIST Base_Install_Details base_sat_type (0|1|2|3|9999) "0"
base_sat_number (0|1|2) "0" >

<!ELEMENT base_install_cost (#PCDATA) >
<!ELEMENT base_sat_activation_cost (#PCDATA) >

<!ELEMENT Head_Install_Cost (Head_Install_Details) >
<!ATTLIST Head_Install_Cost cost_D3 CDATA #REQUIRED >

<!ELEMENT Head_Install_Details (head_install_cost) >
<!ATTLIST Head_Install_Details head_sat_type CDATA #REQUIRED >

<!ELEMENT head_install_cost (#PCDATA) >

<!ELEMENT Repeater_Install_Cost (Repeater_Install_Details) >
<!ATTLIST Repeater_Install_Cost cost_D4 CDATA #REQUIRED >

<!ELEMENT Repeater_Install_Details (repeater_install_cost) >
<!ATTLIST Repeater_Install_Details repeater_number (0|1|2|3) "0" >

<!ELEMENT repeater_install_cost (#PCDATA) >

 110

Appendix III. ProjectCost.xml output files

A III. 1 High accuracy seismic survey with satellite systems

This is the projectCost.xml file for high accuracy seismic survey with Iridium and

Orbcomm satellite systems. The helicopter has one Iridium transceiver. The base station

is installed with one Iridium transceiver and one Orbcomm transceiver.

<?xml version="1.0" encoding="iso-8859-1" ?>
 <!DOCTYPE ProjectCost (View Source for full doctype...)>
 <ProjectCost cost_S="230977" project_model="0">
 <Sat_Comm_Cost cost_A="9025.29" percentage_A="3.90744">
 <Heli_Sat_Cost cost_A1="4259.37">
 <Heli_Sat_Details heli_sat_type="1" heli_sat_number="1"

each_heli_sat_cost="4259.37">
 <service_rate_h>1.6</service_rate_h>
 <monthly_cost_h>19.95</monthly_cost_h>
 <minute_cost_h>0.68</minute_cost_h>
 <free_minutes_h>0</free_minutes_h>
 <cost_per_byte_h>0</cost_per_byte_h>
 <messages_per_minute_h>0</messages_per_minute_h>
 <bytes_per_message_h>0</bytes_per_message_h>
 <free_bytes_h>0</free_bytes_h>
 <equipment_rate_h>1</equipment_rate_h>
 <weekly_rental_cost_h>0</weekly_rental_cost_h>
 <equipment_purchase_cost_h>1440</equipment_purchase_cost_h>
 <capital_days_h>450</capital_days_h>

 </Heli_Sat_Details>
 </Heli_Sat_Cost>
 <Base_Sat_Cost cost_A2="4733.82">
 <Base_Sat_Details base_sat_type="2" base_sat_number="2"

each_base_sat_cost="474.448 4259.37">
 <service_rate_b>1</service_rate_b>
 <service_rate_b>1.6</service_rate_b>
 <monthly_cost_b>0</monthly_cost_b>
 <monthly_cost_b>19.95</monthly_cost_b>
 <minute_cost_b>0</minute_cost_b>
 <minute_cost_b>0.68</minute_cost_b>
 <free_minutes_b>0</free_minutes_b>
 <free_minutes_b>0</free_minutes_b>
 <cost_per_byte_b>0.003678</cost_per_byte_b>
 <cost_per_byte_b>0</cost_per_byte_b>
 <messages_per_minute_b>0.2</messages_per_minute_b>
 <messages_per_minute_b>0</messages_per_minute_b>
 <bytes_per_message_b>76</bytes_per_message_b>
 <bytes_per_message_b>0</bytes_per_message_b>
 <free_bytes_b>0</free_bytes_b>
 <free_bytes_b>0</free_bytes_b>
 <equipment_rate_b>1.6</equipment_rate_b>
 <equipment_rate_b>1</equipment_rate_b>
 <weekly_rental_cost_b>0</weekly_rental_cost_b>
 <weekly_rental_cost_b>0</weekly_rental_cost_b>

 <equipment_purchase_cost_b>1150</equipment_purchase_cost_b>
 <equipment_purchase_cost_b>1440</equipment_purchase_cost_b>
 <capital_days_b>450</capital_days_b>
 <capital_days_b>450</capital_days_b>

 </Base_Sat_Details>
 </Base_Sat_Cost>

 111

 <Head_Sat_Cost cost_A3="32.1">
 <Head_Sat_Details head_sat_type="0">
 <internet_monthly_cost>30</internet_monthly_cost>

 </Head_Sat_Details>
 </Head_Sat_Cost>

 </Sat_Comm_Cost>
 <Heli_Cost cost_B="182970" percentage_B="79.2156">
 <hourly_pilot_cost>0</hourly_pilot_cost>
 <hourly_fuel_cost>350</hourly_fuel_cost>
 <hourly_rental_cost>2500</hourly_rental_cost>
 <daily_insurance_cost>0</daily_insurance_cost>
 <daily_maintenance_cost>0</daily_maintenance_cost>
 <helicopters total_helis="1">
 <flying_days>10</flying_days>
 <flying_hours>6</flying_hours>

 </helicopters>
 </Heli_Cost>
 <Com_Support_Cost cost_C="23362" percentage_C="10.1144">
 <daily_equipment_cost>600</daily_equipment_cost>
 <personals total_personals="2">
 <personal_hourly_cost>72.92</personal_hourly_cost>
 <personal_hourly_cost>125</personal_hourly_cost>
 <personal_working_days>10</personal_working_days>
 <personal_working_days>10</personal_working_days>
 <personal_working_hours>8</personal_working_hours>
 <personal_working_hours>8</personal_working_hours>

 </personals>
 </Com_Support_Cost>
 <Install_Cost cost_D="15619.9" percentage_D="6.76251">
 <Heli_Install_Cost cost_D1="2700.68">
 <Heli_Install_Details heli_sat_type="1" heli_sat_number="1">
 <heli_install_cost>2500</heli_install_cost>
 <heli_sat_activation_cost>24</heli_sat_activation_cost>

 </Heli_Install_Details>
 </Heli_Install_Cost>
 <Base_Install_Cost cost_D2="10779.2">
 <Base_Install_Details base_sat_type="2" base_sat_number="2">
 <base_install_cost>5000</base_install_cost>
 <base_sat_activation_cost>50</base_sat_activation_cost>
 <base_sat_activation_cost>24</base_sat_activation_cost>

 </Base_Install_Details>
 </Base_Install_Cost>
 <Head_Install_Cost cost_D3="2140">
 <Head_Install_Details head_sat_type="0">
 <head_install_cost>2000</head_install_cost>

 </Head_Install_Details>
 </Head_Install_Cost>
 <Repeater_Install_Cost cost_D4="0">
 <Repeater_Install_Details repeater_number="0">
 <repeater_install_cost>1600</repeater_install_cost>

 </Repeater_Install_Details>
 </Repeater_Install_Cost>

 </Install_Cost>
 </ProjectCost>

 112

A III. 2 High accuracy seismic survey with radio modems

This is the ProjectCost.xml file for high accuracy seismic survey with one radio

modem in the helicopter, plus one radio modem and one Orbcomm transceiver at the base

station.

<?xml version="1.0" encoding="iso-8859-1" ?>
 <!DOCTYPE ProjectCost (View Source for full doctype...)>
 <ProjectCost cost_S="225831" project_model="3">
 <Sat_Comm_Cost cost_A="506.548" percentage_A="0.224304">
 <Heli_Sat_Cost cost_A1="0">
 <Heli_Sat_Details heli_sat_type="3" heli_sat_number="0"

each_heli_sat_cost="0">
 <service_rate_h>0</service_rate_h>
 <monthly_cost_h>0</monthly_cost_h>
 <minute_cost_h>0</minute_cost_h>
 <free_minutes_h>0</free_minutes_h>
 <cost_per_byte_h>0</cost_per_byte_h>
 <messages_per_minute_h>0</messages_per_minute_h>
 <bytes_per_message_h>0</bytes_per_message_h>
 <free_bytes_h>0</free_bytes_h>
 <equipment_rate_h>0</equipment_rate_h>
 <weekly_rental_cost_h>0</weekly_rental_cost_h>
 <equipment_purchase_cost_h>0</equipment_purchase_cost_h>
 <capital_days_h>0</capital_days_h>

 </Heli_Sat_Details>
 </Heli_Sat_Cost>
 <Base_Sat_Cost cost_A2="474.448">
 <Base_Sat_Details base_sat_type="0" base_sat_number="1"

each_base_sat_cost="474.448">
 <service_rate_b>1</service_rate_b>
 <monthly_cost_b>0</monthly_cost_b>
 <minute_cost_b>0</minute_cost_b>
 <free_minutes_b>0</free_minutes_b>
 <cost_per_byte_b>0.003678</cost_per_byte_b>
 <messages_per_minute_b>0.2</messages_per_minute_b>
 <bytes_per_message_b>76</bytes_per_message_b>
 <free_bytes_b>0</free_bytes_b>
 <equipment_rate_b>1.6</equipment_rate_b>
 <weekly_rental_cost_b>0</weekly_rental_cost_b>
 <equipment_purchase_cost_b>1150</equipment_purchase_cost_b>
 <capital_days_b>450</capital_days_b>

 </Base_Sat_Details>
 </Base_Sat_Cost>
 <Head_Sat_Cost cost_A3="32.1">
 <Head_Sat_Details head_sat_type="0">
 <internet_monthly_cost>30</internet_monthly_cost>

 </Head_Sat_Details>
 </Head_Sat_Cost>

 </Sat_Comm_Cost>
 <Heli_Cost cost_B="182970" percentage_B="81.0208">
 <hourly_pilot_cost>0</hourly_pilot_cost>
 <hourly_fuel_cost>350</hourly_fuel_cost>
 <hourly_rental_cost>2500</hourly_rental_cost>
 <daily_insurance_cost>0</daily_insurance_cost>
 <daily_maintenance_cost>0</daily_maintenance_cost>
 <helicopters total_helis="1">
 <flying_days>10</flying_days>
 <flying_hours>6</flying_hours>

 113

 </helicopters>
 </Heli_Cost>
 <Com_Support_Cost cost_C="23362" percentage_C="10.3449">
 <daily_equipment_cost>600</daily_equipment_cost>
 <personals total_personals="2">
 <personal_hourly_cost>72.92</personal_hourly_cost>
 <personal_hourly_cost>125</personal_hourly_cost>
 <personal_working_days>10</personal_working_days>
 <personal_working_days>10</personal_working_days>
 <personal_working_hours>8</personal_working_hours>
 <personal_working_hours>8</personal_working_hours>

 </personals>
 </Com_Support_Cost>
 <Install_Cost cost_D="18992.5" percentage_D="8.41005">
 <Heli_Install_Cost cost_D1="2675">
 <Heli_Install_Details heli_sat_type="3" heli_sat_number="0">
 <heli_install_cost>2500</heli_install_cost>
 <heli_sat_activation_cost>0</heli_sat_activation_cost>

 </Heli_Install_Details>
 </Heli_Install_Cost>
 <Base_Install_Cost cost_D2="10753.5">
 <Base_Install_Details base_sat_type="0" base_sat_number="1">
 <base_install_cost>5000</base_install_cost>
 <base_sat_activation_cost>50</base_sat_activation_cost>

 </Base_Install_Details>
 </Base_Install_Cost>
 <Head_Install_Cost cost_D3="2140">
 <Head_Install_Details head_sat_type="0">
 <head_install_cost>2000</head_install_cost>

 </Head_Install_Details>
 </Head_Install_Cost>
 <Repeater_Install_Cost cost_D4="3424">
 <Repeater_Install_Details repeater_number="2">
 <repeater_install_cost>1600</repeater_install_cost>

 </Repeater_Install_Details>
 </Repeater_Install_Cost>

 </Install_Cost>
 </ProjectCost>

 114

A III. 3 Forest fire operation #1

This is the ProjectCost.xml file for forest fore operation #1. The model has one

Iridium system installed at base station and one Orbcomm transceiver for each of the 10

helicopters.

<?xml version="1.0" encoding="iso-8859-1" ?>
 <!DOCTYPE ProjectCost (View Source for full doctype...)>
 <ProjectCost cost_S="486046" project_model="1">
 <Sat_Comm_Cost cost_A="7707.49" percentage_A="1.58575">
 <Heli_Sat_Cost cost_A1="3416.02">
 <Heli_Sat_Details heli_sat_type="0" heli_sat_number="10"

each_heli_sat_cost="474.448">
 <service_rate_h>1</service_rate_h>
 <monthly_cost_h>0</monthly_cost_h>
 <minute_cost_h>0</minute_cost_h>
 <free_minutes_h>0</free_minutes_h>
 <cost_per_byte_h>0.003678</cost_per_byte_h>
 <messages_per_minute_h>0.2</messages_per_minute_h>
 <bytes_per_message_h>76</bytes_per_message_h>
 <free_bytes_h>0</free_bytes_h>
 <equipment_rate_h>1.6</equipment_rate_h>
 <weekly_rental_cost_h>0</weekly_rental_cost_h>
 <equipment_purchase_cost_h>1150</equipment_purchase_cost_h>
 <capital_days_h>450</capital_days_h>

 </Heli_Sat_Details>
 </Heli_Sat_Cost>
 <Base_Sat_Cost cost_A2="4259.37">
 <Base_Sat_Details base_sat_type="1" base_sat_number="1"

each_base_sat_cost="4259.37">
 <service_rate_b>1.6</service_rate_b>
 <monthly_cost_b>19.95</monthly_cost_b>
 <minute_cost_b>0.68</minute_cost_b>
 <free_minutes_b>0</free_minutes_b>
 <cost_per_byte_b>0</cost_per_byte_b>
 <messages_per_minute_b>0</messages_per_minute_b>
 <bytes_per_message_b>0</bytes_per_message_b>
 <free_bytes_b>0</free_bytes_b>
 <equipment_rate_b>1</equipment_rate_b>
 <weekly_rental_cost_b>0</weekly_rental_cost_b>
 <equipment_purchase_cost_b>1440</equipment_purchase_cost_b>
 <capital_days_b>450</capital_days_b>

 </Base_Sat_Details>
 </Base_Sat_Cost>
 <Head_Sat_Cost cost_A3="32.1">
 <Head_Sat_Details head_sat_type="0">
 <internet_monthly_cost>30</internet_monthly_cost>

 </Head_Sat_Details>
 </Head_Sat_Cost>

 </Sat_Comm_Cost>
 <Heli_Cost cost_B="420176" percentage_B="86.4478">
 <hourly_pilot_cost>0</hourly_pilot_cost>
 <hourly_fuel_cost>114</hourly_fuel_cost>
 <hourly_rental_cost>795</hourly_rental_cost>
 <daily_insurance_cost>0</daily_insurance_cost>
 <daily_maintenance_cost>0</daily_maintenance_cost>
 <helicopters total_helis="10">
 <flying_days>10</flying_days>
 <flying_days>10</flying_days>

 115

 <flying_days>10</flying_days>
 <flying_days>10</flying_days>
 <flying_days>10</flying_days>
 <flying_days>6</flying_days>
 <flying_days>6</flying_days>
 <flying_days>6</flying_days>
 <flying_days>2</flying_days>
 <flying_days>2</flying_days>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>

 </helicopters>
 </Heli_Cost>
 <Com_Support_Cost cost_C="23362" percentage_C="4.80653">
 <daily_equipment_cost>600</daily_equipment_cost>
 <personals total_personals="2">
 <personal_hourly_cost>72.92</personal_hourly_cost>
 <personal_hourly_cost>125</personal_hourly_cost>
 <personal_working_days>10</personal_working_days>
 <personal_working_days>10</personal_working_days>
 <personal_working_hours>8</personal_working_hours>
 <personal_working_hours>8</personal_working_hours>

 </personals>
 </Com_Support_Cost>
 <Install_Cost cost_D="34800.7" percentage_D="7.15995">
 <Heli_Install_Cost cost_D1="27285">
 <Heli_Install_Details heli_sat_type="0" heli_sat_number="10">
 <heli_install_cost>2500</heli_install_cost>
 <heli_sat_activation_cost>50</heli_sat_activation_cost>

 </Heli_Install_Details>
 </Heli_Install_Cost>
 <Base_Install_Cost cost_D2="5375.68">
 <Base_Install_Details base_sat_type="1" base_sat_number="1">
 <base_install_cost>5000</base_install_cost>
 <base_sat_activation_cost>24</base_sat_activation_cost>

 </Base_Install_Details>
 </Base_Install_Cost>
 <Head_Install_Cost cost_D3="2140">
 <Head_Install_Details head_sat_type="0">
 <head_install_cost>2000</head_install_cost>

 </Head_Install_Details>
 </Head_Install_Cost>
 <Repeater_Install_Cost cost_D4="0">
 <Repeater_Install_Details repeater_number="0">
 <repeater_install_cost>1600</repeater_install_cost>

 </Repeater_Install_Details>
 </Repeater_Install_Cost>

 </Install_Cost>
 </ProjectCost>

 116

A III. 4 Forest fire operation #2

The ProjectCost.xml file for forest fire operation #2 shows one Orbcomm transceiver

used at the base station and one Orbcomm transceiver installed at each of the 10

helicopters.

 <?xml version="1.0" encoding="iso-8859-1" ?>
 <!DOCTYPE ProjectCost (View Source for full doctype...)>
 <ProjectCost cost_S="482289" project_model="2">
 <Sat_Comm_Cost cost_A="3922.57" percentage_A="0.813324">
 <Heli_Sat_Cost cost_A1="3416.02">
 <Heli_Sat_Details heli_sat_type="0" heli_sat_number="10"

each_heli_sat_cost="474.448">
 <service_rate_h>1</service_rate_h>
 <monthly_cost_h>0</monthly_cost_h>
 <minute_cost_h>0</minute_cost_h>
 <free_minutes_h>0</free_minutes_h>
 <cost_per_byte_h>0.003678</cost_per_byte_h>
 <messages_per_minute_h>0.2</messages_per_minute_h>
 <bytes_per_message_h>76</bytes_per_message_h>
 <free_bytes_h>0</free_bytes_h>
 <equipment_rate_h>1.6</equipment_rate_h>
 <weekly_rental_cost_h>0</weekly_rental_cost_h>
 <equipment_purchase_cost_h>1150</equipment_purchase_cost_h>
 <capital_days_h>450</capital_days_h>

 </Heli_Sat_Details>
 </Heli_Sat_Cost>
 <Base_Sat_Cost cost_A2="474.448">
 <Base_Sat_Details base_sat_type="0" base_sat_number="1"

each_base_sat_cost="474.448">
 <service_rate_b>1</service_rate_b>
 <monthly_cost_b>0</monthly_cost_b>
 <minute_cost_b>0</minute_cost_b>
 <free_minutes_b>0</free_minutes_b>
 <cost_per_byte_b>0.003678</cost_per_byte_b>
 <messages_per_minute_b>0.2</messages_per_minute_b>
 <bytes_per_message_b>76</bytes_per_message_b>
 <free_bytes_b>0</free_bytes_b>
 <equipment_rate_b>1.6</equipment_rate_b>
 <weekly_rental_cost_b>0</weekly_rental_cost_b>
 <equipment_purchase_cost_b>1150</equipment_purchase_cost_b>
 <capital_days_b>450</capital_days_b>

 </Base_Sat_Details>
 </Base_Sat_Cost>
 <Head_Sat_Cost cost_A3="32.1">
 <Head_Sat_Details head_sat_type="0">
 <internet_monthly_cost>30</internet_monthly_cost>

 </Head_Sat_Details>
 </Head_Sat_Cost>

 </Sat_Comm_Cost>
 <Heli_Cost cost_B="420176" percentage_B="87.1212">
 <hourly_pilot_cost>0</hourly_pilot_cost>
 <hourly_fuel_cost>114</hourly_fuel_cost>
 <hourly_rental_cost>795</hourly_rental_cost>
 <daily_insurance_cost>0</daily_insurance_cost>
 <daily_maintenance_cost>0</daily_maintenance_cost>
 <helicopters total_helis="10">
 <flying_days>10</flying_days>
 <flying_days>10</flying_days>

 117

 <flying_days>10</flying_days>
 <flying_days>10</flying_days>
 <flying_days>10</flying_days>
 <flying_days>6</flying_days>
 <flying_days>6</flying_days>
 <flying_days>6</flying_days>
 <flying_days>2</flying_days>
 <flying_days>2</flying_days>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>
 <flying_hours>6</flying_hours>

 </helicopters>
 </Heli_Cost>
 <Com_Support_Cost cost_C="23362" percentage_C="4.84397">
 <daily_equipment_cost>600</daily_equipment_cost>
 <personals total_personals="2">
 <personal_hourly_cost>72.92</personal_hourly_cost>
 <personal_hourly_cost>125</personal_hourly_cost>
 <personal_working_days>10</personal_working_days>
 <personal_working_days>10</personal_working_days>
 <personal_working_hours>8</personal_working_hours>
 <personal_working_hours>8</personal_working_hours>

 </personals>
 </Com_Support_Cost>
 <Install_Cost cost_D="34828.5" percentage_D="7.2215">
 <Heli_Install_Cost cost_D1="27285">
 <Heli_Install_Details heli_sat_type="0" heli_sat_number="10">
 <heli_install_cost>2500</heli_install_cost>
 <heli_sat_activation_cost>50</heli_sat_activation_cost>

 </Heli_Install_Details>
 </Heli_Install_Cost>
 <Base_Install_Cost cost_D2="5403.5">
 <Base_Install_Details base_sat_type="0" base_sat_number="1">
 <base_install_cost>5000</base_install_cost>
 <base_sat_activation_cost>50</base_sat_activation_cost>

 </Base_Install_Details>
 </Base_Install_Cost>
 <Head_Install_Cost cost_D3="2140">
 <Head_Install_Details head_sat_type="0">
 <head_install_cost>2000</head_install_cost>

 </Head_Install_Details>
 </Head_Install_Cost>
 <Repeater_Install_Cost cost_D4="0">
 <Repeater_Install_Details repeater_number="0">
 <repeater_install_cost>1600</repeater_install_cost>

 </Repeater_Install_Details>
 </Repeater_Install_Cost>

 </Install_Cost>
 </ProjectCost>

 118

VITA

Candidate’s full name: Alex Lemin Wu

Place of birth: Hunan, P.R.China

University attended: Bachelor of Engineering (Metal Material), 1984 – 1988
 Central South University of Technology,
 Hunan, P.R.China

Selected publications:

Nickerson, Bradford G., Wu, Alex L., “Cost Model of Satellite Systems for Real-Time
Helicopter Operations”, Technical Report TR02-157, Faculty of Computer Science,
University of New Brunswick, August 7, 2002, 26 pages.

